Инструментальные материалы
Требования, предъявляемые к инструментальным материалам. Углеродистые, быстрорежущие стали и твердые сплавы. Характеристика режущей керамики и сверхтвердых синтетических поликристаллических материалов. Особенности веществ с износостойким покрытием.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 06.11.2010 |
Размер файла | 168,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Содержание
1. Требования, предъявляемые к инструментальным материалам
2. Инструментальные стали
2.1 Углеродистые и легированные инструментальные стали
2.2 Быстрорежущие стали
3. Твердые сплавы
3.1 Вольфрамокобальтовые сплавы (группа ВК)
3.2 Титановольврамокобальтовые сплавы (группа ТК)
3.3 Титанотанталовольфрамокобальтовые сплавы (группа ТТК)
3.4 Безвольфрамовые твердые сплавы (БВТС)
3.5 Краткие рекомендации по выбору твердых сплавов
3.6 Классификация современных твердых сплавов по международному стандарту ИСО513 и определение условий их эффективного использования
4. Режущая керамика
5. Сверхтвердые синтетические поликристаллические инструментальные материалы
5.1 Особенности получения инструментальных материалов на основе алмаза и кубического нитрида бора
5.2 Характеристика основных свойств и область применения поликристаллов синтетического алмаза (ПКА)
5.3 Характеристика основных свойств и область применения ПСТМ на основе плотных модификаций нитрида бора BN
6. Инструментальные материалы с износостойким покрытием
1. Требования, предъявляемые к инструментальным материалам
При резании контактные площадки инструмента подвергаются интенсивному воздействию высоких силовых нагрузок и температур, величины которых имеют переменный характер, а взаимодействие с обрабатываемым материалом и реагентами из окружающей среды приводит к протеканию интенсивных физико-химических процессов: адгезии, диффузии, окисления, коррозии и др.
С учетом необходимости сопротивления контактных площадок режущего инструмента микро- и макроразрушению в указанных условиях, к свойствам инструментальных материалов предъявляется ряд специальных требований, выполнение которых определяет место их эффективного применения для режущих инструментов. Основные требования к инструментальным материалам следующие:
1. Инструментальный материал должен иметь высокую твердость.
Твердость инструментального материала должна быть выше твердости обрабатываемого не менее чем в 1,4 - 1.7 раза.
2. При резании металлов выделяется значительное количество теплоты и режущая часть инструмента нагревается. Поэтому, инструментальный материал должен обладать высокой теплостойкостью. Способность материала сохранять высокую твердость при температурах резания называется теплостойкостью.. Для быстрорежущей стали - теплостойкость еще называют красностойкостью (т.е. сохранение твердости при нагреве до температур начала свечения стали)
Увеличение уровня теплостойкости инструментального материала позволяет ему работать с большими скоростями резания (табл. 2.1).
Таблица 2.1 - Теплостойкость и допустимая скорость резания инструментальных материалов
Материал |
Теплостойкость, К |
Допустимая скорость при резании Стали 45 м/мин |
|
Углеродистая сталь |
473 - 523 |
10 - 15 |
|
Легированная сталь |
623 - 673 |
15 - 30 |
|
Быстрорежущая сталь |
873 - 823 |
40 - 60 |
|
Твердые сплавы: |
|||
Группа ВК |
1173 - 1200 |
120 - 200 |
|
Группы ТК и ТТК |
1273 - 1300 |
150 - 250 |
|
безвольфрамовые |
1073 - 1100 |
100 - 300 |
|
с покрытием |
1273 - 1373 |
200 - 300 |
|
Керамика |
1473 - 1500 |
400 - 600 |
3. Важным требованием является достаточно высокая прочность инструментального материала. Если высокая твердость материала рабочей части инструмента не обеспечивается необходимой прочностью, то это приводит к поломке инструмента и выкрашиванию режущих кромок.
Таким образом, инструментальный материал должен иметь достаточный уровень ударной вязкости и сопротивляться появлению трещин (т.е. иметь высокую трещиностойкость).
4. Инструментальный материал должен иметь высокую износостойкость при повышенной температуре, т.е. обладать хорошей сопротивляемостью истиранию обрабатываемым материалом, которая проявляется в сопротивлении материала контактной усталости.
5. Необходимым условием достижения высоких режущих свойств инструмента является низкая физико-химическая активность инструментального материала по отношению к обрабатываемому. Поэтому кристаллохимические свойства инструментального материала должны существенно отличаться от соответствующих свойств обрабатываемого материала. Степень такого отличия сильно влияет на интенсивность физико-химических процессов (адгезионно-усталостные, коррозионно-окислительные и диффузионные процессы) и изнашивание контактных площадок инструмента.
6. Инструментальный материал должен обладать технологическими свойствами, обеспечивающими оптимальные условия изготовления из него инструментов. Для инструментальных сталей ими являются хорошая обрабатываемость резанием и давлением; благоприятные особенности термической обработки (малая чувствительность к перегреву и обезуглероживанию, хорошие закаливаемость и прокаливаемость, минимальные деформирование и образование трещин при закалке и т.д.); хорошая шлифуемость после термической обработки.
На рис. 2.1 показано расположение основных групп инструментальных материалов по их свойствам. Из рисунка видно, что твердость и прочность инструментальных материалов это свойства антагонисты, т.е. чем выше твердость материала, тем ниже его прочность. Поэтому набор основных свойств и определяет область и условие рационального использования инструментального материала в режущем инструменте.
Например, инструмент из сверхтвердых инструментальных материалов на основе алмаза и кубического нитрида бора (СТМ) или из режущей керамики (РК), используют исключительно для суперчистовой обработки изделий на высоких и сверхвысоких скоростях резания, но при весьма ограниченных сечениях среза.
При обработке конструкционных сталей на малых и средних скоростях резания в сочетании со средними и большими сечениями среза большие преимущества получают инструменты из быстрорежущей стали.
Инструментальные материалы подразделяются на пять основных групп: инструментальные стали (углеродистые, легированные и быстрорежущие); металлокерамические твердые сплавы (группы ВК, ТК и ТТК); режущая керамика (оксидная, оксикарбидная и нитридная); абразивные материалы (см. абразивная обработка) и сверхтвердые материалы СТМ (на основе алмаза и кубического нитрида бора (КНБ)).
1 - Принципиальная зависимость основных свойств инструментальных материалов (твердость - прочность)
Рисунок 2.1 - Классификация инструментальных материалов по их свойствам
Наиболее распространенная из этих групп - быстрорежущая сталь, из которой изготавливается около 60% инструмента, из металлокерамических твердых сплавов - около 30%, из остальных групп материалов - только около 10 % лезвийного инструмента.
Анализ основных направлений совершенствования инструментальных материалов (см. рис. 2.1) позволяет отметить, что они связаны с ростом твердости, теплостойкости, износостойкости при снижении прочностных характеристик, вязкости и трещиностойкости. Эти тенденции не соответствуют идее создания идеального инструментального материала с оптимальным сочетанием свойств по твердости, теплостойкости, ударной вязкости, трещиностойкости, прочности.
Очевидно, что решение этой проблемы должно быть связано с разработкой композиционного инструментального материала, у которого высокие значения поверхностной твердости, теплостойкости, физико-химической инертности сочетались бы с достаточными значениями объемной прочности при изгибе, ударной вязкости, предела выносливости.
В мировой практике указанные методы совершенствования инструментальных материалов находят все большее применение, особенно при производстве сменных многогранных пластин (СМП) для механического крепления на режущем инструменте.
