Разработка технологического процесса термической обработки детали

Расшифровка марки стали: микроструктура, механические свойства до термообработки, группа по назначению. Анализ влияния углерода и легирующих элементов стали на технологию ее термообработки. Последовательность и режим операций при термообработке деталей.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 30.08.2009
Размер файла 36,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛИ

· Разработать технологический процесс термической обработки стальной детали: Шатун двигателя грузового автомобиля

· Марка стали: Ст. 18Х2Н4ВА

· Твердость после окончательной термообработки: НВ 302 - 252

Цель задания: практическое ознакомление с методикой разработки технологического процесса термической обработки деталей (автомобилей, тракторов и сельскохозяйственных машин); приобретение навыков самостоятельной работы со справочной литературой, более глубокое усвоение курса, а также проверка остаточных знаний материала, изучаемого в 1 семестре.

Порядок выполнения задания:

1. Расшифровать марку заданной стали, описать ее микроструктуру, механические свойства до окончательной термообработки и указать, к какой группе по назначению она относится.

2. Описать характер влияния углерода и легирующих элементов заданной стали на положение критических точек Ас1 и Ас3, Асm. Рост зерна аустенита, закаливаемость и прокаливаемость, на положение точек Мн и Мк, на количество остаточного аустенита и на отпуск. При отсутствии легирующих элементов в заданной марке стали описать влияние постоянных примесей (марганца, кремния, серы, фосфора, кислорода, азота и водорода) на ее свойства.

3. Выбрать и обосновать последовательность операции предварительной и окончательной термообработки деталей, увязав с методами получения и обработки заготовки (литье, ковка или штамповка, прокат, механическая обработка).

4. Назначить и обосновать режим операций предварительной и окончательной термообработки деталей (температура нагрева и микроструктура в нагретом состоянии, охлаждающая среда).

5. Описать микроструктуру и механические свойства материала детали после окончательной термообработки.

РАСШИФРОВКА МАРКИ СТАЛИ

Сталь марки 18Х2Н4ВА: хромоникелевая конструкционная легированная сталь с содержанием углерода 0,18%, до 2% хрома, 4 % никеля и 1% ванадия.

Хромоникелевые стали являются высококачественными конструкционными сталями. Применяется в цементованном и улучшенном состоянии применяется для ответственных деталей, к которым предъявляются требования высокой прочности, вязкости и износостойкости, а также для деталей, подвергающихся высоким вибрационным и динамическим нагрузкам. Сталь может применяться при температуре от -70 до +450°С.

В хромоникелевые стали вводят хром и никель. Никель является дорогой смесью. Хромоникелевые стали являются наилучшими конструкционными сталями; они обладают высокой прочностью и вязкостью, что особо важно для деталей, работающих в тяжелых условиях. Хромоникелевые стали имеют высокую прокаливаемость.

К недостаткам хромоникелевых сталей относятся плохая обрабатываемость их резанием, обусловленная присадкой никеля, и большая склонность к отпускной хрупкости второго рода. Хромоникелевые стали подвергают как цементации с последующей термообработкой обработкой, так и улучшению. Хромоникелевые стали широко применяют в авиа- и автотракторостроении.

Вид поставки: сортовой прокат - ГОСТ 4543 - 71.

Таблица 1. Массовая доля элементов, % по ГОСТ 4543-71

C

Si

S

Mn

P

W

Ni

Cr

Cu

0,14 - 0,2

0,17 - 0,37

? 0,025

0,25 - 0,55

? 0,025

0,8 - 1,2

4,0 - 4,4

1,35 - 1,65

0,4

Температура критических точек, 0С.

Критическая точка

°С

Ac1

700

Ac3

810

Ar3

400

Ar1

350

Mn

336

Назначение:

Зубчатые колеса, шатуны, валы-шестерни, кулачковые муфты, червяки, поршневые пальцы, оси, коленчатые валы, втулки и другие нагруженные крупные деталями, работающие в условиях ударных нагрузок.

