Методы прогнозирования

Прогнозирование - предсказание вероятности безотказной работы изделия Р(t) в зависимости от возможных режимов работы и условий эксплуатации. Применение метода Монте-Карло для прогноза параметрической надежности машины, статистическое моделирование.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 16.03.2010
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

28

28

Содержание

1. Методы прогнозирования

2. Схема прогноза параметрической надежности машины

3. Применение метода Монте-Карло для прогнозирования надежности

4. Возможности метода статистического моделирования

5. Оценка экстремальных ситуаций

Список использованной литературы

1. Методы прогнозирования

За последние годы прогнозирование поведения сложных систем развилось в самостоятельную науку, которая использует разнообразные методы и средства.

Прогнозирование отличается от расчета системы тем, что решается вероятностная задача, в которой поведение сложной системы в будущем определяется лишь с той или иной степенью достоверности и оценивается вероятность ее нахождения в определенном состоянии при различных условиях эксплуатации. Применительно к надежности задача прогнозирования сводится в основном к предсказанию вероятности безотказной работы изделия Р(t) в зависимости от возможных режимов работы и условий эксплуатации. Качество прогноза в большой степени зависит от источника информации о надежности отдельных элементов и о процессах потери ими работоспособности. Для прогнозирования в общем случае применяются разнообразные методы с использованием моделирования, аналитических расчетов, статистической информации, экспертных оценок, метода аналогий, теоретико-информационного и логического анализа и др.

Обычно прогнозирование, связанное с применением математического аппарата (элементы численного анализа и теории случайных функций), называется аналитическим. Специфика прогнозирования надежности заключается в том, что при оценке вероятности безотказной работы Р (t) эту функцию в общем случае нельзя экстраполировать. Если она определена на каком-то участке, то за его пределами ничего о функции Р (t) сказать нельзя. Поэтому основным методом для прогнозирования надежности сложных систем является оценка изменения его выходных параметров во времени при различных входных данных, на основании чего можно сделать вывод о показателях надежности при различных возможных ситуациях и методах эксплуатации данного изделия.

Нами будет рассмотрен тот случай прогнозирования параметрической надежности машины, когда известна структура формирования области работоспособности, но параметры, определяющие эту область, зависят от большого числа факторов и имеют рассеивание.

Рис. 1 Область прогнозирования надежности

2. Схема прогноза параметрической надежности машины

Рис. 2 Схема потери машиной работоспособности при заданной длительности непрерывной работы

Опираясь на общую схему потери машиной работоспособности (рис.2), можно представить три основных задачи по прогнозированию надежности (рис.1).

1. Прогнозируется поведение всей генеральной совокупности данных машин, т. е. учитывается как вариация исходных характеристик машины, так и возможных условий ее эксплуатации (область).

2. Прогнозируется поведение конкретного образца машины, т. е. начальные параметры машины становятся неслучайными величинами, а режимы и условия эксплуатации машины могут изменяться в определенном диапазоне. В этом случае область состояний сужается (область) и становится подмножеством множества.

3. Прогнозируется поведение данной машины в определенных условиях эксплуатации при постоянных режимах работы. В этом случае необходимо выявить реализацию случайного процесса, которая соответствует заданным условиям работы.

Таким образом, если в первых двух случаях необходимо предсказать возможную область существования выходных параметров и оценить вероятность их нахождения в каждой зоне данной области, то в третьем случае отсутствует неопределенность в условиях работы изделия, и прогноз связан лишь с выявлением тех закономерностей, которые описывают процесс изменения выходного параметра во времени.

Рис. 3 Процесс старения как случайная функция

Как известно (рис. 3), протекание случайного процесса может идти с большей или меньшей степенью «перемешивания» реализаций. Следует отметить, что если прогноз касается совокупности изделий, то степень перемешивания не влияет на оценку области существования параметров, так как выявляется не поведение данного изделия, а вероятность выхода за допустимые границы любого экземпляра из данной совокупности.

Если же прогнозируется поведение данного экземпляра изделия в пределах области, то следует оценить возможную скорость изменения процесса потери работоспособности в ближайший период времени, т. е. использовать корреляционную функцию.

Точность прогнозирования зависит от ряда факторов. Во-первых, от того, насколько принятая схема потери машиной работоспособности отражает объективную действительность. Во-вторых, насколько достоверны сведения о режимах и условиях предполагаемой работы изделия, а также о его начальных параметрах.

