Система СИ. Основные положения, связанные со средствами измерений
Наука об измерениях, методах и средствах обеспечения их единства и требуемой точности. Международная система единиц физических величин. Физические величины как объект измерений. Эталоны, их классификация и виды. Метрическая система мер и погрешность.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 11.01.2010 |
Размер файла | 24,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Система СИ. Основные положения, связанные со средствами измерений
Метрология-наука об измерениях
Метрология (от греч. «метро» - мера, «логос» - учение) - наука об измерениях, методах и средствах обеспечения их единства и требуемой точности.
Метрология включает три составляющие: законодательную метрологию, фундаментальную (научную) и практическую (прикладную) метрологию.
(пядь - расстояние между концами большого и указательного пальца взрослого человека, локоть - расстояние от сгиба локтя до конца среднего пальца руки или иногда - сжатого кулака или большого пальца).
Метрическая система мер введена во Франции в 1840 г.
Законодательная метрология - это раздел метрологии, включающий комплексы взаимосвязанных и взаимообусловленных общих правил, а также другие вопросы, нуждающиеся в регламентации и контроле со стороны государства, направленные на обеспечение единства измерений и единообразия средств измерений.
Законодательная метрология служит средством государственного регулирования метрологической деятельности посредством законов и законодательных положений, которые вводятся в практику через Государственную метрологическую службу метрологические службы государственных органов управления и юридических лиц. К области законодательной метрологии относятся испытания и утверждение типа средств измерений и их проверка и калибровка, сертификация средств измерений, государственный метрологический контроль и надзор за средствами измерений.
Измерения как основной объект метрологии связаны как с физическими величинами, так и с величинами, относящимися к другим наукам (математике, психологии, медицине, общественным наукам и др.).
Физической величиной называют одно из свойств физического объекта, которое является общим в качественном отношении для многих физических объектов, отличаясь при этом количественным значением.
Измерением называют совокупность операций, выполняемых с помощью технического средства, хранящего единицу величины и позволяющего сопоставить с нею измеряемую величину. Полученное значение величины и есть результат измерений.
Одна из главных задач метрологии - обеспечение единства измерений - может быть решена при соблюдении двух условий, которые можно назвать основополагающими:
ь выражение результатов измерений в единых узаконенных единицах;
ь установление допустимых ошибок (погрешностей) результатов измерений и пределов, за которые они не должны выходить при заданной вероятности.
Погрешностью называют отклонение результата измерений от действительного (истинного) значения измеряемой величины. При этом следует иметь в виду, что истинное значение физической величины считается неизвестным и применяется в теоретических исследованиях; действительное значение физической величины устанавливается экспериментальным путем в предположении, что результат эксперимента (измерения) в максимальной степени приближается к истинному значению. Погрешности измерений приводятся обычно в технической документации на средства измерений или в нормативных документах.
Единство измерений не может быть обеспечено лишь совпадением погрешностей. Требуется еще и достоверность измерений, которая говорит о том, что погрешность не выходит за пределы отклонений, заданных в соответствии с поставленной целью измерений. Есть еще и понятие точности измерений, которое характеризует степень приближения погрешности измерений к нулю, т.е. к истинному значению измеряемой величины.
Современное определение понятия единство измерений - состояние измерений, при котором их результаты выражены в узаконенных единицах, а погрешности известны с заданной вероятностью и не выходят за установленные пределы.
Мероприятия по реальному обеспечению единства измерений в большинстве стран мира установлены законами и входят в функции законодательной метрологии.
Виды измерений
Основным объектом метрологии являются - измерения.
Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.
По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.
Прямые измерения - это непосредственное сравнение физической величины с ее мерой.
Косвенные измерения отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью. Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех названных величин можно рассчитать мощность электрической цепи.
Совокупные измерения сопряжены с решение системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.
Совместные измерения - это измерения двух или более неоднородных физических величин для определения зависимости между ними.
Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.
По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статистические измерения.
Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.
Статистические измерения имеют место тогда, когда измеряемая величина практически постоянна.
Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения.