2. Инструментальные стали
Для режущих инструментов применяют быстрорежущие стали, а также, в небольших количествах, заэвтектоидные углеродистые стали с содержанием углерода 0,7-1,3% и суммарным содержанием легирующих элементов (кремния, марганца, хрома и вольфрама) от 1,0 до 3,0%.
2.1 Углеродистые и легированные инструментальные стали
Ранее других материалов для изготовления режущих инструментов начали применять углеродистые инструментальные стали марок У7, У7А…У13, У13А. Помимо железа и углерода, эти стали содержат 0,2…0,4% марганца. Инструменты из углеродистых сталей обладают достаточной твердостью при комнатной температуре, но теплостойкость их невелика, так как при сравнительно невысоких температурах (200…250С) их твердость резко уменьшается.
Легированные инструментальные стали, по своему химическому составу, отличаются от углеродистых повышенным содержанием кремния или марганца, или наличием одного либо нескольких легирующих элементов: хрома, никеля, вольфрама, ванадия, кобальта, молибдена. Для режущих инструментов используются низколегированные стали марок 9ХФ, 11ХФ, 13Х, В2Ф, ХВ4, ХВСГ, ХВГ, 9ХС и др. Эти стали обладают более высокими технологическими свойствами - лучшей закаливаемостью и прокаливаемостью, меньшей склонности к короблению, но теплостойкость их равна 350…400С и поэтому они используются для изготовления ручных инструментов (разверток) или инструментов, предназначенных для обработки на станках с низкими скоростями резания (мелкие сверла, метчики).
Следует отметить, что за последние 15-20 лет существенных изменений этих марок не произошло, однако наблюдается устойчивая тенденция снижения их доли в общем объеме используемых инструментальных материалов.
2.2 Быстрорежущие стали
В настоящее время быстрорежущие стали являются основным материалом для изготовления режущего инструмента, несмотря на то, что инструмент из твердого сплава, керамики и СТМ обеспечивает более высокую производительность обработки.
Широкое использование быстрорежущих сталей для изготовления сложнопрофильных инструментов определяется сочетанием высоких значений твердости (до HRC68) и теплостойкости (600-650С) при высоком уровне хрупкой прочности и вязкости, значительно превышающих соответствующие значения для твердых сплавов. Кроме того, быстрорежущие стали обладают достаточно высокой технологичностью, так как хорошо обрабатываются давлением и резанием в отожженном состоянии.
В обозначении быстрорежущей стали буква Р означает, что сталь быстрорежущая, а следующая за буквой цифра - содержание средней массовой доли вольфрама в %. Следующие буквы обозначают: М - молибден, Ф - ванадий, К - кобальт, А - азот. Цифры, следующие за буквами, означают их среднюю массовую долю в %. Содержание массовой доли азота составляет 0,05-0,1%.
Современные быстрорежущие стали можно разделить на три группы: нормальной, повышенной и высокой теплостойкости.
К сталям нормальной теплостойкости относятся вольфрамовая Р18 и вольфрамомолибденовая Р6М5 стали (табл. 2.2). Эти стали имеют твердость в закаленном состоянии 63…64 HRC, предел прочности при изгибе 2900…3400Мпа, ударную вязкость 2,7…4,8Дж/м2 и теплостойкость 600…620С. Указанные марки стали получили наиболее широкое распространение при изготовлении режущих инструментов. Объем производства стали Р6М5 достигает 80% от всего объема выпуска быстрорежущей стали. Она используется при обработке конструкционных сталей, чугунов, цветных металлов, пластмасс.
Стали повышенной теплостойкости характеризуются повышенным содержанием углерода, ванадия и кобальта.
Среди ванадиевых сталей наибольшее применение получила марка Р6М5Ф3.
Наряду с высокой износостойкостью, ванадиевые стали обладают плохой шлифуемостью из-за присутствия карбидов ванадия (VC), так как твердость последних не уступает твердости зерен электрокорундового шлифовального круга (Al2O3). Обрабатываемость при шлифовании - "шлифуемость", - это важнейшее технологическое свойство, которое определяет не только особенности при изготовлении инструментов, но и при его эксплуатации (переточках).
Таблица 2.2Химический состав быстрорежущих сталей
Марка стали |
Массовая доля, % |
|||||||
Углерод |
Хром |
Вольфрам |
Ванадий |
Кобальт |
Молибден |
Азот |
||
Стали нормальной теплостойкости |
||||||||
Р18 |
0,73-0,83 |
3,80-4,40 |
17,00-18,50 |
1,00-1,40 |
н.б. 0,50 |
н.б. 1,00 |
- |
|
Р6М5 |
0,82-0,90 |
3,80-4,40 |
5,50-6,50 |
1,70-2,10 |
н.б. 0,50 |
4,80-5,30 |
- |
|
Стали повышенной теплостойкости |
||||||||
11РЗАМ3Ф2 |
1,02-1,12 |
3,80-4,30 |
2,50-3,30 |
2,30-2,70 |
н.б. 0,50 |
2,50-3,00 |
0,05-0,10 |
|
Р6М5Ф3 |
0,95-1,05 |
3,80-4,30 |
5,70-6,70 |
2,30-2,70 |
н.б. 0,50 |
4,80-5,30 |
- |
|
Р12Ф3 |
0,95-1,05 |
3,80-4,30 |
12,0-13,0 |
2,50-3,00 |
н.б. 0,50 |
н.б. 0,50 |
- |
|
Р18К5Ф2 |
0,85-0,95 |
3,80-4,40 |
17,0-18,50 |
1,80-2,20 |
4,70-5,20 |
н.б. 1,00 |
- |
|
Р9К5 |
0,90-1,0 |
3,80-4,40 |
9,00-10,00 |
2,30-2,70 |
5,00-6,00 |
н.б. 1,00 |
- |
|
Р6М5К5 |
0,94-0,92 |
3,80-4,30 |
5,70-6,70 |
1,70-2,10 |
4,70-5,20 |
4,80-5,30 |
- |
|
Р9М4К8 |
1,0-1,10 |
3,00-3,60 |
8,50-9,50 |
2,30-2,70 |
7,50-8,50 |
3,80-4,30 |
- |
|
Р2АМ9К5 |
1,0-1,10 |
3,80-4,40 |
1,50-2,00 |
1,70-2,10 |
4,70-5,20 |
8,00-9,00 |
0,05-1,10 |
|
Стали высокой теплостойкости |
||||||||
В11М7К23 |
0,10 |
- |
11,00 |
0,50 |
23,00 |
7,00 |
- |
|
В14М7К25 |
0,10 |
- |
14,00 |
0,50 |
25,00 |
7,00 |
- |
|
3В20К20Х4ф |
0,25 |
4,00 |
20,00 |
1,00 |
20,00 |
- |
- |
По шлифуемости быстрорежущие стали можно разделить на 4 группы:
Группа 1 Содержание ванадия до 1,4% и относительная шлифуемость 0,9-1 (за единицу принята "обрабатываемость при шлифовании" стали Р18, обладающая наилучшей шлифуемостью).
Группа 2 Содержание ванадия 1,7-2,2%, относительная шлифуемость 0,5- 0,95, в эту группу, в частности, входят стали Р6М5, Р6М5К5, Р2АМ9К5 и др.
Группа 3 Содержание ванадия 2,3-3,3%, относительная шлифуемость 0,3-0,5 (11РЗАМ3Ф2, Р6М5Ф3, Р12Ф3, Р9, Р9М4К8 и др.)
Группа 4 Содержание ванадия более 4%, относительная шлифуемость 0,2-0,3 (Р12Ф4К5 и др.).
Порошковые быстрорежущие стали, независимо от содержания ванадия, относятся к группам 1 и 2 т.е. обладают хорошей шлифуемостью.
