Вакуум и его использование в рафинировании металлов

Анализ развития вакуумной техники в историческом аспекте. Характеристика использования вакуума в производстве цветных металлов: меди, магния, титана, алюминия. Изучение свойств разреженного газа и возможности его широкого технологического применения.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 26.10.2010
Размер файла 163,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

  • Введение
  • Раздел 1. История развития вакуумной техники
  • Раздел 2. Вакуум: общая характеристика, применение в технике
    • 2.1 Вакуум и его свойства
    • 2.2 Применение вакуума в науке и технике
  • Раздел 3. Использование вакуума в производстве цветных металлов
    • 3.1 Производство меди
    • 3.2 Производство алюминия
    • 3.3 Производство магния
    • 3.4 Производство титана
    • 3.5 Производство стали в вакуумных печах
  • Раздел 4. Рафинирование металлов
  • Вывод
  • Список литературы

Введение

До середины XVII в. понятие «вакуум», в переводе с латинского означающее пустоту, использовалось лишь в философии. Древнегреческий философ Демокрит одним из «начал мира» выбрал пустоту. Позднее Аристотель вводит понятие эфира -- неощутимой среды, способной передавать давление. В этот период знания о свойствах разреженного газа еще отсутствовали, но вакуум уже широко использовался в водоподъемных и пневматических устройствах.

Научный этап развития вакуумной техники начинается с 1643 г., когда в Италии Э. Торричелли, ученик знаменитого Г. Галилея, измерил атмосферное давление. В 1672 г. в Германии О. Герике изобрел механический поршневой насос с водяным уплотнением, что дало возможность проведения многочисленных исследований свойств разреженного газа. Изучается влияние вакуума на живые организмы. Опыты с электрическим разрядом в вакууме привели вначале к открытию электрона, а затем и рентгеновского излучения. Теплоизолирующие свойства вакуума помогли создать правильное представление о способах передачи теплоты и послужили толчком для развития криогенной техники.

Успешное изучение свойств разреженного газа обеспечило возможность его широкого технологического применения. Оно началось с изобретения в 1873 г. первого электровакуумного прибора -- лампы накаливания с угольным электродом -- русским ученым А. Н. Лодыгиным и открытием американским ученым и изобретателем Т. Эдисоном в 1883 г. термоэлектронной эмиссии. С этого момента вакуумная техника становится технологической основой электровакуумной промышленности.

Цель работы состоит в следующем: дать характеристику возможностей использования вакуума в рафинировании металлов.

Основные задачи:

  • 1) проанализировать развитие вакуумной техники в историческом аспекте;
  • 2) дать общую характеристику вакуума;
  • 3) проанализировать использование вауума в производстве цветных металлов;
  • 4) дать характеристику использования вакуума в рафинировании металлов.

Раздел 1. История развития вакуумной техники

Расширение практического применения вакуумной техники сопровождалось быстрым развитием методов получения и измерения вакуума. За небольшой период времени в начале XX в. были изобретены широко применяемые в настоящее время вакуумные насосы: вращательный (Геде, 1905), криосорбционный (Д. Дьюар, 1906), молекулярный (Геде, 1912), диффузионный (Геде, 1913). Аналогичные успехи были достигнуты и в развитии способов измерения вакуума. К U-образному манометру Торричелли добавились компрессионный (Г. Мак-Леод, 1874), тепловой (М. Пирани, 1909), ионизационный (О. Бакли, 1916).

Одновременно совершенствуются научные основы вакуумной техники. В России П. Н. Лебедев (1901) впервые использует в своих опытах идею удаления остаточных газов с помощью ртутного пара. В этот же период исследуются фундаментальные свойства газов при низких давлениях, течение газов и явления переноса (М. Кнудсен, М. Смолуховский, И. Ленгмюр, С. Дешман).

Становление вакуумной техники связано с именем академика С. А. Векшинского (1896 -- 1974), организовавшего в 1928 г. вакуумную лабораторию в Ленинграде, а затем возглавившего научно-исследовательский вакуумный институт в Москве.

До 50-х годов существовало мнение, что давления ниже 10-6 Па получить невозможно. Однако работы американских ученых Ноттингема (1948) по измерению фоновых токов ионизационного манометра и Альперта (1952) по созданию ионизационного манометра с осевым коллектором расширили диапазон рабочих давлений вакуумной техники еще на три-четыре порядка в область сверхвысокого вакуума.

Для получения сверхвысокого вакуума изобретают новые насосы: турбомолекулярный (Беккер, 1958), магниторазрядный (Джепсен и Холанд, 1959); совершенствуются паромасляные и криосорбционные насосы.

При измерении низких давлений применяются анализаторы парциальных давлений, с помощью которых определяют состав и давление каждой компоненты остаточных газов. Сверхвысоковакуумные системы потребовали для обеспечения их надежной сборки и эксплуатации разработки чувствительных методов определения натеканий в вакуумных системах: масс-спектрометрического, галоидного и др. Для снижения газовыделения вакуумных конструкционных материалов начинает применяться высокотемпературный прогрев всей вакуумной установки. Вакуумные системы изготавливают цельнометаллическими, разрабатывают конструкции сверхвысоковакуумных уплотнений, вводов движения и электрических вводов в вакуум. Совершенствуются технологические методы получения неразъемных соединений металла со стек­лом, электронно-лучевая и газовая сварка. В 60-х годах успешное развитие вакуумной техники привело к разработке стохастических методов расчета вакуумных систем.