Статистические и динамические измерения в идеальном виде на практике редки.
По количеству измерительной информации различают однократные и многократные измерения.
Однократные измерения - это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.
Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений - в значительном снижении влияний случайных факторов на погрешность измерения.
По отношению к основным единицам измерения делят на абсолютные и относительные.
Абсолютными измерениями называют такие, при которых используются прямое измерение одной (иногда нескольких) основной величины и физическая константа.
Относительные измерения базируются на установлении отношения измеряемой величины к однородной, применяемой в качестве единицы. Естественно, что искомое значение зависит от используемой единицы измерений.
С измерениями связаны такие понятия, как «шкала измерений», «принцип измерений», «метод измерений».
Шкала измерений - это упорядоченная совокупность значений физической величины, которая служит основой для ее измерения (пример: температурные шкалы).
Шкала наименований - это качественная, а не количественная шкала, она не содержит нуля и единиц измерений (пример: атлас цветов или шкала цветов).
Шкала порядка характеризует значение измеряемой величины в баллах (шкала землетрясений, силы ветра, твердости физических тел и т.п.).
Шкала интервалов (разностей) имеет условные нулевые значения, а интервалы устанавливаются по согласованию. Такими шкалами являются шкала времени, шкала длины.
Шкала отношений имеет естественное нулевое значение, а единица измерений устанавливается по согласованию. Например, шкала массы (веса) начинаясь от нуля, может быть градуирована по-разному в зависимости от требуемой точности взвешивания.
Физические величины как объект измерений
Объектом измерений являются физические величины, которые принято делить на основные и производные.
Основные величины не зависимы друг от друга, но они могут служить основой для установления связей с другими физическими величинами, которые называют производными от них. Основным величинам соответствует основные единицы измерений, а производным - производные единицы измерений.
Совокупность основных и производных единиц называется системой единиц физических величин.
Международная система единиц физических величин
Генеральная конференция по мерам и весам (ГКМВ) в 1954 г. Определила шесть основных единиц физических величин для их использования в международных отношениях: метр, килограмм, секунда, ампер, градус Кельвина и свеча. XI Генеральная конференция по мерам и весам в 1960 г. Утвердила Международную систему единиц, обозначаемую SI (от начальных букв французского названия Systeme International d Unites), на русском языке - СИ.
· единица длины - метр - длина пути, которую проходит свет в вакууме за 1/299792458 долю секунды;
· единица массы - килограмм - масса, равная массе международного прототипа килограмма;
· единица времени - секунда - продолжительность 9192631770 периодов излучения, которое соответствует переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 при отсутствии возмущения со стороны внешних полей;
· единица силы электрического тока - ампер - сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, создал бы между этими проводниками силу, равную 2*10 в -7 степени Н на каждый метр длины;
· единица термодинамической температуры - кельвин - 1/273,16 в 1 степени часть термодинамической температуры тройной точки воды. Допускается также применение шкалы Цельсия;
· единица количества вещества - моль - количество вещества системы, содержащей столько же структурных элементов, сколько атомов содержится в нуклиде углерода-12 массой 0,012 кг;
· единица силы света - кандела - сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540*10 в 12 степени Гц, энергетическая сила которого в этом направлении составляет 1/683 Вт/ср ( ватт на стерадиан).
Кроме основных единиц, в системе СИ есть дополнительные единицы для измерения плоского и телесного углов - радиан и стерадиан соответственно, а также большое количество производных единиц пространства и времени, механических величин, электрических и магнитных величин, тепловых, световых и акустических величин, а также ионизирующих излучений.
В нашей стране система СИ официально была принята путем введения в 1963 г. соответствующего государственного стандарта, причем следует учесть, что в то время все государственные стандарты имели силу закона и были строго обязательны для выполнения.
Средства измерений
Для практического измерения единицы величины применяются технические средства, которые имеют нормированные погрешности и называются средствами измерений. К средствам измерений относятся: меры, измерительные преобразователи, измерительные приборы, измерительные установки и системы, измерительные принадлежности.
