Проектирование приточно-вытяжной вентиляции
Проектирование приточно-вытяжной вентиляции с механическим и естественным побуждением для ВУЗа. Расчет количества поступающего тепла, выделяющихся влаги и углекислого газа, необходимой интенсивности воздухообмена. Подбор вентиляционных установок.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 14.03.2010 |
Размер файла | 319,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Содержание
- 1. Исходные данные
- 2. Выбор параметров наружного воздуха
- 3. Расчет параметров внутреннего воздуха
- 4. Определение количества вредностей, поступающих в помещение
- 4.1 Расчет теплопоступлений
- 4.1.1 Теплопоступления от людей
- 4.1.2 Теплопоступления от источников солнечного освещения
- 4.1.3 Теплопоступления за счет солнечной радиации
- 4.2 Расчет влаговыделений в помещении
- 4.3 Расчет выделения углекислого газа от людей
- 4.4 Составление сводной таблицы вредностей
- 5. Расчет воздухообменов
- 5.1 Воздухообмен по нормативной кратности
- 5.2 Воздухообмен по людям
- 5.3 Воздухообмен по углекислому газу
- 5.4 Воздухообмен по избыткам тепла и влаги
- 5.4.1 Воздухообмен по избыткам тепла и влаги теплый период года
- 5.4.2 Воздухообмен по избыткам тепла и влаги в переходный период года
- 5.4.3 Воздухообмен по избыткам тепла и влаги в зимний период года
- 5.5 Расчет воздухообмена по нормативной кратности и составление воздушного баланса для всего здания
- 6. Расчет воздухораспределения
- 7. Аэродинамический расчет воздуховодов
- 8. Выбор решеток
- 9. Расчет калорифера
- 10. Подбор фильтров
- 11. Подбор вентиляторных установок
- 12. Аккустический расчет
- 13. Список используемой литературы
1. Исходные данные
В качестве объекта для проектирования предложено здание ВУЗа в городе Томске, в котором предусмотрена приточно-вытяжная вентиляция с механическим и естественным побуждением.
Время работы с 9 до 19 часов.
В качестве теплоносителя предложена вода с параметрами 130/70 C
Освещение - люминесцентное.
Стены из обыкновенного кирпича толщиной в 2,5 кирпича; R0=1,52 m2K/Вт
Покрытие - = 0,45 м; R0=1,75 m2K/Вт; D=4,4; =29,7
Остекление - одинарное в деревянных переплетах с внутренним затенением из светлой ткани, R0=0,17 m2K/Вт
Экспликация помещений:
Аудитория на 200 мест
Коридор
Санузел на 4 прибора
Курительная
Фотолаборатория
Моечная при лабораториях
Лаборатория (на 15 мест) с 4 шкафами размером 800x600x1200
Книгохранилище
Аудитория на 50 мест
Гардероб
2. Выбор параметров наружного воздуха
Расчетные параметры наружного воздуха, а также географическая широта и барометрическое давление принимаются по прил. 7[1] в зависимости от положения объекта строительства для теплого и холодного периодов года. Выбор расчетных параметров наружного воздуха производим в соответствии с п.2.14.[1], а именно: для холодного периода - по параметрам Б, для теплого - по параметрам А.
В переходный период параметры принимаем в соответствии с п.2.17[1] при температуре 80С и энтальпии I=22,5 кДж/кг.св.
Все данные сводим в табл. 3.1
Таблица 2.1 - Расчетные параметры наружного воздуха
Наименование помещения, город, географическая широта |
Период года |
Параметр А |
Параметр Б |
В, м/с |
P , КПа |
A , град |
|||||||
tн, 0C |
I, кДж/кг.св |
, % |
d, г/кгсв. |
tн, 0C |
I, кДж/кг.св. |
, % |
d, г/ кг.св. |
||||||
Аудитория на 200 чел. Томск, 560 с.ш. |
Т |
21,7 |
79 |
70 |
11 |
3 |
99 |
11 |
|||||
П |
8 |
22,5 |
80 |
5,5 |
3 |
99 |
11 |
||||||
Х |
3 |
99 |
11 |
3. Расчет параметров внутреннего воздуха
Для вентиляции используются допустимые значения параметров внутреннего воздуха. Они принимаются в зависимости от назначения помещения и расчетного периода года в соответствии с п.2.1.[1] по данным прил. 1[1].
В теплый период года температура притока
tпт = tнт (л), tпт =21,7 С, tрз =tпт +3С=24,7 С
В холодный и переходный периоды:
tп = tрз - t, С,
где tрз принимается по прил. 1[1], tрз=20 С.
Так как высота помещения более 4 метров, принимаем t равным 5С.
tпрхп =20-5=15 С.
Температура воздуха, удаляемого из верхней зоны помещения, определяется по формуле:
tуд = tрз +grad t(H-hрз), где:
tрз - температура воздуха в рабочей зоне, С.
grad t - превышение температуры на 1 м высоты выше рабочей зоны, С/м
H - высота помещения, м; H=7,35м
hрз - высота рабочей зоны, м; hрз=2м.
grad t - превышение температуры на 1 м высоты выше рабочей зоны, С/м
H - высота помещения, м; H=7,35м
hрз - высота рабочей зоны, м; hрз=2м.
grad t выбирает из таблицы VII.2 [3] в зависимости от района строительства.