Достижения криогенной техники в получении низких температур нашли применение в технологии получения вакуума. Криогенные вакуумные насосы начали применять в научных исследованиях, а затем и в промышленности. Разработка откачных средств, не загрязняющих откачиваемый объект, открыла новые перспективы для применения вакуумной техники.

Раздел 2. Вакуум: общая характеристика, применение в технике

2.1 Вакуум и его свойства

Вакуум (от лат. vacuum -- пустота) -- среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа л и характерным размером процесса d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения л/d различают низкий (л/d 1), средний (л/d~1) и высокий (л/d 1) вакуум.

Также вакуумом называют состояние газа, для которого средняя длина пробега его молекул сравнима с размерами сосуда или больше этих размеров.

Следует различать понятия физического вакуума и технического вакуума.

На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно. Мерой степени разрежения вакуума служит длина свободного пробега молекул газа < л >, связанной с их взаимными столкновениями в газе, и характерного линейного размера l сосуда, в котором находится газ. Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 Торр) говорят о достижении низкого вакуума (л < < l) (5000-10000 молекул на 1см?). Обычно низковакуумный насос стоит между атмосферным воздухом и высоковакуумным насосом, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум. При дальнейшем понижении давления в камере, увеличивается средняя длина свободного пробега л молекул газа. При л/d>>1 молекулы газа уже не сталкиваются друг с другом, а свободно перемещаются от стенки до стенки, в этом случае говорят о высоком вакууме (10?5 Торр) (1000 молекул на 1 см?). Сверхвысокий вакуум соответствует давлению 10?9 Торр и ниже. В сверхвысоком вакууме, например, обычно проводятся эксперименты с использованием сканирующего туннельного микроскопа. Для сравнения, давление в космосе на несколько порядков ниже, в дальнем же космосе и вовсе может достигать 10?30 Торр и ниже (1 молекула на 1 см3). Встречается полное отсутствие молекул.

Высокий вакуум в микроскопических порах некоторых кристаллов достигается при атмосферном давлении, что связано именно с длиной свободного пробега газа.

Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами. Для поглощения газов и создания необходимой степени вакуума используются геттеры. Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере, и т. д. Высоковакуумные насосы являются сложными техническими приборами. Основные типы высоковакуумных насосов это диффузионные насосы, основанные на увлечении молекул остаточных газов потоком рабочего газа, гетерные, ионизационные насосы, основанные на внедрении молекул газа в гетеры(например титан) и криосорбционные насосы (в основном для создания форвакуума).

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

Физический вакуум

Под физическим вакуумом в современной физике понимают полностью лишённое вещества пространство. Даже если бы удалось получить это состояние на практике, оно не было бы абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами, но не только, а также в теории могут существовать несколько различных вакуумов, различающихся плотностью энергии, и т. д. Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (так называемых ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва.

Но, пожалуй, самым наглядным из явлений, которые нельзя объяснить, не используя идею о нулевых колебаниях вакуума, это спонтанное излучение. Самые обыкновенные излучающие спонтанно лампы накаливания не светились бы, если бы вакуум был абсолютной пустотой. Дело в том, что любой объект (а, значит, и возбужденный атом), помещенный в абсолютно пустое пространство, представляет собой замкнутую систему. А поскольку такая система стабильна во времени, то никакого излучения не происходило бы. Уже из этого простого рассуждения понятно, что объяснение спонтанного излучения требует привлечения более сложной модели вакуума, чем классическая абсолютная пустота.

2.2 Применение вакуума в науке и технике

Экспериментальные исследования испарения и конденсации, поверхностных явлений, некоторых тепловых процессов, низких температур, ядерных и термоядерных реакций осуществляются в вакуумных установках. Основной инструмент современной ядерной физики -- ускоритель заряженных частиц -- немыслим без вакуума. Вакуумные системы применяются в химии для изучения свойств чистых веществ, изучения состава и разделения компонентов смесей, скоростей химических реакций.

Техническое применение вакуума непрерывно расширяется, но с конца прошлого века и до сих пор наиболее важным его применением остается электронная техника. В электровакуумных приборах вакуум является конструктивным элементом и обязательным условием их функционирования в течение всего срока службы. Низкий и средний вакуум используется в осветительных приборах и газоразрядных устройствах. Высокий вакуум -- в приемно-усилительных и генераторных лампах. Наиболее высокие требования к вакууму предъявляются при производстве электронно-лучевых трубок и сверхвысокочастотных приборов. Для работы полупроводникового прибора вакуум не требуется, но в процессе его изготовления широко используется вакуумная технология. Особенно широко вакуумная техника применяется в производстве микросхем, где процессы нанесения тонких пленок, ионного травления, электронолитографии обеспечивают получение элементов электронных схем субмикронных размеров.