Мерой называют средство измерения, предназначенное для воспроизведения физических величин заданного размера. К данному виду средств измерений относятся гири, концевые меры длины и т.п. На практике используют однозначные и многозначные меры, а также наборы и магазины мер. Однозначные меры воспроизводят величины только одного размера (гиря). Многозначные меры воспроизводят несколько размеров физической величины.
Наборы и магазины представляют собой объединение (сочетание) однозначных или многозначных мер для получения возможности воспроизведения некоторых промежуточных или суммарных значений величины. Набор мер представляет собой комплект однородных мер разного размера, что дает возможность примерять их в нужных сочетаниях. (пример: набор лабораторных гирь). Магазин мер - сочетания мер, объединенных конструктивно в одно механическое целое, в котором предусмотрена возможность посредством ручных или автоматизированных переключателей, связанных с отсчетным устройством, соединять составляющие магазин меры в нужном сочетании. По такому принципу устроены магазины электрических сопротивлений.
К однозначным мерам относят стандартные образцы и стандартные вещества. Стандартный образец - это должным образом оформленная проба вещества (материала), которая подвергается метрологической аттестации с целью установления количественного значения определенной характеристики. Эта характеристика (или свойство) является величиной с известным значением при установленных условиях внешней среды (пример: наборы минералов с конкретными значениями твердости для определения этого параметра у различных минералов).
Стандартным образцом является образец чистого цинка, который служит для воспроизведения температуры 419, 527 градусов Цельсия по международной температурной шкале МТШ-90.
При пользовании мерами следует учитывать номинальное и действительное значения мер, а также погрешность меры и ее разряд. Номинальным называют значение меры, указанное на ней. Действительное значение меры должно быть указано в специальном свидетельстве как результат высокоточного измерения с использованием официального эталона.
Разность между номинальным и действительным значениями называется погрешностью меры. Величина, противоположная по знаку погрешности, представляет собой поправку к указанному на мере номинальному значению. Поскольку при аттестации (поверке) также могут быть погрешности, меры подразделяют на разряды (1-го, 2-го и т.д. разрядов) и называют разрядными эталонами (образцовые измерительные средства), которые используют для поверки измерительных средств. Величина погрешности меры служит основой для разделения мер на классы, что обычно применимо к мерам, употребляемым для технических измерений.
Измерительный преобразователь - это средство измерений, которое служит для преобразования сигнала измерительной информации в форму, удобную для обработки или хранения, а также передачи в показывающее устройство. Измерительные преобразователи либо входят в конструктивную схему измерительного прибора, либо применяются совместно с ним, но сигнал преобразователя не поддается непосредственному восприятию наблюдателем. Например, преобразователь может быть необходим для передачи информации в память компьютера, для усиления напряжения и т.д. Преобразуемую величину называют входной, а результат преобразования - выходной величиной. Основной метрологической характеристикой измерительного преобразователя считается соотношение между входной и выходной величинами, называемое функцией преобразования.
Преобразователи подразделяются на первичные (непосредственно воспринимающие измеряемую величину), передающие, на выходе которых величина приобретает форму, удобную для регистрации или передачи на расстояние; промежуточные, работающие в сочетании с первичными и не влияющие на изменение рода физической величины.
Измерительные приборы - это средства измерений, которые позволяют получать измерительную информацию в форме, удобной для восприятия пользователем. Различаются измерительные приборы прямого действия и приборы сравнения.
Приборы прямого действия отображают измеряемую величину на показывающем устройстве, имеющем соответствующую градуировку в единицах этой величины. Изменения рода физической величины при этом не происходит. К приборам прямого действия относят, например, амперметры, вольтметры, термометры и т.п.
Приборы сравнения предназначаются для сравнения измеряемых величин с величинами, значения которых известны. Такие приборы широко используются в научных целях, а также и на практике для измерения таких величин, как яркость источников излучения, давление сжатого воздуха и др.