г. Томск:
grad tт = 0,5 С/м
grad tхп = 0,1 С/м
tудт = 24,7+0,5*(7,35-2)=27,38 С
tудхп =20+0,1*(7,35-2)=20,54 С
Результаты сводим в табл. 4.1
Таблица 3.1 - Расчетные параметры внутреннего воздуха
Наименование |
Период года |
Допустимые параметры |
tн , С |
tуд, С |
|||
tрз ,С |
рз, % |
, м/с |
|||||
Аудитория на 200 мест |
Т |
24,7 |
65 |
0,5 |
21,7 |
27,4 |
|
П |
20 |
65 |
0,2 |
15 |
20,5 |
||
Х |
20 |
65 |
0,2 |
15 |
20,5 |
4. Определение количества вредностей, поступающих в помещение
В общественных зданиях, связанных с пребыванием людей, к вредностям относятся: избыточное тепло и влага, углекислый газ, выделяемый людьми, а так же тепло от освещения и солнечной радиации.
4.1 Расчет теплопоступлений
4.1.1 Теплопоступления от людей
Учитываем, что в помещении находятся 200 человек: 130 мужчин и 70 женщин - они работают сидя, т.е. занимаются легкой работой. В расчете учитываем полное тепловыделение от людей и определяем полное теплопоступление по формуле:
,
где: qм, qж - полное тепловыделение мужчин и женщин, Вт/чел;
nм, nж - число мужчин и женщин в помещении.
Полное тепловыделение q определим по таблице 2.24[5].
Теплый период:
tрзт=24,7 С, q=145 Вт/чел
Qлт=145*130+70*145*0,85=27473 Вт
Холодный период:
tрзхп=20 С, q=151 Вт/чел
Qлхп=151*130+70*151*0,85=28615 Вт
4.1.2 Теплопоступления от источников солнечного освещения
Qосв, Вт, определяем по формуле:
, где:
E - удельная освещенность, лк, принимаем по таблице 2.3[6]
F - площадь освещенной поверхности, м2;
qосв - удельные выделения тепла от освещения, Вт/( м2/лк), определяется по табл. 2.4.[6]
осв - коэффициент использования теплоты для освещения, принимаем по [6]
E=300 лк; F=247 м2; qосв=0,55; осв =0,108
Qосв=300*247*0,55*0,108=4402 Вт
4.1.3 Теплопоступления за счет солнечной радиации
Определяем как сумму теплопоступлений через световые проемы и покрытия в теплый период года.
, Вт
Теплопоступления через остекления определим по формуле:
, Вт,
где: qвп, qвр - удельное поступление тепла через вертикальное остекление соответственно от прямой и рассеянной радиации. Выбирается по таблице 2.16 [5] для заданного в здании периода работы помещения для каждого часа.
Fост - площадь остекления одинаковой направленности, м2, рассчитывается по плану и разрезу основного помещения здания.
сз - коэффициент, учитывающий затемнение окон.
Как - коэффициент, учитывающий аккумуляцию тепла внутренними ограждающими конструкциями помещения.
К0 - коэффициент, учитывающий тип остекления.
К0 - коэффициент, учитывающий географическую широту и попадание в данную часть прямой солнечной радиации.
К2 - коэффициент, учитывающий загрязненность остекления.
Расчет ведем отдельно для остекления восточной и западной стороны.
Fост. з=4*21=84 м2
Fост .в=1,5*17=25,5 м2
сз - определяем по таблице 1.2[5]. Для внутренних солнцезащитных устройств из светлой ткани сз=0,4
Как=1, т.к. имеются солнцезащитные устройства
г.Томск - промышленный город. Учитывая что корпуса институтов обычно строят в центре городов, выбираем по таблице 2.18[5] для умеренной степени загрязнения остекления при =80-90%; К2=0,9
По таблице 2.17[5] принимаем для одинарного остекления в деревянных переплетах при освещении окон в расчетный час солнцем К1=0,6, при нахождении окон в расчетный час в тени К1=1,6.
Теплопоступления через остекление
Таблица 4.1
Часы |
Теплопоступления через остекление, Qост, Вт |
||
Запад |
Юг |
||
1 |
2 |
3 |
|
9-10 |
56*1,4*0,9*1*1*0,4*84=1016 |
(378+91)*0,6*0,9*1*1*0,4*25,5=6027 |
|
10-11 |
58*1,4*0,9*1*1*0,4*84=1052 |
(193+76)*0,6*0,9*1*1*0,4*25,5=3457 |
|
11-12 |
63*1,4*0,9*1*1*0,4*84=1143 |
(37+67)*0,6*0,9*1*1*0,4*25,5=1336 |
|
12-13 |
(37+67) *1,4*0,9*1*1*0,4*84=1887 |
63*0,6*0,9*1*1*0,4*25,5=810 |
|
13-14 |
(193+76) *1,4*0,9*1*1*0,4*84=4881 |
58*0,6*0,9*1*1*0,4*25,5=745 |
|
14-15 |
(378+91) *1,4*0,9*1*1*0,4*84=8510 |
56*0,6*0,9*1*1*0,4*25,5=720 |
|
15-16 |
(504+114) *1,4*0,9*1*1*0,4*84=11213 |
55*0,6*0,9*1*1*0,4*25,5=707 |
|
16-17 |
(547+122) *1,4*0,9*1*1*0,4*84=12138 |
48*0,6*0,9*1*1*0,4*25,5=617 |
|
17-18 |
(523+115) *1,4*0,9*1*1*0,4*84=11576 |
43*0,6*0,9*1*1*0,4*25,5=553 |
|
18-19 |
(423+74) *1,4*0,9*1*1*0,4*84=9018 |
30*0,6*0,9*1*1*0,4*25,5=900 |
Теплопоступления через покрытия определяются по формуле:
, Вт
R0 - сопротивление теплопередачи покрытия, м2*К/Вт;
tн - среднемесячная температура наружного воздуха за июль, С;
Rн - термическое сопротивление при теплообмене между наружным воздухом и внешней поверхностью покрытия, м2*к/Вт;
- коэффициент поглощения солнечной радиации материалом наружной поверхности покрытия;
Iср - среднесуточная (прямая и рассеянная) суммарная солнечная радиация, попадающая на горизонтальную поверхность, Вт/м2;
tв - температура воздуха, удаляемого из помещения, С;
- коэффициент для определения гармонически изменяющихся величин теплового потока принимаем в зависимости от максимального часа теплопоступлений;
К - коэффициент, зависящий от конструкции покрытия;
Ав - амплитуда колебаний температуры внутренней поверхности ограждающих конструкций, С
Rв - термическое сопротивление при теплообмене между внутренней поверхностью покрытия и воздухом помещения, м2*К/Вт;
F - площадь покрытия, м2.