В металлургии плавка и переплав металлов в вакууме освобождает их от растворенных газов, благодаря чему они приобретают высокую механическую прочность, пластичность и вязкость. Плавкой в вакууме получают безуглеродистые сорта железа для электродвигателей, высокоэлектропроводную медь, магний, кальций, тантал, платину, титан, цирконий, бериллий, редкие металлы и их сплавы. В производстве высококачественных сталей широко применяется вакуумирование. Спекание в вакууме порошков тугоплавких металлов, таких, как вольфрам и молибден, является одним из основных технологических процессов порошковой металлургии. Сверхчистые вещества, полупроводники, диэлектрики изготавливаются в вакуумных кристаллизационных установках. Сплавы с любым соотношением компонентов могут быть получены методами вакуумной молекулярной эпитаксии. Искусственные кристаллы алмаза, рубина, сапфира получают в вакуумных установках. Диффузионная сварка в вакууме позволяет получать неразъемные герметичные соединения материалов с сильно различающимися температурами плавления. Таким способом соединяют керамику с металлом, сталь с алюминием и т. д. Высококачественное соединение материалов с однородными свойствами обеспечивает электронно-лучевая сварка в вакууме. В машиностроении вакуум применяется при исследованиях процессов схватывания материалов и сухого трения, для нанесения упрочняющих покрытий на режущий инструмент и износостойких покрытий на детали машин, захвата и транспортирования деталей в автоматах и автоматических линиях.

Химическая промышленность применяет вакуумные сушильные аппараты при выпуске синтетических волокон, полиамидов, аминопластов, полиэтилена, органических растворителей. Вакуум-фильтры используются при производстве целлюлозы, бумаги, смазочных масел. В производстве красителей и удобрений применяются кристаллизационные вакуумные аппараты.

В электротехнической промышленности вакуумная пропитка как самый экономичный метод широко распространена в производстве трансформаторов, электродвигателей, конденсаторов и кабелей. Повышаются срок службы и надежность при работе в вакууме переключающих электрических аппаратов.

Оптическая промышленность при производстве оптических и бытовых зеркал перешла с химического серебрения на вакуумное алюминирование. Просветленная оптика, защитные слои и интерференционные фильтры получают напылением тонких слоев в вакууме.

Раздел 3. Использование вакуума в производстве цветных металлов

3.1 Производство меди

Медь получают главным образом пирометаллургическим способом, сущность которого состоит в производстве меди из медных руд, включающем ее обогащение, обжиг, плавку на полупродукт - штейн, выплавку из штейна черновой меди и ее очистку от примесей (рафинирование).

Для производства меди применяют медные руды, содержащие 1 - 6% Cu, а также отходы меди и ее сплавов. В рудах медь обычно находится в виде сернистых соединений

, ,

Оксидов

или гидрокарбонатов

Перед плавкой медные руды обогащают и получают концентрат. Для уменьшения содержания серы в концентрате его подвергают окислительному обжигу при температуре Полученный концентрат переплавляют в отражательных или электрических печах. При температуре восстанавливаются оксид меди (CuO) и высшие оксиды железа. Образующийся оксид меди,

реагируя с , дает Сульфиды меди и железа сплавляются и образуют штейн, а расплавленные силикаты железа растворяют другие оксиды и образуют шлак. После этого расплавленный медный штейн заливают в конвертеры и продувают воздухом для окисления сульфидов меди и железа и получения черновой меди. Черновая медь содержит 98,4-99,4% Cu и небольшое количество примесей. Эту медь разливают в изложницы.

Черновую медь рафинируют для удаления вредных примесей и газов. Сначала производят огневое рафинирование в отражательных печах. Примеси S, Fe, Ni, As, Sb и другие окисляются кислородом воздуха, подаваемым по стальным трубкам, погруженным в расплавленную черновую медь. Затем удаляют газы, для чего снимают шлак и погружают в медь сырое дерево. Пары воды перемешивают медь и способствуют удалению и других газов. При этом медь окисляется, и для освобождения ее от ванну жидкой меди покрывают древесным углем и погружают в нее деревянные жерди. При сухой перегонке древесины, погруженной в медь, образуются углеводороды, которые восстанавливают

После огневого рафинирования получают медь чистотой 99-99,5%. Из нее отливают чушки для выплавки сплавов меди (бронзы и латуни) или плиты для электролитического рафинирования.

Электролитическое рафинирование проводят для получения чистой от примесей меди (99,5% Cu). Электролиз ведут в ваннах, покрытых изнутри винипластом или свинцом. Аноды делают из меди огневого рафинирования, а катоды - из листов чистой меди. Электролитом служит водный раствор

(10-16%) и (10-16%).

При пропускании постоянного тока анод растворяется, медь переходит в раствор, а на катодах разряжаются ионы меди

Примеси (мышьяк, сурьма, висмут и др.) осаждаются на дно ванны, их удаляют и перерабатывают для извлечения этих металлов. Катоды выгружают, промывают и переплавляют в электропечах.