Таблица 3 - Механические свойства

Термообработка, состояние поставки

Сечение, мм

s 0,2, МПа

s B, МПа

d 5, %

y, %

KCU, Дж/м 2

HB

HRC э

Пруток. Закалка 950 °С, воздух. Закалка 860 °С, воздух. Отпуск: 200 °С, воздух или масло

15

835

1130

12

50

98

Пруток. Закалка 950 °С, воздух. Закалка 860 °С, воздух. Отпуск: 550 °С, воздух или масло

15

785

1030

12

50

118

Поковки. Закалка. Отпуск.

КП 685

300-500

685

835

11

33

39

262-311

КП 735

100-300

735

880

12

35

49

277-321

КП 785

<100

785

930

12

40

59

293-331

Отжиг 890-910 °С, охлаждение с печью

300

390

620

10

25

265

Нормализация 920-980 °С, воздух. Отпуск 630-680 °С, воздух.

590

780

60

197-269

Цементация 920-950 °С. Нормализация 900-950 °С, воздух. Закалка 900-950 °С, масло. Отпуск (двойной) 630-650 °С, воздух.

80

1270

1370

12

88

321-400

57

АНАЛИЗ ВЛИЯНИЯ УГЛЕРОДА И ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ СТАЛИ НА ТЕХНОЛОГИЮ ЕЕ ТЕРМООБРАБОТКИ И ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Хром - очень распространенный легирующий элемент. Он повышает точку А3 и понижают точку А4 (замыкает область г-железа). Температура эвтектоидного превращения стали (точку А1) в присутствии хрома повышается, а содержание углерода в эвтектоиде (перлите) понижается. С углеродом хром образует карбиды (Cr7C3,Cr4C) более прочные и устойчивые, чем цементит. При содержании хрома 3-5% в стали одновременно присутствуют легированный цементит и карбид хрома Cr7C3, а если более 5% хрома, то в стали находится только карбид хрома. Растворяясь в феррите, хром повышает его твердость и прочность и прочность, незначительно снижая вязкость. Хром значительно увеличивает устойчивость переохлажденного аустенита.

В связи с большой устойчивостью переохлажденного аустенита и длительностью его распада, изотермический отжиг и изотермическую закалку хромистой стали проводить нецелесообразно.

Хром значительно уменьшает критическую скорость закалки, поэтому хромистая сталь обладает глубокой прокаливаемостью. Температура мартенситного превращения при наличии хрома снижается. Хром препятствует росту зерна и повышает устойчивость против отпуска. Поэтому отпуск хромистых сталей проводится при более высоких температурах по сравнению с отпуском углеродистых сталей. Хромистые стали подвержены отпускной хрупкости и поэтому после отпуска детали следует охлаждать быстро (в масле).

Карбидообразующими элементами являются хром и марганец. При растворении карбидообразующих элементов в цементите образующиеся карбиды называются легированным цементитом. При повышении содержания карбидообразующего элемента образуются самостоятельные карбиды данного элемента с углеродом, так называемые простые карбиды, например, Cr7C3, Cr4C, Mo2C. Все карбиды очень тверды (HRC 70 - 75) и плавятся при высокой температуре (Cr7C3 примерно при 1700°С).

Введение легирующих элементов оказывает влияние на перлитное превращение. Температура перлитного превращения под влиянием различных легирующих элементов может понижаться или повы-шаться, а концентрация углерода в перлите уменьшается-. В связи с этим точка S на диаграмме Fe--Fe3C понижается или повышается и одновременно сдвигается влево. Следовательно, при введении леги-рующих элементов происходит смещение равновесных точек на диа-грамме Fe-Fe3C.