Из задания R0=0,96 м2*К/Вт
По табл. 1.5 [5] tн=18,1 С
Rн определяется по формуле:
,
где: - средняя скорость ветра, м/с, в теплый период, = 3,7 м/с
м2*К/Вт
=0.9, принимаем в качестве покрытия наружной поверхности рубероид с песчаной посыпкой (табл. 1.18 [5])
Из табл. 3.1 данного КП tудТ=27,38 С
Амплитуду колебаний температуры внутренней поверхности, С, определим по формуле:
,
где - величина затухания амплитуды колебаний температуры наружного воздуха в ограждающей конструкции, С
Аtн - максимальная амплитуда суточных колебаний температуры наружного воздуха, С
Imax - максимальное значение суммарной (прямой и рассеянной) солнечной радиации, принимается для наружных стен как для вертикальных поверхностей, а для покрытия - как для горизонтальной поверхности.
= 29,7 - по заданию
0,5* Аtн = 11 - приложение 7 [1]
Imax = 837 Вт/м2 - таблица 1.19[5]
Iср = 329 Вт/м2 - таблица 1.19[5]
Ав = 1/29,7*(11+0,035*0,9(837-329))=0,9 С
Rв = 1/в=1/8,7=0,115 м2*К/Вт
F = 247 м2
В формуле для Qn все величины постоянные, кроме - коэффициента для определения гармонически изменяющихся величин теплового потока в различные часы суток.
Для нахождения для заданного периода времени по часам находим Zmax .
Zmax = 13+2.7*D = 13+2.7*3.8 = 23-24 = -1
Стандартное значение коэффициента принимаем по табл. 2.20 [5], а фактическое значение получаем путем сдвига на 1 час назад.
Значение коэффициента сводим в таблицу 4.2
Расчет теплопоступлений через покрытие сводим в таблицу 4.3
Таблица 4.2 - Значение коэффициента
Часы |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
|
-0,5 |
-0,71 |
-0,87 |
-0,97 |
-1 |
-0,97 |
-0,87 |
-0,71 |
-0,5 |
-0,26 |
0 |
Таблица 4.3 - Теплопоступления через покрытие
Часы |
Теплопоступления через покрытие, Qn, Вт |
|
9-10 |
(0,625-(0,605*7,9))*247= - 1026 |
|
10-11 |
(0,625-(0,79*7,9))*247= - 1387 |
|
11-12 |
(0,625-(0,92*7,9))*247= - 1640 |
|
12-13 |
(0,625-(0,985*7,9))*247= - 1768 |
|
13-14 |
(0,625-(0,925*7,9))*247= - 1768 |
|
14-15 |
(0,625-(0,792*7,9))*247= - 1640 |
|
15-16 |
(0,625-(0,79*7,9))*247= - 1387 |
|
16-17 |
(0,625-(0,609*7,9))*247= - 1026 |
|
17-18 |
(0,625-(0,38*7,9))*247= - 587,1 |
|
18-19 |
(0,625-(0,13*7,9))*247= - 353 |
Составляем сводную таблицу теплопоступлений за счет солнечной радиации.
Таблица 4.4 - Сводная таблица теплопоступлений за счет солнечной радиации
Часы |
Теплопоступления, Вт |
||||
Через покрытие |
Через остекление |
Всего |
|||
Запад |
Восток |
||||
9-10 |
-1026 |
1016 |
6027 |
6017 |
|
10-11 |
-1387 |
1052 |
3457 |
3122 |
|
11-12 |
-1640 |
1143 |
1336 |
839 |
|
12-13 |
-1768 |
1887 |
810 |
929 |
|
13-14 |
-1768 |
4881 |
745 |
3858 |
|
14-15 |
-1640 |
8510 |
720 |
7590 |
|
15-16 |
-1387 |
11213 |
707 |
10533 |
|
16-17 |
-1026 |
12138 |
617 |
11729 |
|
17-18 |
-587 |
11576 |
553 |
11542 |
|
18-19 |
-353 |
9018 |
900 |
9565 |
На основании расчета принимаем максимальное значение теплопоступлений за счет солнечной радиации, равное Qср=11729 Вт в период с 16 до 17 часов.
Общее теплопоступление определяем по формуле:
, Вт
В летний период:
Qпт=27478+0+11729=39207 Вт
В переходный период:
Qпп=28614+4402+0,5*11729=38881 Вт
В зимний период:
Qпх=28614+4402+0=33016 Вт
4.2 Расчет влаговыделений в помещении
Поступление влаги от людей, Wвл, г/ч, определяется по формуле:
,
где: nл - количество людей, выполняющих работу данной тяжести;
wвл - удельное влаговыделение одного человека, принимаем по таблице 2.24[5]
Для теплого периода года, tр.з.=24,7С
wвл=115 г/ч*чел
Wвлт = 130*115+70*115*0,85=21792,5 г/ч
Для холодного и переходного периодов года, tр.з.=20 С
wвл=75 г/ч*чел
Wвлт = 130*75+70*75*0,85=14212,5 г/ч
4.3 Расчет выделения углекислого газа от людей
Количество СО2, содержащееся в выдыхаемом человеком воздухе, зависит от интенсивности труда и определяется по формуле:
, г/ч,
где nл - количество людей, находящихся в помещении, чел;
mCO2 - удельное выделение СО2 одним человеком, определяется по таблице VII.1 [3]
Взрослый человек при легкой работе выделяет mCO2 =25 г/ч*чел. Тогда
МСО2=130*25+0,85*70*25=4737,5 г/ч
4.4 Составление сводной таблицы вредностей
Разность теплопоступлений и потерь тепла определяет избытки или недостатки тепла в помещении. В курсовом проекте мы условно принимаем, что система отопления полностью компенсирует потери тепла, которые будут иметь место в помещении. Поступление вредностей учитывается для трех периодов года: холодного, переходного и теплого.