Стали с пониженной шлифуемостью склонны к прижогам, т.е. к изменению структуры приповерхностных слоев стали после шлифования или заточки, появлению вторичной закалки или зон вторичного отпуска с пониженной твердостью.
Следствием прижогов может быть значительное снижение стойкости инструмента.
Однако, проблема "шлифуемости" высокованадиевых быстрорежущих сталей, успешно решается если при заточке и доводке режущих инструментов применяются абразивные круги с зернами из СТМ на основе кубического нитрида бора (КНБ).
Ванадиевые быстрорежущие стали находят применение для инструментов несложных форм при чистовых и получистовых условиях резания для обработки материалов, обладающих повышенными абразивными свойствами.
Среди кобальтовых сталей наибольшее применение нашли марки Р6М5К5, Р9М4К8, Р18К5Ф2, Р9К5, Р2АМ9К5 и др. Введение кобальта в состав быстрорежущей стали наиболее значительно повышает ее твердость (до 66-68 HRC) и теплостойкость (до 640-650С). Кроме того, повышается теплопроводность стали, так как кобальт является единственным легирующим элементом, приводящим к такому эффекту.
Это дает возможность использовать их для обработки жаропрочных и нержавеющих сталей и сплавов, а также конструкционных сталей повышенной прочности. Период стойкости инструментов из таких сталей в 3-5 раз выше, чем из сталей Р18, Р6М5.
Стали высокой теплостойкости характеризуются пониженным содержанием углерода, но весьма большим количеством легирующих элементов - В11М7К23, В14М7К25, 3В20К20Х4Ф. Они имеют твердость 69…70 HRC и теплостойкость 700…720С. Наиболее рациональная область их использования - резание труднообрабатываемых материалов и титановых сплавов. В последнем случае период стойкости инструментов в 60 раз выше, чем из стали Р18, и в 8-15 раз выше, чем из твердого сплава ВК8.
Значительными недостатками этих сталей является их низкая прочность при изгибе (не выше 2400 МПа) и низкая обрабатываемость резанием в отожженном состоянии (38-40 HRC) при изготовлении инструмента.
В связи со все более возрастающей дефицитностью вольфрама и молибдена - основных легирующих элементов, используемых при производстве быстрорежущей стали, все большее применение находят экономнолегированные марки. Среди сталей этого типа наибольшее применение получила сталь 11Р3АМ3Ф2, которая используется при производстве инструмента, так как обладает достаточно высокими показателями по твердости (HRC 63-64), прочности (и-3400 МПа) и теплостойкости (до 620С).
Экономно легированные стали
Сталь 11Р3АМ3Ф2 технологична в металлургическом производстве, однако, из-за худшей шлифуемости ее применение ограничено инструментами простой формы, не требующими больших объемов абразивной обработки (пилы по металлу, резцы и т.п.).
Порошковые быстрорежущие стали
Наиболее эффективные возможности повышения качества быстрорежущей стали, ее эксплуатационных свойств, и создания новых режущих материалов появились при использовании порошковой металлургии.
Порошковая быстрорежущая сталь характеризуется однородной мелкозернистой структурой, равномерным распределением карбидной фазы, пониженной деформируемостью в процессе термической обработки, хорошей шлифуемостью, более высокими технологическими и механическими свойствами, чем сталь аналогичных марок, полученных по традиционной технологии. Технологическая схема получения порошковых быстрорежущих сталей следующая: газовое распыление в порошок жидкой струи быстрорежущей стали, засыпка и дегазация порошка в цилиндрический контейнер, нагрев и ковка (или прокатка) контейнеров в прутки, окончательная резцовая обдирка остатков контейнера с поверхности прутков. Основным преимуществом порошковой технологии является резкое снижение размеров карбидов, образующихся при кристаллизации слитка в изложнице. Таким образом порошинка, полученная газовым распылением, и является микрослитком в котором не образуются крупные карбиды.
Новая технология позволяет существенно изменить схему легирования с целью направленного повышения тех или иных эксплуатационных характеристик, определяющих стойкость инструмента.
Основные примеры разработки новых составов порошковой быстрорежущей стали сводятся к возможности введения в состав до 7% ванадия и значительного, в связи с этим, повышения износостойкости без ухудшения шлифуемости. А также введение углерода с "пересыщением" до 1,7%, позволяющего получить значительное количество карбидов ванадия и высокую вторичную твердость после закалки с отпуском. В Украине выпускают ряд марок порошковой стали: (Р7М2Ф6-МП, Р6М5Ф3-МП, Р9М2Ф6К5-МП, Р12МФ5-МП и др. ГОСТ 28369-89).
Технология порошковой металлургии также используется для получения карбидостали, которая по своим свойствам может быть классифицирована как промежуточная между быстрорежущей сталью и твердыми сплавами.
Карбидосталь отличается от обычной быстрорежущей стали высоким содержанием карбидной фазы (в основном карбидов титана), что достигается путем смешивания порошка быстрорежущей стали и мелкодисперсных частиц карбида титана. Содержание TiC в карбидостали составляет 20%. Пластическим деформированием спрессованного порошка получают заготовки простой формы. В отожженном состоянии твердость карбидостали составляет HRC 40-44, а после закалки и отпуска HRC 68-70.
При использовании в качестве материала режущего инструмента карбидосталь обеспечивает повышение стойкости в 1,5-2 раза по сравнению с аналогичными марками обычной технологии производства. В ряде случаев карбидосталь является полноценным заменителем твердых сплавов, особенно при изготовлении формообразующих инструментов (деформирующие протяжки).
3. Твердые сплавы
Твердые сплавы являются основным инструментальным материалом, обеспечивающим высокопроизводительную обработку материалов резанием. Сейчас общее количество твердосплавного инструмента, применяемого в механообрабатывающем производстве, составляет до 30%, причем этим инструментом снимается до 65% стружки, так как скорость резания, применяемая при обработке этим инструментом в 2-5 раз выше, чем у быстрорежущего инструмента. Твердые сплавы получают методами порошковой металлургии в виде пластин. Основными компонентами таких сплавов являются карбиды вольфрама WC, титана TiC, тантала TaC и ниобия NbC, мельчайшие частицы которых соединены посредством сравнительно мягких и менее тугоплавких связок из кобальта или никеля в смеси с молибденом. Твердые сплавы по составу и областям применения можно разделить на четыре группы: вольфрамокобальтовые (WC-Co), титановольфрамокобальтовые (WC-TiC-Co), титанотанталовольфрамокобальтовые (WC-TiC-TaC-Co), безвольфрамовые (на основе TiC, TiCN с различными связками).
3.1 Вольфрамокобальтовые сплавы (ВК)
Вольфрамокобальтовые сплавы (группа ВК) состоят из карбида вольфрама(WC) и кобальта. Сплавы этой группы различаются содержанием в них кобальта, размерами зерен карбида вольфрама и технологией изготовления. Для оснащения режущего инструмента применяют сплавы с содержанием кобальта 3-10%. В табл. 2.3 приведены состав и характеристики основных физико-механических свойств твердых сплавов, в соответствии с ГОСТ 3882-74.