3.2 Производство алюминия

Сущность процесса производства алюминия заключается в получении безводного, свободного от примесей оксида алюминия (глинозема) с последующим получением металлического алюминия путем электролиза растворенного глинозема в криолите. Основное сырье для производства алюминия - алюминиевые руды: бокситы, нефелины, алуниты, каолины. Наибольшее значение имеют бокситы. Алюминий в них содержится в виде минералов - гидроксидов

,

корунда

и каолинита

.

Алюминий получают электролизом глинозема - оксида алюминия

в расплавленном криолите

с добавлением фтористых алюминия и натрия

, .

Производство алюминия включает получение безводного, свободного от примесей алюминия (глинозема); получение криолита из плавикового шпата; Электролиз глинозема в расплавленном криолите.

Глинозем получают из бокситов путем их обработки щелочью:

.

Полученный алюминат натрия подвергают гидролизу:

В результате в осадок выпадают кристаллы гидроксида алюминия

.

Гидроксид алюминия обезвоживают во вращающихся печах при температуре и получают обезвоженный глинозем

.

Для производства криолита сначала из плавикового шпата получают фтористый водород, а затем плавиковую кислоту. В раствор плавиковой кислоты вводят

,

в результате чего образуется вторалюминиевая кислота, которую нейтрализуют содой и получают криолит, выпадающий в осадок:

.

Его отфильтровывают и просушивают в сушильных барабанах.

Электролиз глинозема

проводят в электролизере, в котором имеется ванна из углеродистого материала. В ванне слоем 250-300 мм находится расплавленный алюминий, служащий катодом, и жидкий криолит.

Анодное устройство состоит из угольного анода, погруженного в электролит. Постоянный ток силой 70-75 кА и напряжением 4-4,5 В подводится для электролиза и разогрева электролита до температуры 1000С

Электролит состоит из криолита, глинозема, AlF3 и NaF. Криолит и глинозем в электролите диссоциируют; на катоде разряжается ион Al3+ и образуется алюминий, а на аноде--ион О2-, который окисляет углерод анода до СО и СО2, удаляющихся из ванны через вентиляционную систему.

Алюминий собирается на дне ванны под слоем электролита. Его периодически извлекают, используя специальное устройство.

Для нормальной работы ванны на ее дне оставляют немного алюминия.

Алюминий, полученный электролизом, называют алюминием-сырцом.

В нем содержатся металлические и неметаллические примеси, газы.

Примеси удаляют рафинированием, для чего продувают хлор через расплав алюминия. Образующийся парообразный хлористый алюминий, проходя через расплавленный металл, обволакивает частички примесей, которые всплывают на поверхность металла, где их удаляют. Хлорирование алюминия способствует также удалению Na, Ca, Mg и газов, растворенных в алюминии. Затем жидкий алюминий выдерживают в ковше или электропечи в течение 30--45 мин при температуре 690-- 730° С для всплывания неметаллических включений и выделения газов из металла. После рафинирования чистота первичного алюминия составляет 99,5--99,85%.

3.3 Производство магния

Для производства магния наибольшее распространение получил электролитический способ, сущность которого заключается в получении чистых безводных солей магния (хлористого магния), электролизе этих солей в расплавленном состоянии и рафинировании металлического магния.

Основным сырьем для получения магния являются карналлит

(MgCl2*KCL*6H2O),

Магнезит

(MgCO3),

доломит

(СаСОз * MgCО3),

бишофит

(MgCl2*6H2O).

Наибольшее количество магния получают из карналлита. Сначала карналлит обогащают и обезвоживают. Безводный карналлит

(MgCl2* КС1)

используют для приготовления электролита. Электролиз осуществляют в электролизере, футерованном шамотным кирпичом. Анодами служат графитовые пластины, а катодами--стальные пластины. Электролизер заполняют расплавленным электролитом состава

10% MgCl2, 45% CaCI2, 30% NaCI, 15% КСl

с небольшими добавками NaF и CaF2. Такой состав электролита необходим для понижения температуры его плавления (720 ±10° С). Для электролитического разложения хлористого магния через электролит пропускают ток. В результате образуются ионы хлора, которые движутся к аноду. Ионы магния движутся к катоду и после разряда выделяются на поверхности, образуя капельки жидкого чернового магния. Магний имеет меньшую плотность, чем электролит, поэтому он всплывает на поверхность, откуда его периодически удаляют вакуумным ковшом. Черновой магний содержит 5% примесей, поэтому его рафинируют переплавкой с флюсами. Для этого черновой магний и флюс, состоящий из

MgCl2, КС1, BaС12, CaF2, NaCI, CaCI2

нагревают в электропечи до температуры 700--7500С и перемешивают. При этом неметаллические примеси переходят в шлак. Затем печь охлаждают до температуры 6700 С и магний разливают в изложницы на чушки.

3.4 Производство титана

Титан получают магнийтермическим способом, сущность которого состоит в обогащении титановых руд, выплавке из них титанового шлака с последующим получением из него четыреххлористого титана и восстановлении из последнего металлического титана магнием.

Сырьем для получения титана являются титаномагнетитовые руды, из которых выделяют ильменитовый концентрат, содержащий 40--45% TiO2, ~30% FeO, 20% Fe2O3 и 5--7% пустой породы. Название этот концентрат получил по наличию в нем минерала ильменита

FeО*TiO2.