Наконец, на правильность прогноза решающее влияние оказывает достоверность информации о закономерностях изменения выходных параметров изделия в процессе эксплуатации, т. е. о случайных функциях X1 (t); ...; Хn, (t). Информация о надежности изделия (понимая под этим оценку упомянутых функций Xi (t) или данные по надежности элементов изделия) может быть получена из разных источников. Прогнозирование может вестись на стадии проектирования (имеются ТУ на изделие, конструктивные данные о машине и ее элементах, известны возможные условия эксплуатации). При наличии опытного образца изделия (можно получить начальные характеристики машины, оценить запас надежности) и при эксплуатации (имеется информация о потере работоспособности изделий при различных условиях эксплуатации). При прогнозировании надежности изделия на стадии проектирования имеется наибольшая неопределенность (энтропия) в оценке возможных состояний изделия. Однако методический подход к решению этой задачи остается общим.

В рассматриваемом случае он заключается в использовании в качестве основы для оценки вероятности безотказной работы изделия соответствующих моделей отказов и состоит из следующих этапов.

1. Определение начальных параметров изделия (ао; а), как функции технологического процесса изготовления машины. Это связано с изменениями в пределах допуска размеров деталей, свойств материалов, качества сборки и других показателей. Значения начальных параметров могут зависеть также от режимов работы машины.

2. Установление предельно допустимых значений выходных параметров.

3. Оценка расчетным путем изменения выходных параметров в течение межналадочного периода То (в, н, с, ас) с учетом аналогичных характеристик у прототипа путем испытания при наличии опытного образца или путем учета установленных стандартом нормативов на параметры машины.

4. Оценка влияния процессов старения () на выходные параметры изделия на основании физических закономерностей отказов с учетом их стохастической природы.

5.Оценка спектров режимов работы (нагрузок, скоростей и условий эксплуатации), которые отражают возможные условия эксплуатации и определяют рассеивание скоростей изменения выходных параметров (х).

6. Расчет вероятности безотказной работы машины по каждому из параметров в функции времени.

7. При получении информации об эксплуатации изделия, для которого был сделан прогноз, производится сравнение действительных и расчетных данных и анализ причин их расхождения.

В зависимости от поставленной задачи должны быть выявлены области и (или) оценена реализация (рис. 1), т. е. получены законы распределения f (Т) или f (Т), или соответственно P (Т) или Р (Т), отражающие диапазоны рассеивания сроков службы для всей генеральной совокупности (D/) или для данной машины (D//). Если условия эксплуатации для данного образца жестко заданы, прогнозируется срок службы (наработка до отказа) Т.

3. Применение метода Монте-Карло для прогнозирования надежности

Рассмотренные в гл. 3 модели отказов являются формализованным описанием процесса потери машиной работоспособности и дают возможность установить функциональные связи между показателями надежности и исходными параметрами.

Статистическая природа этих закономерностей проявляется в том, что аргументы полученных функций являются случайными и зависят от большого числа факторов. Поэтому и нельзя точно предсказать поведение системы, а можно лишь определить вероятность того или иного ее состояния.

Для прогнозирования поведения сложной системы с успехом может применяться метод статистического моделирования (статистических испытаний), который получил название метода Монте-Карло (184).

Основная идея этого метода заключается в многократном расчете параметров по некоторой формализованной схеме, являющейся математическим описанием данного процесса (в нашем случае -- процесса потери работоспособности).

При этом для случайных параметров, входящих в формулы, перебираются наиболее вероятные их значения в соответствии с законами распределения.

Таким образом, каждое статистическое «испытание» заключается в выявлении одной из реализаций случайного процесса, так как подставляя, хотя и случайным образом, выбранные, но зафиксированные аргументы, получаем детерминированную зависимость, которая описывает данный процесс при принятых условиях. Многократно повторяя испытания по данной схеме (что практически возможно в сложных случаях лишь с применением ЭВМ), получим большое число реализаций случайного процесса, которое позволит оценить ход этого процесса и его основные параметры.

Рассмотрим упрощенную блок-схему алгоритма для расчета на ЭВМ надежности изделия, потеря работоспособности которого может быть описана схемой на рис. 4 и уравнением

Рис.4 Схема формирования постепенного отказа данного изделия

Пусть изменение выходного параметра X зависит от износа U одного из элементов изделия, т. е. X = F (U), где F -- известная функция, зависящая от конструктивной схемы изделия. Примем, что износ связан с удельным давлением р и скоростью скольжения трущейся пары v степенной зависимостью U=kpm1vm2t, где коэффициенты m1 и m2 известны (например, из испытания материалов пары). Коэффициент k оценивает износостойкость материалов и условия работы сопряжения (смазка, засоренность поверхностей).