Таблица 2.3 - Состав и характеристики основных физико-механических свойств сплавов, на основе WC-Co (группа ВК)
Сплав |
Состав сплава, % |
Характеристики физико-механических свойств |
|||||
WC |
TaC |
Co |
Предел прочности при изгибе изг, Мпа, не менее |
Плотность 10-3, кг/м3 |
HRA, не менее |
||
ВК3 |
97 |
- |
3 |
1176 |
15,0-15,3 |
89,5 |
|
ВК3-М |
97 |
- |
3 |
1176 |
15,0-15,3 |
91,0 |
|
ВК4 |
96 |
- |
4 |
1519 |
14,9-15,2 |
89,5 |
|
ВК6 |
94 |
- |
6 |
1519 |
14,6-15,0 |
88,5 |
|
ВК6-М |
94 |
- |
6 |
1421 |
14,8-15,1 |
90,0 |
|
ВК6-ОМ |
92 |
2 |
6 |
1274 |
14,7-15,0 |
90,5 |
|
ВК8 |
92 |
- |
8 |
1666 |
14,4-14,8 |
87,5 |
|
ВК10 |
90 |
- |
10 |
1764 |
14,2-14,6 |
87,0 |
|
ВК10-М |
90 |
- |
10 |
1617 |
14,3-14,6 |
88,0 |
|
ВК10-ОМ |
88 |
2 |
10 |
1470 |
14,3-14,6 |
88,5 |
В условном обозначении сплава цифра показывает процентное содержание кобальтовой связки. Например обозначение ВК6 показывает, что в нем 6% кобальта и 94% карбидов вольфрама. При увеличении в сплавах содержания кобальта в диапазоне от 3 до 10% предел прочности, ударная вязкость и пластическая деформация возрастают, в то время как твердость и модуль упругости уменьшаются. С ростом содержания кобальта повышаются теплопроводность сплавов и их коэффициент термического расширения.
Рисунок 2.2 - Влияние кобальта на свойства твердого сплава группы (ВК)
Из всех существующих твердых сплавов, сплавы группы ВК при одинаковом содержании кобальта обладают более высокими ударной вязкостью и пределом прочности при изгибе, а также лучшей тепло- и электропроводностью. Однако стойкость этих сплавов к окислению и коррозии значительно ниже, кроме того, они обладают большой склонностью к схватыванию со стружкой при обработке резанием. При одинаковом содержании кобальта физико-механические и режущие свойства сплавов в значительной мере определяются средним размером зерен карбида вольфрама (WC). Разработанные технологические приемы позволяют получать твердые
сплавы, в которых средний размер зерен карбидной составляющей может изменяться от долей микрометра до 10-15 мкм.
Сплавы с размерами карбидов от 3 до 5 мкм относятся к крупнозернистым и обозначаются буквой В (ВК6-В), с размерами карбидов от 0,5 до 1,5 мкм буквой М (мелкозернистым ВК6-М), а с размерами, когда 70% зерен менее 1,0 мкм - ОМ (особо мелкозернистым ВК6-ОМ). Сплавы с меньшим размером карбидной фазы более износостойкие и теплостойкие, а также позволяют затачивать более острую режущую кромку (допускают получение радиуса округления режущей кромки до 1,0-2,0 мкм).
Физико-механические свойства сплавов определяют их режущую способность в различных условиях эксплуатации.
С ростом содержания кобальта в сплаве его стойкость при резании снижается, а эксплуатационная прочность растет.
Эти закономерности и положены в основу практических рекомендаций по рациональному применению конкретных марок сплавов. Так, сплав ВК3 с минимальным содержанием кобальта, как наиболее износостойкий, но наименее прочный рекомендуется для чистовой обработки с максимально допустимой скоростью резания, но с малыми подачей и глубиной резания, а сплавы ВК8, ВК10М и ВК10-ОМ - для черновой обработки с пониженной скоростью резания и увеличенным сечением среза в условиях ударных нагрузок.
3.2 Титановольфрамокобальтовые сплавы (ТК)
Сплавы второй группы ТК состоят из трех основных фаз:твердого раствора карбидов титана и вольфрама (TiC-WC) карбида вольфрама (WC) и кобальтовой связки. Предназначены они главным образом для оснащения инструментов при обработке резанием сталей, дающих сливную стружку. По сравнению со сплавами группы ВК они обладают большей стойкостью к окислению, твердостью и жаропрочностью и в то же время меньшими теплопроводностью и электропроводностью, а также модулем упругости.
Способность сплавов группы ТК сопротивляться изнашиванию под воздействием скользящей стружки объясняется также и тем, что температура схватывания со сталью у сплавов этого типа выше, чем у сплавов на основе WC-Co, что позволяет применять более высокие скорости резания при обработке стали и существенно повышать стойкость инструмента.
В табл. 2.4 приведены состав и характеристики основных физико-механических свойств сплавов в соответствии с ГОСТ 3882-74.
Таблица 2.4 - Состав и характеристики физико-механических свойств сплавов на основе WC-TiC-Co, группа ТК
Сплав |
Состав, % |
изг, Мпа |
Плотность 10-3, кг/м3 |
HRA не менее |
|||
WC |
TiC |
Co |
|||||
Т30К4 |
66 |
30 - |
4 |
980 |
9,5-9,8 |
92,0 |
|
Т15К6 |
79 |
15 - |
6 |
1176 |
11,1-11,6 |
90,0 |
|
Т14К8 |
78 |
14 - |
8 |
1274 |
11,2-11,6 |
89,5 |
|
Т5К10 |
85 |
6 - |
9 |
1421 |
12,4-13,1 |
88,5 |
|
Т5К12 |
83 |
5 - |
12 |
1666 |
13,1-13,5 |
87,0 |
Так же как у сплавов на основе WC-Co, предел прочности при изгибе и сжатии и ударная вязкость увеличиваются с ростом содержания кобальта.
Теплопроводность сплавов группы ТК существенно ниже, а коэффициент линейного термического расширения выше, чем у сплавов группы ВК. Соответственно меняются и режущие свойства сплавов: при увеличении содержания кобальта снижается износостойкость сплавов при резании, а при увеличении содержания карбида титана снижается эксплуатационная прочность (рис. 2.3).
1) Прочность на изгиб - изг; 2) Твердость - HRA
Рисунок 2.3 - Влияние кобальта на свойства твердого сплава группы ТК
Поэтому такие сплавы, как Т30К4 и Т15К6, применяют для чистовой и получистовой обработки стали с высокой скоростью резания и малыми нагрузками на инструмент. В то же время сплавы Т5К10 и Т5К12 с наибольшим содержанием кобальта предназначены для работы в тяжелых условиях ударных нагрузок с пониженной скоростью резания.
Путем введения легирующих добавок получены сплавы, применяемые для резания стали с большими ударными нагрузками.
Разработан сплав Т4К8 для замены стандартного сплава Т5К10. Предел прочности его при изгибе 1600 МПа, в то время как у сплава Т5К10 он составляет 1400 МПа. Предельная пластическая деформация Т4К8 1,6%, а у сплава Т5К10 - 0,4%.
Сплав Т4К8 в большей степени, чем сплав Т5К10, сопротивляется ударным нагрузкам и может применяться при черновой токарной обработке стальных отливок при скорости резания 30-70 м/мин, глубине резания до 40 мм и подаче 1-1,2 мм/об. Стойкость инструмента, оснащенного сплавом Т4К8 в 1,5-2,0 раза выше, чем стойкость инструмента, оснащенного сплавом Т5К10.
3.3 Титанотанталовольфрамокобальтовые сплавы (ТТК)
Промышленные танталосодержащие твердые сплавы на основе TiC-WC-TaC-Co состоят из трех основных фаз: твердого раствора карбидов титана, вольфрама и тантала(TiC-TaC-WC), а также карбида вольфрама (WC) и кобальтовой связки.
Введение в сплавы добавок карбида тантала улучшает их физико-механические и эксплуатационные свойства, что выражается в увеличении прочности при изгибе при температуре 20С и 600-800С.