Ильменитовый концентрат плавят в смеси с древесным углем, антрацитом в рудно-термических печах, где оксиды железа и титана восстанавливаются. Образующееся железо науглероживается, и получается чугун, а низшие оксиды титана переходят в шлак. Чугун и шлак разливают отдельно в изложницы. Основной продукт этого процесса -- титановый шлак содержит 80 -- 90% TiO2, 2--5% FeO и примеси SiO2, Al2O3, CaO и др. Побочный продукт этого процесса -- чугун используют в металлургическом производстве.

Полученный титановый шлак подвергают хлорированию в специальных печах. В нижней части печи располагают угольную насадку, нагревающуюся при пропускании через нее электрического тока. В печь подают брикеты титанового шлака, а через фурмы внутрь печи-хлор. При температуре 800-- 1250°С в присутствии углерода образуется четыреххлористый титан, а также хлориды

CaCI2, MgCl2 и др. TiО2 + 2C + 2Cl2=TiCl4 + 2CO.

Четыреххлористый титан отделяется и очищается от остальных хлоридов благодаря различию температуры кипения этих хлоридов методом ректификации в специальных установках.

Титан из четыреххлористого титана восстанавливают в реакторах при температуре 950--1000° С. В реактор загружают чушковый магний; после откачки воздуха и заполнения полости реактора аргоном внутрь его подают парообразный четыреххлористый титан. Между жидким магнием и четыреххлористым титаном происходит реакция

2Mg+TiCl4 = Ti+2MgCl2.

Твердые частицы титана спекаются в пористую массу-губку, а жидкий

MgCl2

выпускают через летку реактора.

Титановая губка содержит 35--40% магния и хлористого магния.

Для удаления из титановой губки этих примесей ее нагревают до температуры 900--950°С в вакууме.

Титановую губку плавят методом вакуумно-дугового переплава.

Вакуум в печи предохраняет титан от окисления и способствует очистке его от примесей. Полученные слитки титана имеют дефекты, поэтому их вторично переплавляют, используя как расходуемые электроды. После этого чистота титана составляет 99,6-- 99,7%. После вторичного переплава слитки используют для обработки давлением.

3.5 Производство стали в вакуумных печах

Применение вакуума при выплавке стали позволяет получать металл практически любого химического состава с низким содержанием газов, неметаллических включений, примесей цветных металлов.

Как уже отмечалось, реакции дегазации и раскисления металла углеродом в вакууме протекают более полно. Кроме того при плавке металла в глубоком вакууме (<10-2 Па) из металла удаляются некоторые неметаллические включения.

Производство стали в вакуумных индукционных печах.

В настоящее время вакуумные индукционные печи делятся на периодические и полунепрерывные. В печах периодического действия после каждой плавки печь открывают для извлечения слитка и загрузки шихты. В печах полунепрерывного действия загрузка шихты, смена изложниц и извлечение слитка проводятся без нарушения вакуума в плавильной камере.

В промышленности применяют печи полунепрерывного действия. Печи периодического действия используют в основном в лабораториях и для фасонного литья. Емкость существующих вакуумных индукционных печей достигает 60 т.

Рис. 1. Схема вакуумной индукционной печи полунепрерывного действия

Здесь показана схема вакуумной индукционной печи полунепрерывного действия. Печи этого типа имеют три камеры: плавильную (2), загрузочную (8) и камеру изложниц (1). В плавильной камере установлен водоохлаждаемый индикатор с огнеупорным тиглем (3), в котором проводиться плавление шихты. Каркас тигля, выполненный из уголков нержавеющей стали, опирается на цапфы. При сливе металла и чистке тигля последний наклоняется с помощью механического или гидравлического привода. Камера изложниц и загрузочная камера сообщаются с плавильной камерой через вакуумные затворы (6 и 10), которые позволяют загружать шихту в печь и выгружать слиток без нарушения вакуума в плавильной камере. Присадка легирующих и раскислителей осуществляется через дозатор (9), установленный на крышке печи (7). Для контроля процесса плавки печь снабжена гляделкой (4) и термопарой (5).

Технология выплавки металла в вакуумной индукционной печи полунепрерывного действия определяется маркой выплавляемой стали и качеством шихтовых материалов. Для плавки применяют шихтовые материалы, очищенные от масла и влаги. Для легирования используют ферросплавы и чистые металлы. Перед загрузкой шихту предварительно прокаливают. После загрузки печи включают ток и расплавление шихты ведут на максимальной мощности. При появлении первых порций жидкого металла и при наличии в шихте углерода в печь напускают аргон до давления 1,3 * 104 Па для предотвращения выплесков жидкого металла в следствие бурного протекания реакции

[C] + [O] = COгаз.

После полного расплавления шихты металл рафинируют при давлении 1,3 - 0,13 Па от водорода, азота, кислорода и примесей цветных металлов. Раскисление стали происходит в основном по реакции

[C] + [O] = COгаз,

равновесие которой при низких давлениях сдвигается вправо. В период рафинировки осуществляют также легирование металла. В первую очередь присаживают хром и ванадий, потом титан. Перед разливкой в металл вводят алюминий, редкоземельные металлы, кальций и магний. Для получения плотного слитка разливку проводят обычно в атмосфере аргона.