Данное изделие может попасть в различные условия эксплуатации и работать при разных режимах. Для того чтобы предсказать ход процесса потери изделием работоспособности, надо знать вероятностную характеристику тех условий, в которых будет эксплуатироваться изделие. Такими характеристиками могут быть законы распределения нагрузок f (Р), скоростей f (v) и условий эксплуатации f (k). Заметим, что эти закономерности оценивают те условия, в которых будет находиться изделие и поэтому могут быть получены независимо от его конструкции с использованием статистики по работе аналогичных машин или по требованиям к будущим изделиям. Например, спектры нагрузок и скоростей при различных условиях работы транспортных машин, необходимые режимы резания при обработке данного типажа деталей на металлорежущих станках, нагрузки на узлы горнодобывающих машин при разработке различных пород и т. п. могут быть заранее определены в виде гистограмм или законов распределения.

Рис. 5

Алгоритм для оценки надежности методом Монте-Карло (рис. 5) состоит из программы одного случайного испытания, по которой определяется конкретное значение скорости изменения параметра х. Данное испытание повторяется N раз (где N должно быть достаточно большим для получения достоверных статистических данных, например N? 50), и по результатам этих испытаний оценивается математическое ожидание ср и среднеквадратическое отклонение х случайного процесса, т. е. данные, необходимые для определения Р (t). Последовательность расчета (статистического испытания) следующая. После ввода необходимых данных (оператор /) производится выбор конкретных для данного испытания значений р, v и k (оператор 2). Для этого имеются подпрограммы, в которые заложены гистограммы или законы распределения, характеризующие данные значения или определяющие их величины. Например, вместо давлений на поверхности трения р может быть задан закон распределения внешних нагрузок Р, действующих на узел. В этом случае в подпрограмме по выбранному значению Р рассчитывается

р = F (Р),в простейшем случае ,

где S -- поверхность трения.

Для выбора конкретного значения каждого из параметров с учетом их законов распределения применяется генератор случайных чисел, при помощи которого разыгрывается (выбирается) данное случайное число. Обычно генератор построен так, что выдает равномерно распределенные числа, которые с помощью стандартных подпрограмм могут быть преобразованы так, что их плотность распределения будет соответствовать данному закону. Например, для нормального закона распределения вырабатываются случайные числа г для математического ожидания М (z) = О и среднеквадратического отклонения z = 1. В подпрограмме для каждого случая применяется формула разыгрывания, которая учитывает характеристики заложенного распределения. Так, если р распределено по нормальному закону с параметрами рср и р, то формула разыгрывания будет р= рср+рz, где z получено с помощью генераторов случайных чисел. Возможно создание подпрограмм для разыгрывания случайных значений параметров при задании их распределения при помощи гистограмм. После получения случайных значений для каждого опыта рассчитывается скорость процесса повреждения (оператор 3) и по ней скорость процесса изменения параметра х (оператор 4). Данная процедура повторяется N раз и каждое полученное значение х засылается во внешнюю память машины. После накопления необходимого количества статистических данных, т. е. при n = N, производится определение ср и х (операторы 6 и 7), после чего возможен как расчет вероятности безотказной работы Р (Т) (оператор 8), так и построение гистограммы распределения х (или наработок до отказа Ti) и выдача на печать всех необходимых данных.

4. Возможности метода статистического моделирования

Рассмотренный случай является простейшим, но иллюстрирует общий методический подход к решению данной задачи.

В более сложном случае, например при использовании модели отказа с учетом рассеивания начальных параметров (рис. 6), в программу закладываются сведения о законах распределения исходных характеристик машины.

Например, погрешности изготовления деталей обычно распределяются в пределах допуска .

По нормальному закону, а такие положительные величины, как погрешность эксцентриситета вала -- по закону Максвелла и т. п.

Рассмотренный на рис. 5 пример характерен также тем, что скорость процесса здесь постоянна х= const, и каждая реализация случайной функции характеризуется одним конкретным значением х.

Рис.6 Схема формирования отказа при рассеивании начальных параметров изделия.

Например, погрешности изготовления деталей обычно распределяются в пределах допуска .

по нормальному закону, а

такие положительные величины, как погрешность эксцентриситета вала -- по закону Максвелла и т. п.

Рассмотренный на рис. 5 пример характерен также тем, что скорость процесса здесь постоянна х= const, и каждая реализация случайной функции характеризуется одним конкретным значением х. Поэтому моделирование случайной функции здесь сведено к моделированию случайной величины.

Если рассматривать нелинейную задачу, когда скорость процесса изменяется во времени (t), то каждое испытание даст реализацию случайной функции. Для дальнейших действий каждую реализацию можно представить в виде чисел в данных сечениях t1;t2…tn, охватывающих исследуемый диапазон работоспособности изделия.