Результаты расчета всех видов вредностей сводим в табл. 4.5
Таблица 4.5 - Количество выделяющихся вредностей
Наименование помещения |
Период года |
Избытки тепла, Qп, Вт |
Избытки влаги, Wвл, г/ч |
Количество СО2, МСО2, г/ч |
|
Аудитория на 200 мест |
Т |
39207 |
21793 |
4738 |
|
П |
38881 |
14213 |
4738 |
||
Х |
33016 |
14213 |
4738 |
5. Расчет воздухообменов
Вентиляционные системы здания и их производительность выбирают в результате расчета воздухообмена. Последовательность расчета требуемого воздухообмена следующая:
1) задаются параметры приточного и удаляемого воздуха
2) определяют требуемый воздухообмен для заданного периода по вредным выделениям, людям и минимальной кратности.
3) выбирается максимальный воздухообмен из всех расчетов по разным факторам.
5.1 Воздухообмен по нормативной кратности
Определяется по формуле:
, м3/ч
КPmin - минимальная кратность воздухообмена, 1/ч.
VP - расчетный бьем помещения, м3.
По табл. 7.7 [2] КPmin = 1 1/ч
VP =Fn*6;
VP =247*6=1729 м3.
L=1729*1=1729 м3/ч
5.2 Воздухообмен по людям
Определяется по формуле:
, м3/ч
где lЛ - воздухообмен на одного человека, м3/ч*чел;
nЛ - количество людей в помещении.
По прил. 17 [1] определяем, что для аудитории, где люди находятся более 3 часов непрерывно, lЛ = 60 м3/ч*чел.
L = 200*60=12000 м3/ч
5.3 Воздухообмен по углекислому газу
Определяется по формуле:
, м3/ч
МСО2 - количество выделяющегося СО2, л/ч, принимаем по табл. 5.5 данного КП.
УПДК - предельно-допустимая концентрация СО2 в воздухе, г/м3, при долговременном пребывании УПДК = 3,45 г/м3.
УП - содержание газа в приточном воздухе, г/м3, УП=0,5 г/м3
МСО2=4738 г/ч
L=4738/(3,45-0,5)=6317,3 м3/ч
5.4 Воздухообмен по избыткам тепла и влаги
В помещениях с тепло- и влаговыделениями воздухообмен определяется по Id-диаграмме. Расчет воздухообменов в помещениях сводится к построению процессов изменения параметров воздуха в помещении.
5.4.1 Воздухообмен по избыткам тепла и влаги теплый период года
На Id-диаграмме наносим точку Н, она совпадает с т.П (tH=21,7С; IH=49 кДж/кг.св), характеризующей параметры приточного воздуха (рис 1).
Проводим изотермы внутреннего воздуха tВ=tР.З.=24,7С и удаляемого воздуха tУ.Д.=27,4С
Для получения точек В и У проводим луч процесса, рассчитанный по формуле:
, кДж/кг.вл
QП - избытки тепла в теплый период года, Вт, из таблицы 5.5 КП
WВЛ - избытки влаги в теплый период года, кг/ч, из таблицы 5.5 КП
E=3,6*39207/21,793=6477 кДж/кг вл.
Точки пересечения луча процесса и изотерм tВ,tУ.Д. характеризуют параметры внутреннего и удаляемого воздуха.
Воздухообмен по избыткам тепла:
, м3/ч
Воздухообмен по избыткам влаги:
, м3/ч
где IУД,IП - соответственно энтальпии удаляемого и приточного воздуха, кДж/кг.св.
IУД=56,5 кДж/кг.св.
IП=49 кДЖ/кг.св.
dУД=12,1 г/кг.св.
dП=11 г/кг.св.
По избыткам тепла:
LП=3,6*39207/(1,2*(56,5-49))=15683 м3/ч
По избыткам влаги:
LП=21793/1,2*(12,1-11)=16509 м3/ч
В расчет идет больший воздухообмен по избыткам влаги
LП=16509 м3/ч
Рис. 1 Теплый период года
5.4.2 Воздухообмен по избыткам тепла и влаги в переходный период года
В переходный период предусмотрена рециркуляция воздуха.
По параметрам наружного воздуха (tН=8С, IН=22,5 кДж/кг.св) строим точку Н (рис.2).
Для построения точки У находим расчетное приращение влагосодержания воздуха:
WВЛ=14213 г/ч
LНmin=LН (по людям)
LН кр min=КРmin*VР
LН кр min=1729 м3/ч
LНmin=12000 м3/ч
dНУ=14213/1,2*12000=0,9 г/кг.св.
dУД=dН+dНУ=5,5+0,9=6,4 г/кг.св.
Точка У находится на пересечении изобары dУД=const и изотермы tУД=const.
Соединяем точки Н и У. На этой линии расположена точка смеси С. Определяем ее месторасположение. Для этого строим луч процесса:
, кДж/кг. вл.
Проводим луч процесса через точку У, получаем на пересечении с изотермами точки В и П. Из точки П по линии d=const опускаемся до пересечения с линией НУ, получаем точку С. количество рециркулирующего воздуха, GP, определяем:
Gn min=Ln min*1.2=14400 кг/час
GP=(4.6/2-1)*Gn min=1.3*14400=18720 кг/час
Ln=Gn/=15600 м3/ч
Рис. 2 Переходный период года
5.4.3 Воздухообмен по избыткам тепла и влаги в зимний период года
В зимний период также предусмотрена рециркуляция воздуха.