Основным недостатком вакуумных индукционных печей является контакт жидкого металла с огнеупорной футеровки тигля, что может приводить к загрязнению металла материалом тигля.

Производство стали в вакуумных дуговых печах.

Вакуумные дуговые печи (ВДП) подразделяют на печи с нерасходуемым и расходуемым электродом.

Нерасходуемый электрод изготавливают из вольфрама или графита. При плавке с нерасходуемым электродом измельченная шихта загружается в водоохлаждаемый медный тигель и под действием электрической дуги расплавляется, рафинируется от вредных примесей и затем кристаллизуется в виде слитка.

Эти печи промышленного применения не нашли, так как в них не возможно получать слитки большой массы. В настоящее время распространение получили вакуумные дуговые печи с расходуемым электродом.

Рис.2 Схема вакуумной дуговой печи

1-источник питания; 2-рабочая камера; 3-электродержатель; 4-механизм подачи электрода; 5-к вакуумным насосам; 6-электрод; 7-жидкий металл; 8-слиток; 9-кристаллизатор; 10-шток для подъема поддона; 11-поддон.

Здесь представлена схема ВДП с расходуемым электродом. Печь состоит из рабочей камеры, медного водоохлаждаемого кристаллизатора, электрододержателя, механизма подачи электродов и системы вакуумных насосов. Расходуемый электрод крепится к электродержателю, который через вакуумное уплотнение проходит сквозь верхний торец рабочей камеры.

Электродержатель служит для провода тока к электроду и фиксации его в камере печи. Электродежатель с помощью гибкой подвески связан с механизмом подачи электрода. Расходуемый электрод представляет собой подлежащий переплаву исходный металл. Он может быть круглого или квадратного сечения. Как правило, расходуемые электроды содержат все необходимые легирующие элементы. Диаметр электрода выбирается таким, чтобы зазор между электродом и стенкою кристаллизатора был больше длины дуги, горящей между электродом и ванной жидкого металла. В противном случае возможен переброс электрической дуги на стенку кристаллизатора.

Кристаллизатор представляет собой медную водоохлаждаемую трубку со стенкой толщиной от 8 до 30 мм. Кристаллизаторы бывают двух типов: глухие и сквозные. При плавки металла в сквозном кристаллизаторе можно вытягивать слиток вниз по ходу плавки. Сквозные кристаллизаторы применяют при плавке тугоплавких металлов и сплавов. При плавке стали используют глуходонные кристаллизаторы. Сверху кристаллизатор имеет фланец. Через кристаллизатор к слитку подводится ток.

Вакуумные дуговые печи работают как на постоянном, так и на переменном токе. При переплаве стальных электродов применяют постоянный ток. «Плюс» подается на электрод, «минус» - на слиток.

После установки расходуемого электрода в камере печи и откачки ее до необходимого давления (около 10-2 Па) зажигают электрическую дугу между электродом и металлической затравкой, лежащей на дне кристаллизатора. Под действием тепла электрической дуги нижний торец электрода оплавляется и капли металла стекают в кристаллизатор, образуя жидкую металлическую ванну. По мере оплавления электрод с помощью механизма подается вниз для поддержания расстояния между электродом и металлом.

Рафинирование металла от вредных примесей происходит во время прохождения жидких капель металла через электрическую дугу и с поверхности расплава в кристаллизаторе.

Одним из преимуществ вакуумного дугового переплава является отсутствие контакта жидкого металла с керамическими материалами. Основной недостаток - ограниченное время пребывания металла в жидком состоянии, что существенно снижает рафинирующие возможности вакуума.

Раздел 4. Рафинирование металлов

Рафинирование металлов, очистка первичных (черновых) металлов от примесей. Черновые металлы, получаемые из сырья, содержат 96 -- 99% основного металла, остальное приходится на примеси. Такие металлы не могут использоваться промышленностью из-за низких физико-химических и механических свойств. Примеси, содержащиеся в черновых металлах, могут представлять самостоятельную ценность. Так, стоимость золота и серебра, извлекаемых из меди, полностью окупает все затраты на рафинирование. Различают 3 основных метода рафинирования: пирометаллургический, электролитический и химический. В основе всех методов лежит различие свойств разделяемых элементов: температур плавления, плотности, электроотрицательности и т.д. Для получения чистых металлов нередко используют последовательно несколько методов рафинирования.