Часто случайную функцию удобно представить в виде ее канонического разложения

В этом случае случайными будут коэффициенты при неслучайных функциях

Выработка реализаций случайной функции на ЭВЦМ упрощается в случае ее стационарности.

Еще более сложные случаи могут иметь место, если существует связь между смежными значениями случайных параметров. Тогда необходимо учитывать коэффициент корреляции между смежными членами или даже несколькими соседними членами (множественная корреляционная связь). Такой случай также может быть решен методом Монте-Карло, но требуется моделирование корреляционной функции.

Следует также отметить, что данный метод применим и для закономерностей, характеризующих процесс в виде неявных функций, а также при описании процесса не обязательно в виде математических формул. Прогнозирование надежности методом Монте-Карло позволяет вскрыть статистическую природу процесса потери изделием работоспособности и оценить удельный вес влияния отдельных факторов. Например, для рассмотренной задачи можно сделать расчет, насколько повысится вероятность безотказной работы, если проведен ряд мероприятий по уменьшению давлений в зоне трения (изменена конструкция узла), уменьшено значение коэффициента k (применен новый материал), сужен диапазон режимов работы машины [изменены параметры законов f (Р) и f (v)].

Специфика применения метода статистического моделирования для расчета надежности заключается в том, что если обычно при статистическом моделировании сложных систем искомыми величинами являются средние значения характеристик, то здесь нас интересует область крайних реализаций (значений близких к max), так как именно они определяют значения Р (Т) .

Поэтому для оценки надежности ответственных изделий важное значение приобретает исследование аварийных и экстремальных ситуаций, когда выявляются реализации процесса с наибольшей скоростью изменения выходных параметров х max.

5. Оценка экстремальных ситуаций

При прогнозировании надежности особое значение приобретает выявление крайней границы области состояний изделия, так как именно она определяет его близость к отказу. Эта граница формируется за счет реализаций, которые имеют наибольшие значения скорости процесса х. Хотя вероятность их появления мала (она соответствует вероятности отказа), их роль в оценке надежности изделия является основной. Такие реализации будем называть экстремальными. Они могут быть двух типов: собственно экстремальные, как следствие наиболее неблагоприятного сочетания внешних факторов, но находящихся в допустимых пределах, и аварийные, которые связаны с нарушением условий эксплуатации или проявлением нарушений ТУ при изготовлении изделия.

Экстремальная реализация IV на рис. 1 может быть выявлена как результат наиболее неблагоприятного сочетания факторов, влияющих на скорость изменения параметров 7л Часто это предельные режимы, при которых существенно возрастают динамические нагрузки. Если для простых систем формулирование экстремальных условий, как правило, не вызывает трудностей (это наибольшие нагрузки, скорости, температуры), то для сложных систем необходимо провести исследования по выявлению такого сочетания параметров, которое приведет к х max Действительно, например, повышение скорости механизма для одних элементов может привести к повышению их работоспособности (переход к жидкостному трению в подшипнике скольжения, лучшая циркуляция охлаждающей жидкости, выход механизма из резонансной зоны и т. п.), а для других -- к ухудшению условий их работы (рост динамических нагрузок, повышение тепловыделения и т. п.). Поэтому суммарное воздействие на механизм будет наибольшим лишь при определенных режимах его работы. Если требуется выявить наихудшее начальное состояние изделия, то также необходимо решить задачу о наиболее неблагоприятном распределении допусков (ТУ) на элементы и оценить вероятность этой ситуации (например, нахождение для всех деталей размеров на границах полей допусков маловероятно).

Кроме того, при оценке надежности изделия с учетом всех его основных параметров X1, Х2, ..., Хn режимы по-разному отразятся на их изменении, что исключает возможность предопределения заранее наихудшего их сочетания. Все это свидетельствует о том, что выявление экстремальных ситуаций также является задачей статистического исследования, которое может быть проведено с применением метода Монте-Карло. Однако разыгрывание должно вестись в области, соответствующей малой вероятности отказа, но при допустимых значениях входных параметров (значений случайных аргументов).

Аварийные ситуации связаны с двумя основными причинами. Во-первых, это возрастание внешних нагрузок и воздействий за пределами установленными ТУ при попадании машины в недопустимые условия эксплуатации. Для отдельных узлов и элементов машины такое положение может возникнуть из-за повреждения соседних малоответственных деталей, что повлияет на работу данного узла. Например, повышенный износ неответственного соединения не влияет сам по себе на работоспособность этой пары, но продукты износа засоряют смазку и выводят из строя другие сопряжения. Повышенное тепловыделение может привести к недопустимым деформациям соседних элементов.