По параметрам наружного воздуха (tН=-40С, IН=-40,2 кДж/кг св) строим точку Н (рис.3).
Для построения точки У находим расчетное приращение влагосодержания воздуха:
WВЛ=14213 г/ч
LНmin=LН (по людям)
LНmin=12000 м3/ч
dНУ=14213/1,2*12000=0,9 г/кг.св.
dУД=dН+dНУ=0,2+0,9=1,1 г/кг.св.
Проводим изотермы tУД=20,54 С, tВ=tР.З.=20 С, tН=15 С,
Точка У находится на пересечении изобары dУД=const и изотермы tУД=const.
Объединяем точки Н и У. На этой линии расположена точка смеси С. Определяем ее месторасположение. Для этого строим луч процесса:
, кДж/кг вл
Проводим луч процесса через точку У, получаем на пересечении с изотермами точки В и П. Из точки П по линии d=const опускаемся до пересечения с линией НУ, получаем точку С. количество рециркулирующего воздуха, GP, определяем:
Gn min=Ln min*1.2=14400 кг/час
кг/час
GН=GР+Gn min=14400+6891=21291 кг/час
Ln=Gn /=17743 м3/ч
Результат расчета воздухообменов сводим в таблицу 5.1.
Таблица 5.1 - Выбор воздухообмена в аудитории
Период года |
Воздухообмен LН по факторам, м3/ч |
Максимальный воздухообмен, м3/ч |
||||
По минимальной кратности |
По СО2 |
Нормируемый по людям |
По Id-диаграме |
|||
Т |
1729 |
6317 |
12000 |
16509 |
16509 |
|
П |
1729 |
6317 |
12000 |
15600 |
15600 |
|
Х |
1729 |
6317 |
12000 |
17743 |
17743 |
рис. 3 Зимний период года
5.5 Расчет воздухообмена по нормативной кратности и составление воздушного баланса для всего здания
Для остальных помещений воздухообмен рассчитывается по нормативной кратности в зависимости от назначения помещения. Кратность принимаем по таблице 6.12[4] отдельно по притоки и по вытяжке.
Результаты расчета сводим в табл. 5.2
Таблица 5.2 - Сводная таблица воздушного баланса здания
№ |
Наименование помещения |
VP, м3 |
Кратность, 1/ч |
Ln, м3/ч |
Прим. |
|||
приток |
вытяжка |
приток |
вытяжка |
|||||
1 |
Аудитория |
2035 |
8,5 |
8,5 |
17743 |
17743 |
||
2 |
Коридор |
588 |
2 |
- |
1176 |
+301 |
||
3 |
Санузел |
- |
- |
(50) |
- |
200 |
||
4 |
Курительная |
54 |
- |
10 |
- |
540 |
||
5 |
Фотолабор. |
90 |
2 |
2 |
180 |
180 |
||
6 |
Моечная |
72 |
4 |
6 |
288 |
432 |
||
7 |
Лаборатория |
126 |
4 |
5 |
504 |
630 |
||
8 |
Книгохранил. |
216 |
2 |
0,5 |
- |
108 |
||
9 |
Ауд. на 50 мест |
- |
(20) |
1000 |
1000 |
|||
10 |
Гардероб |
243 |
2 |
1 |
486 |
243 |
||
21377 |
21076 |
|||||||
+301 |
Дисбаланс равен 301 м3/ч. Добавляем его в коридор (помещение №2)
6. Расчет воздухораспределения
Принимаем схему воздухообмена снизу-вверх, т.к. имеются избытки тепла и влаги.
Выбираем схему воздухораспределения по рис. 5.1[7], т.к НП>4m, то IV схема. (рис.4).
Подача воздуха осуществляется плафонами типа ВДШ.
Для нахождения необходимого количества воздухораспределителей Z площадь пола обслуживаемого помещения F делится на площади строительных модулей Fn. z=F/Fn.
Рис. 4
Определяем количество воздуха, приходящееся на один воздухораспределитель,
L0=LСУМ/Z;
где LСУМ - общее количество приточного воздуха, подаваемого через плафоны.
L0=17743/10=1774 м3/ч
На основании полученной подачи L0 по табл. 5.17[7] выбираем тип и типоразмер воздухораспределителя (ВДШ-4). Далее находим скорость в его горловине:
X=k*ДОП=1,4*0,2=0,28 м/с
ХП=НП-hПОТ-hПЛ-hРЗ
ХП=7,4-1-0,5-0,3=4,6 м
м1=0,8; n1=0,65 - по таблице 5.18[4]
F0=L0/3600*5=1774/3600*5=0.085 м2
Принимаем ВДШ-4, F0=0,13 м2
Значения коэффициентов:
КС=0,25; т.к.
КВЗ=1; т.к
l/Xn=5,5/4,6=1,2
КН=1,0; т.к Ar - не ограничен.
т.е. условие Ф<0 удовлетворено
что удовлетворяет условиям, т.е. < 1C
7. Аэродинамический расчет воздуховодов
Его проводят с целью определения размеров поперечного сечения участков сети. В системах с механическим побуждением движения воздуха потери давления определяют выбор вентилятора. В этом случае подбор размеров поперечного сечения воздуховодов проводят по допустимым скоростям движения воздуха.
Потери давления Р, Па, на участке воздуховода длиной l определяют по формуле:
Р=Rl+Z
где R - удельные потери давления на 1м воздуховода, Па/мБ определяются по табл. 12.17 [4]
-коэффициент, учитывающий фактическую шероховатость стенок воздуховода, определяем по табл. 12.14 [4]
Z-потери давления в местных сопротивлениях, Па, определяем по формуле:
Z=Pg,
где Pg - динамическое давление воздуха на участке, Па, определяем по табл. 12.17 [4]
- сумма коэффициентов местных сопротивлений.