Пирометаллургическое рафинирование, осуществляемое при высокой температуре в расплавах, имеет ряд разновидностей. Окислительное рафинирование основано на способности некоторых примесей образовывать с О, S, Cl, F более прочные соединения, чем соединения основного металла с теми же элементами. Способ применяется, например, для очистки Cu, Pb, Zn, Sn. Так, при продувке жидкой меди воздухом примеси Fe, Ni, Zn, Pb, Sb, As, Sn, имеющие большее сродство к кислороду, чем Cu, образуют окислы, которые всплывают на поверхность ванны и удаляются. Ликвационное разделение основано на различии температур плавления и плотностей компонентов, составляющих сплав, и на малой их взаимной растворимости. Например, при охлаждении жидкого чернового свинца из него при определённых температурах выделяются кристаллы Cu (т. н. шликеры), которые вследствие меньшей плотности всплывают на поверхность и удаляются. Способ применяется для очистки чернового свинца от Cu, Ag, Au, Bi, очистки чернового цинка от Fe, Cu, Pb, при рафинировании Sn и др. металлов. При фракционной перекристаллизации используется различие в растворимости примесей металла в твёрдой и жидкой фазах с учётом медленной диффузии примесей в твёрдой фазе. Способ применяется в производстве полупроводниковых материалов и для получения металлов высокой чистоты (например, зонная плавка, плазменная металлургия, вытягивание монокристаллов из расплава, направленная кристаллизация). В основе ректификации, или дистилляции, лежит различие в температурах кипения основного металла и примеси. Р. осуществляется в форме непрерывного противоточного процесса, в котором операции возгонки и конденсации удаляемых фракций многократно повторяются. Использование вакуума позволяет заметно ускорить рафинирование. Способ применяется при очистке Zn от Cd, Pb от Zn, при разделении Al и Mg, в металлургии Ti и др. процессах. Вакуумная фильтрация жидкого металла через керамические фильтры (например, в металлургии Sn) позволяет удалить взвешенные в нём твёрдые примеси. При рафинировании стали в ковше жидкими синтетическими шлаками поверхность контакта между металлом и шлаком в результате их перемешивания значительно больше, чем при проведении рафинировочных процессов в плавильном агрегате; благодаря этому резко повышается интенсивность протекания десульфурации, дефосфорации, раскисления металлов, очищения его от неметаллических включений. Рафинирование стали продувкой расплава инертными газами используется для удаления из металла взвешенных частиц шлака или твёрдых окислов, прилипающих к пузырькам газа и флотируемых на поверхность расплава.

Электролитическое рафинирование, представляющее собой электролиз водных растворов или солевых расплавов, позволяет получать металлы высокой чистоты. Применяется для глубокой очистки большинства цветных металлов.

Электролитическое рафинирование с растворимыми состоит в анодном растворении очищаемых металлов и осаждении на катоде чистых металлов в результате приобретения ионами основного металла электронов внешней цепи. Разделение металлов под действием электролиза возможно вследствие различия электрохимических потенциалов примесей и основного металла. Например, нормальный электродный потенциал Cu относительно водородного электрода сравнения, принятого за нуль, + 0,346, у Au и Ag эта величина имеет большее положительное значение, a y Ni, Fe, Zn, Mn, Pb, Sn, Co нормальный электродный потенциал отрицателен. При электролизе медь осаждается на катоде, благородные металлы, не растворяясь, оседают на дно электролитной ванны в виде шлама, а металлы, обладающие отрицательным электродным потенциалом, накапливаются в электролите, который периодически очищают. Иногда (например, в гидрометаллургии Zn) используют электролитическое рафинирование с нерастворимыми анодами. Основной металл находится в растворе, предварительно тщательно очищенном от примесей, и в результате электролиза осаждается в компактном виде на катоде.

Химическое рафинирование основано на различной растворимости металла и примесей в растворах кислот или щелочей. Примеси, постепенно накапливающиеся в растворе, выделяются из него химическим. путём (гидролиз, цементация, образование труднорастворимых соединений, очистка с помощью экстракции или ионного обмена). Примером химического рафинирования может служить аффинаж благородных металлов. Рафинирование Au производят в кипящей серной или азотной кислоте. Примеси Cu, Ag и др. металлов растворяются, а очищенное золото остаётся в нерастворимом осадке.

Вывод

Вакуум -- это среда, содержащая газ при давлениях значительно ниже атмосферного. На практике сильно разреженный газ называют техническим вакуумом. Под физическим вакуумом в современной физике понимают полностью лишённое вещества пространство.

Техническое применение вакуума непрерывно расширяется, но с конца прошлого века и до сих пор наиболее важным его применением остается электронная техника. В электровакуумных приборах вакуум является конструктивным элементом и обязательным условием их функционирования в течение всего срока службы. Низкий и средний вакуум используется в осветительных приборах и газоразрядных устройствах. Высокий вакуум -- в приемно-усилительных и генераторных лампах.

В производстве высококачественных сталей широко применяется вакуумирование. Плавкой в вакууме получают безуглеродистые сорта железа для электродвигателей, высокоэлектропроводную медь, магний, кальций, тантал, платину, титан, цирконий, бериллий, редкие металлы и их сплавы.

Применение вакуума при выплавке стали позволяет получать металл практически любого химического состава с низким содержанием газов, неметаллических включений, примесей цветных металлов.

Вакуум также применяется при рафинировании металлов.

Список литературы

Анодные оксидные покрытия на металлах и анодная зашита, 2 изд. - К., 1985.

Воскобойников В.Г., Кудрин В.А., Якушев А.М. Общая металлургия. - М.:«Металлургия», 4издание, 1985.

Воскобойников В.Г., Макаров Л.П. Технология и экономика переработки железных руд. - М.: «Металлургия», 1977. - 255с.