Измерительные установки и системы - это совокупность средств измерений, объединенных по функциональному признаку со вспомогательными устройствами, для измерения одной или нескольких физических величин объекта измерений. Такие системы автоматизированы и обеспечивают ввод информации в систему, автоматизацию самого процесса измерения, обработку и отображение результатов измерений для восприятия их пользователем. Такие установки (системы) используют и для контроля (например, производственных процессов), что особенно актуально для метода статистического контроля, а также принципа TQM в управлении качеством.
Измерительные принадлежности - это вспомогательные средства измерений величин. Они необходимы для вычисления поправок к результатам измерений, если требуется высокая степень точности. Например, термометр может быть вспомогательным средством, если показания прибора достоверны при строго регламентированной температуре; психрометр - если строго оговаривается влажность окружающей среды.
По метрологическому назначению средства измерений делят на два вида - рабочие средства измерений и эталоны.
Рабочие средства измерений применяют для определения параметров (характеристик) технических устройств, технологических процессов, окружающей среды и др. Рабочие средства могут быть лабораторными (для научных исследований), производственными (для обеспечения и контроля заданных характеристик технологических процессов), полевыми (для самолетов, автомобилей, судов и т.п.). Каждый из этих видов рабочих средств отличается особыми показателями. Так, л а б о р а т о р н ы е с р е д с т в а измерений - самые точные и чувствительные, а их показания характеризуются высокой стабильностью. П р о и з в о д с т в е н н ы е обладают устойчивостью к воздействиям различных факторов производственного процесса: температуры, влажности, вибрации и т.п., что может сказаться на достоверности и точности показаний приборов. П о л е в ы е работают в условиях, постоянно изменяющихся в широких пределах внешних воздействий.
Эталоны, их классификация и виды
Эталон - это высокоточная мера, предназначенная для воспроизведения и хранения единицы величины с целью передачи ее размера другим средствам измерений. От эталона единица величины передается разрядным эталонам, а от них - рабочим средствам измерений.
Эталоны классифицируют на первичные, вторичные и рабочие.
Первичный эталон - это эталон, воспроизводящий единицу физической величины с наивысшей точностью, возможной в данной области измерений на современном уровне научно-технических достижений. Первичный эталон может быть национальным (государственным) и международным.
Национальный эталон утверждается в качестве исходного средства измерения страны национальным органом по метрологии. В России национальные (государственные) эталоны утверждает Госстандарт РФ.
Международные эталоны хранит и поддерживает Международное бюро мер и весов (МБМВ). Важнейшая задача деятельности МБМВ состоит в систематических международных сличениях национальных эталонов крупнейших метрологических лабораторий разных стран с международными эталонами, а также и между собой, что необходимо для обеспечения достоверности, точности и единства измерений как одного из условий международных экономических связей. Сличению подлежат как эталоны основных величин системы СИ, так и производных. Установлены определенные периоды сличения. Например, эталоны метра и килограмма сличают каждые 25 лет, а электрические и световые эталоны - один раз в 3 года.
Первичному эталону соподчинены вторичные и рабочие (разрядные) эталоны. Размер воспроизводимой единицы вторичным эталоном сличается с государственным эталоном. Вторичные эталоны (их иногда называют “эталоны-копии”) могут утверждаться либо Госстандартом РФ, либо государственными научными метрологическими центрами, что связано с особенностями их использования. Рабочие эталоны воспринимают размер единицы от вторичных эталонов и в свою очередь служат для передачи размера менее точному рабочему эталону (или эталону более низкого разряда) и рабочим средствам измерений.
Самыми первыми официально утвержденными эталонами были прототипы метра и килограмма, изготовленные во Франции, которые в 1799 г. были переданы на хранение в Национальный архив Франции, поэтому их стали называть “метр Архива” и “килограмм Архива”. С 1872 г. килограмм стал определяться как равный массе “килограмма Архива”. Каждый эталон основной или производной единицы Международной системы СИ имеет свою интересную историю и связан с тонкими научными исследованиями и экспериментами.