Аэродинамический расчет состоит их 2 этапов:
1) расчета участков основного направления;
2) увязка ответвлений.
Последовательность расчета.
Определяем нагрузки расчетных участков, характеризующихся постоянством расхода воздуха;
Выбираем основное направление, для чего выявляем наиболее протяженную цепь участков;
Нумеруем участки магистрали и ответвлений, начиная с участка, наиболее удаленного с наибольшим расходом.
Размеры сечения воздуховода определяем по формуле
где L -расход воздуха на участке, м3/ч
р- рекомендуемая скорость движения воздуха м/с, определяем по табл. 11.3 [3]
Зная ориентировочную площадь сечения, определяем стандартный воздуховод и рассчитываем фактическую скорость воздуха:
Определяем R,Pg по табл. 12.17 [4].
Определяем коэффициенты местных сопротивлений.
Общие потери давления в системе равны сумме потерь давления в воздуховодах по магистрали и в вентиляционном оборудовании:
P=(Rl+Z)маг+Pоб
Методика расчета ответвлений аналогична.
После их расчета проводят неувязку.
Результаты аэродинамического расчета воздуховодов сводим в табл. 7.1.
Расчет естественной вентиляции
Pg=g*h(н-в)=9.81*4.7(1.27-1.2)=3.25 Па
Таблица 7.1
№ |
L |
l |
р-ры |
R |
Rl |
Pg |
Z |
Rl+ |
Rl |
прим |
|||||
уч. |
а х в |
dэ |
Z |
+Z |
|||||||||||
Магистраль |
|||||||||||||||
1 |
500 |
1.85 |
400x400 |
400 |
0.8 |
1.4 |
0.02 |
0.05 |
2.97 |
0.391 |
1.16 |
1.21 |
|||
2 |
500 |
1.5 |
420x350 |
0.94 |
1.21 |
0.03 |
0.054 |
0.55 |
0.495 |
0.27 |
0.324 |
||||
3 |
1000 |
5 |
520x550 |
0.97 |
1.23 |
0.02 |
0.132 |
0.85 |
0.612 |
0.52 |
0.643 |
2.177 |
|||
4 |
12113 |
2.43 |
520x550 |
1.2 |
1.25 |
0.03 |
0.038 |
1.15 |
0.881 |
0.93 |
0.968 |
3.146 |
|||
Ответвления |
|||||||||||||||
5 |
243 |
1.85 |
270x270 |
0.92 |
1.43 |
0.04 |
0.06 |
2.85 |
0.495 |
1.41 |
1.47 |
||||
6 |
243 |
7 |
220x360 |
0.9 |
1.21 |
0.04 |
0.34 |
1.1 |
0.495 |
0.54 |
0.88 |
2.35 |
|||
7 |
500 |
1.85 |
400x400 |
400 |
0.8 |
1.4 |
0.02 |
0.05 |
3.45 |
0.391 |
1.35 |
1.4 |
Участок №1
Решетка =2
Боковой вход =0.6
Отвод 900 =0.37
Участок №2
Тройник =0.25
Участок №3
Тройник =0.85
Участок №4
Зонт =01.15
Невязка=(Ротв5+6 - Руч.м. 1+2+3)/Руч.ш. 1+2+3*100%=
=(2.35-2.177)/2.177*100%=7.9% < 15% - условие выполнено
Невязка=(Ротв7 - Руч.м. 1+2)/Руч.м. 1+2*100%=
=(1.4-1.534)/1.534*100%=-8.7% > -15% - условие выполнено
8. Выбор решеток
Таблица 8.1 - Воздухораспределительные устройства
Номер помещения |
Ln |
Тип решетки |
Количество |
||
Подбор приточных решеток |
|||||
2 |
1176 |
Р-200 |
4 |
2 |
|
5 |
180 |
Р-200 |
1 |
2 |
|
6 |
288 |
Р-200 |
1 |
2 |
|
7 |
504 |
Р-200 |
2 |
2 |
|
9 |
1000 |
Р-200 |
4 |
2 |
|
10 |
486 |
Р-200 |
2 |
2 |
|
Подбор вытяжных решеток |
|||||
1 |
5743 |
Р-200 |
20 |
2 |
|
2 |
101 |
Р-150 |
1 |
2 |
|
3 |
400 |
Р-150 |
8 |
2 |
|
4 |
540 |
Р-200 |
2 |
2 |
|
5 |
180 |
Р-200 |
1 |
2 |
|
6 |
432 |
Р-200 |
2 |
2 |
|
7 |
630 |
Р-200 |
3 |
2 |
|
8 |
108 |
Р-150 |
1 |
2 |
|
9 |
1000 |
Р-200 |
4 |
2 |
|
10 |
243 |
Р-200 |
1 |
2 |
9. Расчет калорифера
Для подогрева приточного воздуха используем калориферы, которые, как правило, обогреваются водой. Приточный воздух необходимо нагревать от температуры наружного воздуха tн=-25С до температуры на 11.5 25С меньшей температуры притока (этот запас компенсируется нагревом воздуха в воздуховодах), т.е. до tн=15-1=14С
Количество нагреваемого воздуха составляем 21377 м3/ч.
Подбираем калорифер по следующей методике:
Задаемся массовой скоростью движения теплоносителя =8 кг/(м2с)
Рассчитываем ориентировочную площадь живого сечения калориферной установки.
fкуор=Ln*н/(3600*), м2
где Ln - расход нагреваемого воздуха, м3/ч
н - плотность воздуха, кг/м3
fкуор=21377*1.332/(3600*10)=0.79 м2
По fкуор и табл. 4.37 [5] принимаем калорифер типа КВС-9п, для которого:
площадь поверхности нагрева Fk=19,56 м2,
площадь живого сечение по воздуху fk=0.237622 м2,
по теплоносителю fтр=0.001159 м2.