Сплав, содержащий карбид тантала, имеет более высокую твердость, в том числе и при 600-800С. Карбид тантала в сплавах снижает ползучесть, существенно повышает предел усталости трехфазных сплавов при циклическом нагружении, а также термостойкость и стойкость к окислению на воздухе. В табл. 2.5 приведены состав и характеристики основных физико-механических свойств сплавов в соответствии с ГОСТ 3882-74.
Таблица 2.5 - Состав и характеристики физико-механических свойств сплавов на основе TiC-WC-TaC-Co( группа ТТК)
Сплав |
Состав, % |
изг, Мпа, не менее |
10-3, кг/м3 |
HRA не менее |
||||
WC |
TiC |
TaC |
Co |
|||||
TT7К12 |
81 |
4 |
3 |
12 |
1666 |
13,0-13,3 |
87,0 |
|
ТТ8К6 |
84 |
8 |
2 |
6 |
1323 |
12,8-13,3 |
90,5 |
|
ТТ10К8Б |
82 |
3 |
7 |
8 |
1617 |
13,5-13,8 |
89,0 |
|
ТТ20К9 |
67 |
9,4 |
14,1 |
9,5 |
1470 |
12,0-13,0 |
91,0 |
Увеличение в сплаве содержания карбида тантала повышает его стойкость при резании, особенно благодаря меньшей склонности к лункообразованию и разрушению под действием термоциклических и усталостных нагрузок. Поэтому танталосодержащие сплавы рекомендуются главным образом для тяжелых условий резания с большими сечениями среза, когда на режущую кромку инструмента действуют значительные силовые и температурные нагрузки, а также для прерывистого резания, особенно фрезерования. Наиболее прочным для обработки стали в особо неблагоприятных условиях (прерывистое точение, строгание, черновое фрезерование) является сплав ТТ7К12. Применение его взамен быстрорежущей стали позволяет повысить скорость резания в 1,5-2 раза.
3.4 Безвольфрамовые твердые сплавы (БВТС)
В связи с дефицитностью вольфрама и кобальта промышленность выпускает безвольфрамовые твердые сплавы на основе карбидов и карбонитридов титана с никельмолибденовой связкой (табл. 2.6).
Таблица 2.6 - Состав и характеристики физико-механических свойств безвольфрамовых твердых сплавов
Сплав |
Состав, % |
, г/см3 |
||||
Карбид титана |
Карбонитрид титата |
Никель |
Молибден |
|||
КНТ16 |
- |
74 |
19,5 |
6,5 |
5,5-6,0 |
|
ТН20 |
79 |
- |
15 |
6,0 |
5,5-6,0 |
|
Сплав |
, Вт/(мК) |
106, К-1 |
изг, Мпа, не менее |
HRA, не менее |
||
КНТ16 |
12,6-21,0 |
8,5-90 |
1200 |
89 |
||
ТН20 |
8,4-14,7 |
8,5-90 |
1050 |
90 |
По твердости БВТС находятся на уровне вольфрамосодержащих сплавов (группы ВК), по прочностным характеристикам и особенно по модулю упругости им уступают. Твердость БВТС по Виккерсу при повышенных температурах в диапазоне температур 293-1073К несколько ниже, чем твердость вольфрамосодержащего сплава Т15К6.
БВТС имеют низкую окисляемость. Наибольшая термостойкость у сплава КНТ16, у сплава ТН20 она значительно ниже. Поэтому из сплава КНТ16 целесообразно изготовлять инструмент, работающий при прерывистом резании, например фрезеровании. Средняя "ломающая подача" (при которой происходит разрушение лезвия) составляет для сплава ТН20 - 0,3 мм/зуб, а для сплава КНТ16 - 0,54 мм/зуб. При выборе режимов резания подача не должна превышать этих значений, а глубина резания - 5мм.
Наибольшей износостойкостью обладает сплав ТН20. При точении стали 45 и стали 40Х при t=1мм и S=0,2мм/об стойкость сплава ТН20 выше стойкости сплава Т15К6, во всем диапазоне скорости резания (от 200 до 600 м/мин).
Нагрев инструмента из БВТС на установках ТВЧ, обычно применяемых при пайке инструмента, ухудшает его эксплуатационные характеристики. Поэтому для резания из БВТС изготовляют в основном сменные неперетачиваемые пластины (СМП).
В связи с пониженной теплопроводностью наибольшую стойкость БВТС имеют в случае применение четырех-, пяти- и шестигранных СМП, а не трехгранных. оптимальными геометрическими параметрами пластин при этом являются передний угол 10, задний угол 8-10, радиус при вершине 0,8 мм.
Эффективность применения БВТС зависит от правильности подготовки инструмента, выбора режимов резания и условий обработки. Пластины должны иметь высококачественную доводку по режущим кромкам и опорной поверхности и прилегать к опоре без зазора.
Обрабатываемая заготовка не должна иметь биения, превышающего половину припуска на обработку, а также следов газовой сварки, шлаковых включений.
При точении по возможности следует применять охлаждение.
Для предотвращения катастрофических поломок инструмента рекомендуется производить принудительный поворот пластинки после обработки определенного числа заготовок. Допустимый износ резцов по задней грани 1,5-1,8 мм.
При фрезеровании БВТС можно эксплуатировать до износа 2,5-3,0 мм по задней грани.
3.5 Краткие рекомендации по выбору твердых сплавов
Твердые сплавы на основе WC-Co рекомендуют для обработки серых, модифицированных и отбеленных чугунов, цветных металлов и их сплавов, стеклопластиков и других подобных материалов, дающих короткую сыпучую стружку надлома.
Обладая высокой прочностью, сплавы WC-Co лучше сопротивляются пульсирующей высокой нагрузке, имеющей место в данных условиях обработки. Превалирующим видом изнашивания в этом случае является адгезионно-усталостное, а при обработке белых чугунов и стеклопластиков - абразивное, при которых важным фактором, определяющим стойкость инструмента, является не только содержание кобальта в сплаве, но и размеры зерен фазы WC. И чем выше твердость обрабатываемого материала, тем существеннее влияние зернистости твердого сплава на стойкость инструмента.
Сплавы WC-Co рекомендуются также для обработки труднообрабатываемых высокопрочных и жаропрочных материалов, особенно сплавов на основе никеля и титана.
Сплавы на основе Ni, обладающие высокой прочностью и значительным сопротивлением ползучести при высоких температурах, а также низкой теплопроводностью, с большим трудом обрабатываются резанием. На поверхности резания инструмент - заготовка генерируются очень высокие температуры и напряжения, происходят схватывание и последующий отрыв частиц твердого сплава. Лучшую стойкость в этих условиях показывают особомелкозернистые высококобальтовые сплавы.
Твердые сплавы на основе WC-TiC-Co рекомендуют в случае обработки стали при высоких скоростях резания, когда образуется сливная стружка. Стружка постоянно контактирует с передней поверхностью инструмента в условиях значительных температуры и давления, что приводит к интенсивному образованию лунки износа на передней поверхности резца. В этом случае превалирует диффузионное изнашивание. Раствор карбида вольфрама в карбиде титана растворяется в стали при более высокой температуре и гораздо медленнее, чем карбид вольфрама. Кроме того, присутствие фазы WC-TiC-Co способствует уменьшению скорости растворения зерен карбида вольфрама в стали, и тем самым снижает интенсивность изнашивания.
При диффузионном характере изнашивания его скорость, определяемая скоростью растворения карбидных зерен в стали, в большей степени зависит от химических свойств сплава, чем от его твердости, связанной с зернистостью. В таких условиях значительно большей стойкостью обладают безвольфрамовые сплавы, основой которых является карбид или карбонитрид титана. Они взаимодействуют со сталью менее интенсивно, чем сложный карбид WC-TiC.