Во-вторых, возникновение аварийных ситуаций связано с нарушением ТУ на изготовление и сборку изделий. Производственные дефекты могут проявиться неожиданно и привести к отказу изделия.

Если вероятность появления экстремальных ситуаций можно оценить, то возникновение аварийного состояния предсказать трудно, а в большинстве случаев практически невозможно. Обычно удается составить перечень типичных аварийных ситуаций, доказать, что вероятность их возникновения чрезвычайно мала (если это не так, надо изменять конструкцию) и, главное, оценить возможные последствия каждой ситуации. Оценка характера последствий и времени, необходимого для ликвидации возникшей ситуации, определяет степень опасности данной аварийной ситуации.

Таким образом, прогноз области возможных состояний изделия и его показателей надежности для высокоответственных объектов дополняется анализом аварийных и экстремальных ситуаций с оценкой их последствий.

В заключение следует отметить, что разработка методов прогнозирования надежности машин даст огромный экономический эффект, так как, во-первых, сократятся затраты времени и средств на испытание опытных образцов, во-вторых, будет иметь место более рациональное использование потенциальной долговечности изделия за счет правильного построения системы ремонта и эксплуатации, в-третьих, еще на стадии проектирования будет возможен выбор оптимального с точки зрения надежности конструктивного решения.

Список использованной литературы:

1. Проников А.С. Надежность машин Москва «Машиностроение» 1978 г

2. Бусленко Н.П. Моделирование сложных систем М.; «Наука» 1969 г.

3. Елизаветин М.А. Повышение надежности машин М.; «Машиностроение» 1973г.


Подобные документы

  • Описание конструкции компрессора газотурбинного двигателя. Расчет вероятности безотказной работы лопатки и диска рабочего колеса входной ступени дозвукового осевого компрессора. Расчет надежности лопатки компрессора при повторно-статических нагружениях.

    курсовая работа [868,6 K], добавлен 18.03.2012

  • Построение эмпирической вероятности безотказной работы. Определение параметров распределения итерационным методом. Рассмотрение количественных характеристик каждого фактора в отдельности. Определение средней наработки до первого отказа устройства.

    отчет по практике [500,8 K], добавлен 13.12.2017

  • Краткое описание конструкции двигателя. Нормирование уровня надежности лопатки турбины. Определение среднего времени безотказной работы. Расчет надежности турбины при повторно-статических нагружениях и надежности деталей с учетом длительной прочности.

    курсовая работа [576,7 K], добавлен 18.03.2012

  • Назначение, классификация и обоснование выбора горной машины в зависимости от условий работы. Статический расчет технологических параметров работы машины. Устройство, принцип работы, эксплуатация механического оборудования и привода. Механизм подъема.

    курсовая работа [211,3 K], добавлен 08.11.2011

  • Требования, предъявляемые к надежности изделия. Анализ надежности дублированных систем. Вероятность безотказной работы по заданному критерию. Распределение отказов по времени. Основы расчета резьбовых и болтовых соединений при постоянной нагрузке.

    контрольная работа [443,8 K], добавлен 09.11.2011

  • Государственные стандарты по проблеме надежности энергетических объектов при эксплуатации. Изменение интенсивности отказов при увеличении наработки объекта. Вероятность безотказной работы. Показатели долговечности и модель гамма-процентного ресурса.

    презентация [900,4 K], добавлен 15.04.2014

  • Понятия теории надежности. Вероятность безотказной работы. Показатели частоты отказов. Методы повышения надежности техники. Случаи возникновения отказов, сохранность работоспособности оборудования. Критерии и количественные характеристики его оценки.

    курсовая работа [234,6 K], добавлен 28.04.2014

  • Анализ изменения вероятности безотказной работы системы от времени наработки. Понятие процентной наработки технической системы, особенности обеспечения ее увеличения за счет повышения надежности элементов и структурного резервирования элементов системы.

    контрольная работа [558,6 K], добавлен 16.04.2010

  • Показатели надежности систем. Классификация отказов комплекса технических средств. Вероятность восстановления их работоспособного состояния. Анализ условий работы автоматических систем. Методы повышения их надежности при проектировании и эксплуатации.

    реферат [155,0 K], добавлен 02.04.2015

  • Структурная схема надежности технической системы. График изменения вероятности безотказной работы системы от времени наработки до уровня 0,1-0,2. 2. Определение Y-процентной наработки технической системы.

    практическая работа [218,7 K], добавлен 05.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.