Грилихес С. Я. Электрохимическое и химическое полирование. - Л., 1987;

Давыдов А.Д., Козак Е., Высокоскоростное электрохимическое формообразование. - М., 1990.

Дворин М.Д., Дмитриенко В.В., Крутикова Л.В. и др. Системы технологий отраслей народного хозяйства: Учебное пособие. Хабаровск: Изд-во ХПИ, 1991.

Дураджи В.Н., Парсаданян А. С. Нагрев металлов в электролитной плазме - Киш., 1988;

Зайцев И.В. Технология электроаппаратостроения: Учеб. пособие для ВУЗов. - М.: Высш. Школа, 2002. - 215 с.

Кудрин В.А. Металлургия стали. - М.: «Металлургия», 1981. - 485 с.

Медоваров Б.И. Металлургия: вчера, сегодня, завтра. - К.: «Наукова думка», 1986г.

Основы металлургического производства (черная металлургия). - М.: «Металлургия» 1988.

Основы технологии важнейших отраслей промышленности: В 2 ч. Ч.1: Учеб. пособие для вузов / И.В. Ченцов, И.А.

Основы технологий важнейших отраслей промышленности./ Под ред. И.А. Сидорова: Учебник для экономических специальностей ВУЗов: - М.: «Высшая школа», 1971.

Технология деталей радиоэлектронной аппаратуры. Учеб. пособие для ВУЗов / С.Е. Ушакова, В.С. Сергеев, А.В. Ключников, В.П. Привалов; Под ред. С.Е. Ушаковой. - М.: Радио и связь, 2002. - 256 с.

Технология конструкционных материалов: Учебник для машиностроительных специальностей ВУЗов / А.М. Дольский, И.А. Арутюнова, Т.М. Барсукова и др.; Под ред.А.М. Дольского. - М.: Машиностроение, 2005. - 448 с.

Технология металлов и конструкционные материалы /под ред. Б.А. Кузьмина - М.: «Машиностроение», 1981.

Хрущев А.Т. География промышленности СССР. - М.: «Высшая школа», 1990.

Штанько В.М., Животовский Э.А. Электрохимическая обработка металлопродукции. - М., 1986;

Энциклопедия «Радость познания», Том 1 «Наука и вселенная» - М.: «МИР» 1983.

Ямпольский A.M., Травление металлов. - М., 1980.


Подобные документы

  • Промышленное значение цветных металлов: алюминий, медь, магний, свинец, цинк, олово, титан. Технологические процессы производства и обработки металлов, механизация и автоматизация процессов. Производство меди, алюминия, магния, титана и их сплавов.

    реферат [40,4 K], добавлен 25.12.2009

  • Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".

    курсовая работа [1,6 M], добавлен 19.03.2013

  • Электродинамическая сепарация, методы интенсификации технологического процесса. Извлечение из цветных металлов без разделения потока на две фракции. Извлечение черных и цветных металлов в самостоятельные продукты. Удаление части балластных компонентов.

    курсовая работа [95,7 K], добавлен 18.01.2015

  • Описание технологии производства чугуна и стали: характеристика исходных материалов, обогащение руд, выплавка и способы получения. Медь, медные руды и пути их переработки. Технология производства алюминия, титана, магния и их сплавов. Обработка металлов.

    реферат [101,6 K], добавлен 17.01.2011

  • Технология плавки цветных металлов. Техника безопасности при производстве алюминия из вторичного сырья. Альтернативные способы получения алюминия из вторсырья. Использование индукционной тигельной и канальной печей. Применение электродуговых печей.

    курсовая работа [722,3 K], добавлен 30.09.2011

  • Понятие металла, электронное строение и физико-химические свойства цветных и черных металлов. Характеристика железных, тугоплавких и урановых металлов. Описание редкоземельных, щелочных, легких, благородных и легкоплавких металлов, их использование.

    реферат [25,4 K], добавлен 25.10.2014

  • Современные способы повышения качества металлов и сплавов. Подготовка руд к доменной плавке. Устройство и работа доменной печи. Сущность технологического процесса изготовления деталей и заготовок порошковой металлургией. Производство цветных металлов.

    дипломная работа [6,3 M], добавлен 16.11.2011

  • Процесс получения титана из руды. Свойства титана и область его применения. Несовершенства кристаллического строения реальных металлов, как это отражается на их свойствах. Термическая обработка металлов и сплавов - основной упрочняющий вид обработки.

    контрольная работа [2,3 M], добавлен 19.01.2011

  • Классификация металлов по основному компоненту, по температуре плавления. Характерные признаки, отличающие металлы от неметаллов: внешний блеск, высокая прочность. Характерные особенности черных и цветных металлов. Анализ сплавов цветных металлов.

    контрольная работа [374,3 K], добавлен 04.08.2012

  • Товароведная характеристика цветных металлов и изделий из них. Требования к цветным металлам и сплавам в соответствии с ГОСТом. Физические свойства основных (медь, свинец, цинк, олово, никель, титан, магний), легирующих, благородных и рассеянных металлов.

    курсовая работа [47,5 K], добавлен 21.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.