Твердые сплавы на основе WC-TiC-TaC-Co рекомендуют при прерывистом резании, например фрезеровании, когда на рабочих поверхностях инструмента появляются многочисленные короткие трещины, перпендикулярные к режущей кромке. Эти трещины вызваны периодическим расширением при нагреве в процессе резания и сжатием при охлаждении поверхностных слоев твердого сплава. При дальнейшем развитии трещины приводят к выкрашиваниям и сколам и становятся главной причиной выхода инструмента из строя.
Поэтому, для оснащения фрезерного инструмента применяют твердые сплавы, наименее чувствительные к термической усталости и динамическим циклическим нагрузкам, сплавы содержащие в своем составе карбид тантала, т.е. сплавы на основе WC-TiC-TaC-Co.
3.6 Классификация современных твердых сплавов по международному стандарту ИСО513 и определение условий их эффективного использования
При определении областей применения твердых сплавов, обычно используют рекомендации международной организации стандартов ИСО (ISO), которые предусматривают их использование с учетом обрабатываемых материалов и типа стружки, типа обработки (чистовая, получистовая, легкая черновая и черновая), условий обработки (хорошие, нормальные и тяжелые), а также видов обработки (точение, растачивание, фрезерование и др.).
По (ISO) предусматривается деление всех обрабатываемых материалов на три группы: Р (обозначаются синим цветом), М (желтым) и К (красным). В группу Р входят стали и стальное литье, при обработке которых получают сливную стружку. В группу М входят нержавеющие стали, титановые и жаропрочные сплавы, при обработке которых получают стружку надлома и сливную. В группу К входят чугуны, цветные металлы и их сплавы, материалы с высокой поверхностной твердостью, при обработке которых получают стружку надлома и элементную (табл. 2.7).
Таблица 2.7 - Классификация обрабатываемых материалов по группам резания
Группа по ISO |
Обрабатываемый материал |
Пример материала |
|
Р (синий) |
Стали: Углеродистые легированные высоколегированные и инструментальные Стальное литье |
08кп, 10, А12, Ст3, Ст45, А40Г, 60, У7А 20Х, 12ХН13А, 38Х2Н2МА, ШХ15ГС 7ХФ, 9ХС, ХВГ, Р6М5 20Л, У8Л, 35ХГСЛ, 5Х14НДЛ, Г13 |
|
М (Желтый) |
Нержавеющие стали Титановые сплавы Жаропрочные |
12Х13, 12Х18Н10Т, 11Х11Н2В2МФ ВТ1-00, ВТ5, ВТ14 ХН32Т, ХН67ВТМЮЛ |
|
К Красный |
Чугуны Цветные металлы Материалы с высокой поверхностной твердостью |
СЧ10, СЧ45, ВЧ35, ВЧ100, КЧ37-12, КЧ50-5 АМГ2, Д16,АЛ3, ЛС63-1, Л96, ЛО70-1, М00к Закаленная сталь HRC 45-60, ЧХ16 |
Каждая группа применения делится на подгруппы, причем с увеличением индекса подгруппы от 01 до 40 (50), условия обработки становятся более жесткими, начиная от чистового резания и заканчивая черновым с ударами. Такое рассмотрение удобно для подбора рекомендуемых марок твердых сплавов по свойствам. Чем больше индекс подгруппы применения, тем ниже требуется износостойкость твердого сплава и допустимая скорость резания, но выше прочность (ударная вязкость) и допустимая подача и глубина резания (табл. 2.8).
Таблица 2.8 Подгруппы применения твердых сплавов
Обозначение |
Обрабатываемый материал. Тип снимаемой стружки |
Вид обработки. Условия применения |
|
Группа резания Р |
|||
Р01 |
Сталь. Сливная стружка |
Чистовое точение, растачивание, развертывание (высокие точность обработки и качество поверхности изделия) |
|
Р10 |
Сталь. Сливная стружка |
Точение, в том числе по копиру, нарезание резьбы, фрезерование, рассверливание, растачивание |
|
Р20 |
Сталь, ковкий чугун и цветные металлы. Сливная стружка |
Точение, в том числе по копиру, фрезерование, чистовое строгание |
|
Р25 |
Сталь нелегированная, низко и среднелегированная |
Фрезерование, в том числе глубоких пазов, другие виды обработки, при которых у сплава должно быть высокое сопротивление тепловым и механическим нагрузкам |
|
Р30 |
Сталь, ковкий чугун. Сливная стружка |
Черновое точение, фрезерование, строгание. работа в неблагоприятных условиях* |
|
Р40 |
Сталь с включениями песка и раковинами. Сливная стружка и стружка надлома |
Черновое точение, строгание. работа в особо неблагоприятных условиях* |
|
Продолжение таблицы 2.8 |
|||
Р50 |
Сталь со средней или низкой прочностью, с включениями песка и раковинами. Сливная стружка и стружка надлома |
Точение, строгание, долбление при особо высоких требованиях к прочности твердого сплава в связи с неблагоприятными условиями резания*. Для инструмента сложной формы |
|
Группа резания М |
|||
М10 |
Сталь, в том числе аустенитная, жаропрочная, труднообрабатываемая, сплавы, серый, ковкий и легированный чугуны. Сливная стружка и стружка надлома |
Точение, фрезерование |
|
М20 |
Сталь, в том числе жаропрочная труднообрабатываемая, сплавы, серый и ковкий чугуны. Сливная стружка и стружка надлома |
Точение, фрезерование |
|
М30 |
Аустенитная сталь, жаропрочные труднообрабатываемые стали и сплавы, серый и ковкий чугуны. Сливная стружка и стружка надлома |
Точение, фрезерование, строгание, работа в неблагоприятных условиях |
|
М40 |
Низкоуглеродистая сталь с низкой прочностью, автоматная сталь и другие металлы и сплавы. Сливная стружка и стружка надлома |
Точение, фасонное точение, отрезка преимущественно на станках-автоматах |
|
Группа резания К |
|||
К01 |
Серый чугун, преимущественно высокой твердости, алюминиевые сплавы с большим содержанием кремния, закаленная сталь, абразивные пластмассы, керамика, стекло. Стружка надлома |
Чистовое точение, растачивание, фрезерование, шабрение |
|
К05 |
Легированные чугуны, закаленные стали, коррозионно-стойкие, высокопрочные и жаропрочные стали и сплавы. Стружка надлома |
Чистовое и получистовое точение, растачивание, развертывание, нарезание резьбы |
|
К10 |
серый и ковкий чугуны преимущественно повышенной твердости, закаленная сталь, алюминиевые и медные сплавы, пластмассы, стекло, керамика. Стружка надлома |
Точение, растачивание, фрезерование, сверление, шабрение |
|
К20 |
Серый чугун, цветные металлы, абразивная прессованная древесина, пластмассы. Стружка надлома |
Точение, фрезерование, строгание, сверление, растачивание |
|
Продолжение таблицы 2.8 |
|||
К30 |
Серый чугун низкой твердости и прочности, сталь низкой прочности, древесина, цветные металлы, пластмасса, плотная древесина. Стружка надлома |
Точение, фрезерование, строгание, сверление, работа в неблагоприятных условиях*. Допустимы большие передние углы заточки инструмента |
|
К40 |
Цветные металлы, древесина, пластмассы. Стружка надлома |
Точение, фрезерование, строгание. Допустимы большие передние углы заточки инструмента |
* Работа с переменной глубиной резания, с прерывистой подачей, с ударами, вибрациями, с наличием литейной корки и абразивных включений в обрабатываемом материале
Таким образом, малые индексы соответствуют чистовым операциям, когда от твердых сплавов требуется высокая износостойкость и теплостойкость, а большие индексы соответствуют черновым операциям, т.е. когда твердый сплав должен обладать высокой прочностью. В связи с этим каждая марка имеет свою предпочтительную область применения, в которой она обеспечивает максимальные работоспособность сплава и производительность обработки.