Например, принятый в 1791 г. Национальным собранием Франции эталон метра, равный одной десятимиллионной части четверти дуги парижского меридиана, в 1837 г. пришлось пересмотреть. Французские ученый установили, что в четверти меридиана содержится не 10 млн., а 10 млн. 856 метров. К тому же известно, что происходят, хотя и незначительные, но все же постоянные изменения формы и размера Земли. В этой связи ученые Петербургской академии наук в 1872 г. предложили создать международную комиссию для решения вопроса о целесообразности внесения изменений в эталон метра. Комиссия решила не создавать новый эталон, а принять в качестве исходной единицы длины “метр Архива”, хранящийся во Франции. В 1875 г. была принята Международная метрическая конвенция, которую подписала и Россия. Этот год метрологи считают вторым рождением метра как основной международной единицы длины.
Уже в XX в. (1967 г.) были опубликованы исследования более точного измерения парижского меридиана, которые показали, что четверть меридиана равна 10 млн. 1954,4 метра. Таким образом, “метр Архива” всего на 0,2 мм короче меридионального метра.
В 1889 г. был изготовлен 31 экземпляр эталона метра из платино-иридиевого сплава. Оказалось, что эталон №6 при температуре 0?C точно соответствует длине “метра Архива”, и именно этот экземпляр эталона по решению I Генеральной конференции по мерам и весам был утвержден как международный эталон метра, который хранится в г.Севре (Франция). Остальные 30 эталонов были переданы разным государствам. Россия получила №28 и №11, причем в качестве государственного был принят эталон №28.
Подобные документы
Метрология в современном понимании – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. Физические величины и международная система единиц. Систематические, прогрессирующие и случайные погрешности.
контрольная работа [1,1 M], добавлен 28.06.2011Общие положения Государственной системы обеспечения единства измерений. Передача размеров единиц физических величин, их поверочные схемы. Способы поверки средств измерений. Погрешности государственных первичных и специальных эталонов, их оценка.
контрольная работа [184,3 K], добавлен 19.09.2015Основные сведения о физических величинах, их эталоны. Система международных единиц, классификация видов и средств измерений. Количественные оценки погрешности. Измерение напряжения и силы тока. Назначение вольтметра, осциллографа и цифрового частотомера.
шпаргалка [690,1 K], добавлен 14.06.2012Виды и причины возникновения погрешностей: погрешность результата измерения; инструментальная и методическая; основная и дополнительная. Первая система единиц физических величин. Изменение погрешности средств измерений во время их эксплуатации.
реферат [20,2 K], добавлен 12.05.2009Метрология - наука об измерениях, о методах обеспечения их единства и способах достижения требуемой точности. Элементы измерительной процедуры. Направления развития современной метрологии. Государственные испытания, проверка и ревизия средств измерения.
реферат [45,7 K], добавлен 24.12.2013Правовые основы метрологического обеспечения единства измерений. Система эталонов единиц физической величины. Государственные службы по метрологии и стандартизации в РФ. Деятельность федерального агентства по техническому регулированию и метрологии.
курсовая работа [163,5 K], добавлен 06.04.2015Государственные эталоны, образцовые и рабочие средства измерений. Государственная система обеспечения единства измерений. Метрологические службы организаций. Определение и подтверждение соответствия систем измерения установленным техническим требованиям.
презентация [36,0 K], добавлен 30.07.2013Семь основных системных величин в системе величин, которая определяется Международной системой единиц СИ и принята в России. Математические операции с приближенными числами. Характеристика и классификация научных экспериментов, средств их проведения.
презентация [226,6 K], добавлен 09.12.2013Цели и основные задачи государственной системы обеспечения единства измерений. Основные принципы обеспечения единства измерений. Правовая, техническая и организационная подсистемы. Государственная метрологическая служба, ее территориальные органы.
контрольная работа [958,9 K], добавлен 16.04.2011Система предпочтительных чисел. Принципы и методы стандартизации. Международная система единиц физических величин. Объекты и методика выполнения измерений, виды контроля. Правовое обеспечение сертификации. Контроль качества и приемка земляных работ.
курсовая работа [42,3 K], добавлен 04.02.2015