Рассчитаем необходимое количество калориферов, установленных параллельно по воздуху:
m||в=fкуор/fk=0.79/0.237622=3,3.
Принимаем m||в=3 шт
Рассчитаем действительную скорость движения воздуха.
()д=Ln*н/(3600*fk*m||в)=21377-1.332/(3600*0.237622)=8.35 кг/м2с
Определяем расход тепла на нагрев воздуха, Вт/ч:
Qк.у.=0.278*Ln*Cv*(tk-tнб)=0.278*21377*1.2(15-(-8))=164021 Вт
Рассчитаем количество теплоносителя, проходящее через калориферную установку.
W=(Qк.у*3,6)/в*Cв*(tг-to), m3/ч
W=(164021*3.6)/4.19*1000*(130-70)=2.82 m3/ч
Определяем действительную скорость воды в трубках калорифера.
=W/(3600*fтр*n||m), m/c
=2.82/(3600*0.001159*3)=0.23, m/c
По табл. 4.40 [5] определяем коэффициент теплоотдачи
К=33.5 Вт/м2 0с
Определяем требуемую поверхность нагрева калориферной установки
Fкутр=Qку/(К(tср т - tср в), м2
Fкутр=164021/(33.5*(130+70/2)-(15-8/2))=50.73 м2
Nk=Fкутр/Fку=50.73/19.56=2.89.
Принимаем 3 шт
Зная общее количество калориферов, находим количество калориферов последовательно по воздуху
nпосл в=Nk/m||в=3/3=1 шт
Определяем запас поверхности нагрева
Запас=(Fk-Fкутр)/Fкутр*100%=1020%
Запас=(15.86-50.73)/50.73=15% <=20%
Условие выполнено
Определим аэродинамическое сопротивление калориферной установки по табл. 4.40 [5]
Pк=65.1 па
10. Подбор фильтров
В помещения административно-бытовых зданий борьба с пылью осуществляется путем предотвращения попадания её извне и удаление пыли, образующейся в самих помещениях.
Подаваемый в помещениях приточный воздух очищается в воздушных фильтрах. Подберем фильтры для очистки приточного воздуха.
Целью очистки воздуха в аудитории принимаем защиту находящихся там людей от пыли. Степень очистки в этом случае равна тр=0,60,85
По табл. 4.1 [4] выбираем класс фильтра - III, по табл. 4.2 [4] вид фильтра смоченный, тип - волокнистый, наименование - ячейковый ФяУ, рекомендуемая воздушная нагрузка на входное сечение 9000 м3/ч
Рассчитываем требуемую площадь фильтрации:
Fфтр=Ln/q, m2,
где Ln - количество приточного воздуха, м3/ч
Fфтр=15634/9000=1.74 м2
Определяем необходимое количество ячеек:
nя=Fфтр/fя
где fя - площадь ячейки, 0.22 м2
nя=1.74/0.22=7.9 м2
Принимаем 9 шт.
Находим действительную площадь фильтрации:
Fфд=nя*fя=9*0.22=1.98 м2
Определяем действительную воздушную нагрузку:
qд=Ln/Fфд=15634/1.98=7896 м3/ч
Зная действительную воздушную нагрузку и выбранный тип фильтра, по номограмме 4.3 [4] выбираем начальное сопротивление:
Pф.ч.=44 Па
Из табл. 4.2. [4] знаем, что сопротивление фильтра при запылении может увеличиваться в 3 раза и по номограмме 4.4 [4] находим массу уловленной пыли m0, г/м2: Pф.п.=132 Па; m0=480 г/м2
По номограмме 4.4 [4] при m0=480 г/м2
1-оч=0.13 => оч=0.87
оч > очтр
Рассчитаем количество пыли, осаждаемой на 1 м2 площади фильтрации в течении 1 часа.
mуд=L*yn*n/fя*nя=15634*5*0.87/1.98=34.35 г/м2ч
Рассчитаем периодичность замены фильтрующей поверхности:
рег=м0/муд=480/34.35=14 часов
Рассчитаем сопротивление фильтра:
Pф=Pф.ч.+Pф.п.=44+132= 176 Па
11. Подбор вентиляторных установок
Вентиляторы подбирают по сводному графику и индивидуальным характеристикам [4].
Вентиляторы, размещаемые за пределами обслуживаемого помещения выбираем с учетом потери воздуха в приточной системе, вводя повышающие коэффициенты.
Для П1 - ВЦ4-75 №10
E=10.095.1; n=720 об/мин; 4А132МВ; N=5.5 кВт
L=25000 м3/ч; Pв=550 Па
Для В1 - крышный вентилятор ВКР-5.00.45.6 (в колличестве 2 штук)
n=915 об/мин; 4А80А6; N=0.06 кВт
L=7030 м3/ч; Pст=265 Па
Для В - вентилятор ВЦ 4-75 №2.5
E=2.5.100.1; n=1380 об/мин; 4АА50А4; N=0.06 кВт
L=800 м3/ч; Pв=120 Па
12. Акустический расчет
Уровень шума является существенным критерием качества систем вентиляции, что необходимо учитывать при проектировании зданий различного назначения.
По табл. 17.1 [4] выбираем по типу помещения рекомендуемые номера предельных спектров (ПС) и уровни звука по шкале А, характеризующие допускаемый шум от системы вентиляции:
Для аудитории ПС=35, А=40дБ.
По табл. 17.3 [4] определяем активные уровни звукового давления Lдоп при частотах октавных полос 125 и 250 Гц.