Скорость резания, непрерывность обработки, жесткость системы СПИД, способ получения заготовки (состояние обрабатываемой поверхности) позволяет определить условие обработки и сформулировать требования к основным свойствам твердого сплава. Условия обработки могут быть хорошие, нормальные и тяжелые.
ХОРОШИЕ - Высокие скорости. Непрерывное резание. Предварительно обработанные заготовки. Высокая жесткость технологической системы СПИД .
Требования к твердому сплаву - высокая износостойкость.
НОРМАЛЬНЫЕ - Умеренные скорости резания. Контурное точение. поковки и отливки. Достаточно жесткая система СПИД.
Требования к твердому сплаву - хорошая прочность в сочетании с достаточно высокой износостойкостью.
ТЯЖЕЛЫЕ - Невысокие скорости. Прерывистое резание. Толстая корка на литье или поковках. Нежесткая система СПИД.
Требования к твердому сплаву - высокая прочность.
Кроме подгрупп применения необходимо знать тип обработки (чистовая, получистовая, легкая и черновая), который позволяет ориентироваться в величинах глубины резания (t, мм) и подачи (S0, мм/об). Тип обработки приведен в табл. 2.9.
Таблица 2.9 Тип обработки
Параметры режима резания |
Тип обработки |
||||
Чистовая |
Получистовая |
Легкая черновая |
Черновая |
||
Глубина t, мм |
0,25-2,0 |
0,5-3,0 |
2,0-6,0 |
5,0-10,0 |
|
Подача S0, мм/об |
0,05-0,15 |
0,1-0,3 |
0,2-0,5 |
0,4-1,8 |
Область применения твердых сплавов можно представить сводной таблицей 2.10.
Таблица 2.10 Определение области применения твердого сплава
Условия обработки |
ISO |
Тип обработки |
||||
Чистовая |
Получистовая |
Легкая черновая |
Черновая |
|||
Хорошие |
Р |
Р01-Р10 |
Р10-Р25 |
Р25-Р30 |
Р30-Р35 |
|
М |
М10-М15 |
М15-М20 |
М20-М25 |
М25-М30 |
||
К |
К01-К05 |
К05-К10 |
К10-К15 |
К15-К20 |
||
Нормальные |
Р |
Р10-Р25 |
Р25-Р30 |
Р30-Р40 |
Р40-Р50 |
|
М |
М15-М20 |
М20-М25 |
М25-М30 |
М30-М35 |
||
К |
К05-К10 |
К10-К15 |
К15-К20 |
К20-К25 |
||
Тяжелые |
Р |
Р30-Р35 |
Р35-Р40 |
Р40-Р45 |
Р45-Р50 |
|
М |
М20-М25 |
М25-М30 |
М30-М35 |
М35-М40 |
||
К |
К10-К15 |
К15-К20 |
К20-К25 |
К25-К30 |
Из табл. 2.10 видно, что область использования марки твердого сплава будет зависеть от обрабатываемого материала, условий и типа обработки. Области рационального применения твердых сплавов отечественного производства приведены в табл. 2.11.
Таблица 2.11 Области применения твердых сплавов
Марка сплава ГОСТ 3882-74 (ТУ 48-19-307-87) |
Область применения |
||
Основная группа |
Подгруппа |
||
Т30К4 Т15К6, МС111 Т14К8, МС121 ТТ20К9, ТТ21К9, МС137 Т5К10, ТТ10К8-Б, МС131 Т5К12, ТТ7К12, МС146 ТТ7К12 |
Р |
Р01 Р10 Р20 Р25 Р30 Р40 Р50 |
|
ВК60М, МС313 ВК6М, ТТ8К6, МС211 ТТ10К8-Б, МС221, МС321 ВК10-М, ВК10-ОМ, ВК8 ВК10-ОМ, ТТ7К12, ВК15-ОМ ВК15-ХОМ, МС241, МС146 |
М |
М05 М10 М20 М30 М40 |
|
ВК3, ВК3-М, МС301 ВК6-ОМ, ВК6-М, МС306 ТТ8К6, ВК6-М МС312, МС313 ВК4, ВК6, Т8К7, МС318, МС321 ВК4, ВК8 ВК8, ВК15, МС347 |
К |
К01 К05 К10 К20 К30 К40 |
Примечание. Износостойкость сплавов возрастает снизу вверх, прочность - наоборот.
Твердые сплавы серии МС выпускаются на Московском комбинате твердых сплавов (МКТО) по технологии фирмы "Sandik Coromant".
Используя рекомендации табл. 2.11 можно быстро и эффективно подобрать марку твердого сплава для резания любого обрабатываемого материала в конкретных условиях.
4. Режущая керамика
Промышленность выпускает четыре группы режущей керамики: оксидную (белая керамика) на основе Al2O3, оксикарбидную (черная керамика) на основе композиции Al2O3-TiC, оксиднонитридную (кортинит) на основе Al2O3-TiN и нитридную керамику на основе Si3N4.
Основной особенность режущей керамики является отсутствие связующей фазы, что значительно снижает степень ее разупрочнения при нагреве в процессе изнашивания, повышает пластическую прочность, что и предопределяет возможность применения высоких скоростей резания, намного превосходящих скорости резания инструментом из твердого сплава. Если предельный уровень скоростей резания для твердосплавного инструмента при точении сталей с тонкими срезами и малыми критериями затупления составляет 500-600 м/мин, то для инструмента, оснащенного режущей керамикой, этот уровень увеличивается до 900-1000 м/мин.
Составы основных типов режущей керамики и некоторые физико-механические свойства представлены в табл. 2.12.
Таблица 2.12 Состав, свойства и области применения керамики
Марки керамики |
Состав |
и,, Гпа |
, г/см3 |
HRA, не менее |
Область приме- нения |
||
О к с и д н а я |
ЦМ332 |
Al2O3 - 99% MgO - 1% |
0,3-0,35 |
3,85-3,90 |
91 |
К01-К05 |
|
ВО-13 |
Al2O3 - 99% |
0,45-0,5 |
3,92-3,95 |
92 |
Р01-Р10, К01-К05 |
||
ВШ-75 |
Al2O3 |
0,25-0,3 |
3,98 |
91-92 |
К01-К05 |
||
О к с и к а р б и д н а я |
В-3 |
Al2O3 - 60% TiC - 40% |
0,6 |
4,2 |
94 |
Р01-Р10 |
|
ВОК-63 |
Al2O3 - 60% TiC - 40% |
0,65-0,7 |
4,2-4,6 |
94 |
Р01-Р05 К01-К05 |
||
ВОК-71 |
Al2O3 - 60% TiC - 40% |
0,7-0,75 |
4,5-4,6 |
94 |
Р01-Р05 К01-К05 |
||
О к с и н и т р и д н а я |
ОНТ-20 (кортинит) |
Al2O3 60% TiN - 30% |
0,64 |
4,3 |
90-92 |
К01-К05 |
|
н и т р и д н а я |
РК-30 (силинит-Р) |
Si3N4, Y2O3, TiC |
0,7-0,8 |
3,2-3,4 |
94 |
К10-К20 |
Недостаток оксидной керамики - ее относительно высокая чувствительность к резким температурным колебаниям (тепловым ударам). Поэтому охлаждение при резании керамикой не применяют.
Указанное является главной причиной микро- или макровыкрашиваний режущей керамики и контактных площадок инструмента уже на стадиях приработочного или начального этапа установившегося изнашивания, приводящего к отказам из-за хрупкого разрушения инструмента. Отмеченный механизм изнашивания керамического режущего инструмента является превалирующим.
В последние годы появились новые марки оксидной керамики в состав которых введены окись циркония (ZrO2) и армирование ее "нитевидными" кристаллами карбида кремния (SiC). Армированная керамика имеет высокую твердость (HRCА-92) и повышенную прочность (изг до 1000 МПа).
Параллельно с совершенствованием керамических материалов на основе оксида алюминия созданы новые марки режущей керамики на основе нитрида кремния (силинит-Р). Такой керамический материал имеет высокую прочность на изгиб (изг=800 МПа), низкий коэффициент термического расширения, что выгодно отличает его от оксидных керамических материалов. Это позволяет с успехом использовать нитридокремниевый инструмент при черновом точении, получистовом фрезеровании чугуна, а также чистовом точении сложнолегированных и термообработанных (до HRC 60) сталей и сплавов.
Режущую керамику выпускают в виде неперетачиваемых сменных пластин. Пластины изготавливают с отрицательными фасками по периметру с двух сторон. размер фаски f=0,2…0,8мм, угол ее наклона отрицательный от 10 до 30. Фаска необходима для упрочнения режущей кромки.
Допустимый износ керамических пластин намного меньше износа твердосплавных пластин. Максимальный износ по задней поверхности не должен превышать 0,3…0,5мм, а при чистовых операциях 0,25…0,30мм.
При назначении режимов резания для керамики имеются рекомендации:
1. Предпочтительна квадратная форма пластины с максимально возможным углом заострения и наибольшим радиусом при вершине пластины rb.
2. Ширину фаски f выбирают в зависимости от твердости обрабатываемого материала, чем тверже обрабатываемый материал, тем ширина фаски больше.
3. Скорость резания нужно назначать максимально допустимой исходя из жесткости системы СПИД и характеристик оборудования.
4. Заготовки, обрабатываемые пластинами из режущей керамики, должны иметь на входе и выходе резца фаски, ширина которых превышает припуски на обработку, а также канавки в местах перехода от цилиндрической поверхности к торцевой.
В настоящее время керамической инструмент рекомендуют для чистовой обработки серых, ковких, высокопрочных и отбеленных чугунов, низко- и высоколегированных сталей, в том числе улучшенных, термообработанных (HRC до 55-60), цветных сплавов, конструкционных полимерных материалов (К01-К05, Р01-Р05). В указанных условиях инструмент оснащенный пластинами из режущей керамики, заметно превосходит по работоспособности твердосплавный инструмент.
Применение керамического инструмента при обработке с повышенными значениями сечений среза (txS), при прерывистом резании резко снижает его эффективность вследствие высокой вероятности внезапного отказа из-за хрупкого разрушения режущей части инструмента. Во многом это объясняет сравнительно низкий объем используемого в промышленности Украины керамического инструмента (до 0,5% от общего объема режущего инструмента), для развитых стран Запада этот объем составляет от 2 до 5%.
5. Сверхтвердые синтетические поликристаллические инструментальные материалы
Сверхтвердыми принято считать материалы, имеющие микротвердость, выше микротвердости природного корунда (Al2O3) (т.е. твердость по Виккерсу более 20 ГПа). Материалы, твердость которых выше, чем металлов (т.е. 5-20 ГПа) можно рассматривать как высокотвердые. Из природных материалов к сверхтвердым относится только алмаз. В 2000 году в ИСМ АН Украины прямым превращением графитоподобного твердого раствора BN-C при давлении 25 ГПа и температуре 2100К была получена новая сверхтвердая фаза, кубический карбонитрид бора (BC2N), получившим обозначение КАНБ. Твердость и модуль упругости КАНБ является промежуточным между алмазом и кубическим нитридом бора, что делает его вторым по твердости материалом после алмаза, и открывает новые перспективы.
5.1 Особенности получения инструментальных материалов на основе алмаза и кубического нитрида бора
Инструментальная промышленность выпускает синтетические сверхтвердые материалы на основе алмаза и кубического нитрида бора (КНБ).
Природный алмаз - самый твердый материал на Земле, который издавна применяется в качестве режущего инструмента. Принципиальное отличие монокристаллического природного алмаза от всех других инструментальных материалов, имеющих поликристаллическое строение, с точки зрения инструментальщика состоит в возможности получения практически идеально острой и прямолинейной режущей кромки. Поэтому в конце XX века с развитием электроники, прецизионного машиностроения и приборостроения применение резцов из природных алмазов для микроточения зеркально чистых поверхностей оптических деталей, дисков памяти, барабанов копировальной техники и т.п. возрастает. Однако из-за дороговизны и хрупкости природные алмазы не применяются в общем машиностроении, где требования к качеству обработки деталей не столь высоки.
Подобные документы
Требования к конструкционным материалам. Экономические требования к материалу определяются. Марки углеродистой стали обыкновенного качества. Углеродистые качественные стали. Цветные металлы и сплавы. Виды термической и химико-термической обработки стали.
реферат [1,2 M], добавлен 17.01.2009Виды сталей для режущего инструмента. Углеродистые, легированные, быстрорежущие, штамповые инструментальные стали. Стали для измерительных инструментов, для штампов холодного и горячего деформирования. Алмаз как материал для изготовления инструментов.
презентация [242,3 K], добавлен 14.10.2013Требования к свойствам инструментальных материалов. Перечень марок нескольких основных нетеплостойких сталей для режущего инструмента. Закалка доэвтектоидных сталей. Быстрорежущие стали: маркировка, структура, технология термической обработки и свойства.
контрольная работа [19,8 K], добавлен 20.09.2010Классификация металлов: технические, редкие. Физико-химические свойства: магнитные, редкоземельные, благородные и др. Свойства конструкционных материалов. Строение и свойства сталей, сплавов. Классификация конструкционных сталей. Углеродистые стали.
реферат [24,1 K], добавлен 19.11.2007Твердые сплавы и сверхтвердые композиционные материалы: инструментальные, конструкционные, жаростойкие; их свойства и применение. Совершенствование технологии сплавов, современные разработки получения безвольфрамовых минералокерамических соединений.
реферат [964,1 K], добавлен 01.02.2011Назначение и особенности эксплуатации инструментальных сталей и сплавов, меры по обеспечению их износостойкости. Требования к сталям для измерительного инструмента. Свойства углеродистых и штамповых сталей для деформирования в различных состояниях.
контрольная работа [432,5 K], добавлен 20.08.2009Двухкарбидные твердые сплавы. Основные свойства и классификация твердых сплавов. Метод порошковой металлургии. Спекание изделий в печах. Защита поверхности изделия от окисления. Сплавы на основе высокотвердых и тугоплавких карбидов вольфрама и титана.
контрольная работа [17,9 K], добавлен 28.01.2011Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".
курсовая работа [1,6 M], добавлен 19.03.2013Стали конструкционные углеродистые обыкновенного качества. Механические свойства горячекатаной стали. Стали углеродистые качественные. Легированные конструкционные стали. Низколегированный сплав, среднеуглеродистая или высокоуглеродистая сталь.
презентация [27,7 M], добавлен 19.12.2014Характеристика оптических и механических свойств поликристаллических материалов. Изучение понятия, типов, технологий изготовления неорганического стекла. Ознакомление с масштабами производства керамики, определение перспективных направлений ее применения.
контрольная работа [28,7 K], добавлен 07.07.2010