Lдоп125=52Дб, Lдоп250=45Дб
Рассчитываем фактический уровень шума в расчетной точке по формуле:
L=Lв окт + 10lg*(Ф/4x2n+4Ф/В),
где Ф - фактор направленности излучения источника шума, Ф=1;
xn - расстояние от источника шума до рабочей зоны, м
Lв окт - октавный уровень звуковой массивности вентилятора, дБ
Lв окт =Lр общ - L1+L2
Lр общ - общий уровень звуковой мощности вентилятора, дБ
L1 - поправка, учитывающая распределение звуковой мощности вентилятора по октавным полосам, дБ, принимается по выбранному типу вентилятора и частотам вращения по табл. 17.5 [4], L1125=7Дб, L1250=5Дб
L2 - поправка, учитывающая аккустическое влияние присоеденения воздуховода к вентилятору, дБ, принимается по табл. 17.6. [4] L2125=3Дб, L2250=0.5Дб
Lр общ =+10lg Q + 25 lg H +
- критерий шумности, дБ, зависящий от типа и конструкции вентилятора, по табл. 17.4 [4], =41 дБ
Н - полное давление вентилятора, кгс/м2
- поправка на режим работы, дБ
=0 Q=3600 м3/ч Н=550 кгс/м2
Lр общ =41+10lg(25000/3600)+25lg(550/9.8)=93.14 дБ
L125в окт =93.14-7+3=89.14 дБ
L250в окт =93.14-5+0,5=87.64 дБ
L125р =89.14+10lg(1/4*3.14*4.6)=72.51 дБ
L250р =87.64+10lg(1/4*3.14*4.6)=70.02 дБ
Рассчитаем требуемое снижение уровня звука:
m=0
L125эл.сети=71.52-52-12.83+5=11.69 дБ
L250эл.сети=70.02-45-18.68+5=11.34 дБ
4. Ориентировочное сечение шумоглушителя:
fшор=L/3600*доп=25000/3600*6=1.157 дБ
По табл. 17.17 [4] формируем конструкцию шумоглушителя:
Принимаем шумоглушитель пластинчатый
fg=1.2 м2 Внешние размеры 1600х1500 мм, длинна 2 м
Снижение шума L125=12дБ, L250=20дБ
g=5.79 м/с
13. Список используемой литературы
СниП 2.04.05-68 “Отопление, вентиляция и кондиционирование воздуха”
Р.В. Щекин “Справочник по теплогазоснабжению и вентиляции” часть 2
В.Н. Богославский “Отопление и вентиляция” часть 2
И.Р. Староверов. Справочник проектировщика “Вентиляция и кондиционирование воздуха”
Р.В. Русланов “Отопление и вентиляция жилых и общественных зданий”
В.П. Титов “Курсовое и дипломное проектирование по вентиляции”
О.Д. Волков “Проектирование вентиляции промышленного здания”
Подобные документы
Основы функционирования системы автоматического управления приточно-вытяжной вентиляции, ее построение и математическое описание. Аппаратура технологического процесса. Выбор и расчет регулятора. Исследование устойчивости САР, показатели ее качества.
курсовая работа [913,6 K], добавлен 16.02.2011Общая характеристика и назначение, сферы практического применения системы автоматического управления приточно-вытяжной вентиляции. Автоматизация процесса регулирования, ее принципы и этапы реализации. Выбор средств и их экономическое обоснование.
дипломная работа [1,2 M], добавлен 10.04.2011Системы вытяжной вентиляции с естественным побуждением. Неисправности вентиляционных систем. Схема выпуска канализации из здания. Схема насосной системы отопления, принципы ее работы и причины присоединения расширительного сосуда с обработкой магистрали.
контрольная работа [9,0 M], добавлен 10.10.2014Общая характеристика нефтепровода. Климатическая и геологическая характеристика площадки. Генеральный план перекачивающей станции. Магистральные насосные и резервуарный парк НПС-3 "Альметьевск". Расчет системы приточно-вытяжной вентиляции насосного цеха.
дипломная работа [3,0 M], добавлен 17.04.2013Рассмотрение методов модернизации системы отопления, вентиляции, изоляции наружных ограждений. Обоснование использования установки приточно-вытяжной вентиляционной установки с централизованной рекуперацией и теплообменника с качественным регулированием.
дипломная работа [1,7 M], добавлен 02.02.2022Анализ разработки дизайн-проекта декоративной трости. Геральдика как специальная дисциплина, занимающаяся изучением гербов. Способы изготовления оснастки для воскообразных моделей. Этапы расчета приточно-вытяжной вентиляции для плавильного отделения.
дипломная работа [3,3 M], добавлен 26.01.2013Определение вредных выделений, вычисление необходимого воздухообмена в рабочем помещении. Схема общеобменных вентиляционных систем и расположения в них оборудования. Проектирование и расчет конструкционных узлов, подбор вентилятора и электродвигателя.
курсовая работа [1,2 M], добавлен 28.04.2011Описание технологических процессов на сварочных, токарных, кузнечных участках. Расчетные параметры внутреннего и наружного микроклимата, выделения вредных веществ. Аэродинамический расчет производительности местных вентиляционных вытяжных устройств.
дипломная работа [884,9 K], добавлен 18.11.2017Аэродинамический расчет вентиляционных систем. Удаление избытков теплоты, влаги в рабочей зоне помещения. Расчет теплопоступлений и влаговыделений от технологического оборудования. Определение количества воздуха, удаляемого системами местных отсосов.
контрольная работа [86,8 K], добавлен 15.09.2017Проверка теплозащитных свойств наружных ограждений. Проверка на отсутствие конденсации влаги. Расчет тепловой мощности системы отопления. Определение площади поверхности и числа отопительных приборов. Аэродинамический расчет каналов системы вентиляции.
курсовая работа [631,5 K], добавлен 28.12.2017