При наличии карбидообразующих элементов кривая изотермического распада не сохраняет свой обычный С-образный вид, а становится как бы двойной С-образной кривой. На такой кривой наблюдаются две зоны минимальной устойчивости аустенита и между ними - зона максимальной устойчивости аустенита. Верхняя зона минимальной устойчивости аустенита расположена в интервале температур 600-650°С. В этой зоне происходит распад переохлажденного аустенита с образованием феррито-цементитной смеси.

Нижняя зона минимальной устойчивости аустенита расположена в интервале температур 300-400°С. В этой зоне происходит распад переохлажденного аустенита с образованием игольчатого троостита.

Микроструктура игольчатого троостита

Необходимо иметь в виду, что карбидообразующие элементы только в том случае повышают устойчивость аустенита, если они растворены в аустените. Если же карбиды находятся вне раствора в виде обособленных карбидов, то аустенит, наоборот, становится менее устойчивым. Это объясняется тем, что карбиды являются центрами кристаллизации, а также тем, что наличии нерастворенных карбидов приводит к обеднению аустенита легирующим элементом и углеродом.

При большом содержании хрома в стали находятся специальные карбиды хрома. Твердость такой стали при нагревании до более высокой температуры 400-450°С почти не изменяется. При нагревании до более высокой температуры (450-500°С) происходит повышение твердости.

ПОСЛЕДОВАТЕЛЬНОСТЬ ОПЕРАЦИИ ПРЕДВАРИТЕЛЬНОЙ И ОКОНЧАТЕЛЬНОЙ ТЕРМООБРАБОТКИ ДЕТАЛЕЙ

Таблица 4 - Режимы термообработки

Операция

t, °С

Охлаждающая среда

HRC

Цементация

930

Охлаждение медленное в колодцах или ящиках

Закалка

820 - 840

сердцевина

Отпуск

180 - 200

36 - 46

Масло

Поверхность 56 -62

Воздух

РЕЖИМ ОПЕРАЦИЙ ПРЕДВАРИТЕЛЬНОЙ И ОКОНЧАТЕЛЬНОЙ ТЕРМООБРАБОТКИ ДЕТАЛЕЙ (ТЕМПЕРАТУРА НАГРЕВА И МИКРОСТРУКТУРА В НАГРЕТОМ СОСТОЯНИИ, ОХЛАЖДАЮЩАЯ СРЕДА)

Последовательность операций обработки шатуна двигателя грузового автомобиля, изготовленного из стали Ст. 18Х2Н4ВА:

Цементация - закалка - высокий отпуск - механическая обработка;

При цементации деталь нагревают без доступа воздуха до 930-950°С в науглероживающей среде - карбюризаторе., выдерживают при этой температуре в течение нескольких часов, а затем медленно охлаждают. В результате цементации поверхностный слой деталей науглероживается (0,8-1% С), а в сердцевине остается 0,12-0,32% С, т.е. получается как бы двухслойный металл. Поэтому для получения нужной структуры и свойств в поверхностном слое и в сердцевине необходима двойная термическая обработка.

В результате длительной выдержки при высокой температуре цементации происходит перегрев, сопровождающийся ростом зерна. Для получения высокой твердости цементованного слоя и достаточно высоких механических свойств сердцевины, а также для получения в поверхностном слое мелкоигольчатого мартенсита, деталь после цементации подвергнем последующей термической обработке.

Основная цель закалки стали это получение высокой твердости, и прочности что является результатом образования в ней неравновесных структур - мартенсита, троостита, сорбита. Заэвтектоидную сталь нагревают выше точки Ас1 на 30-90 0С. Нагрев заэвтектоидной стали выше точки Ас1 производится для того, чтобы сохранить в структуре закаленной стали цементит, является еще более твердой составляющей, чем мартенсит.

Закалка с самотпуском состоит в то, что нагретую деталь рабочей частью погружают в закалочную среду и выдерживают в ней не до полного охлаждения. За счет тепла нерабочей части детали, которая не погружалась в закалочную жидкость, рабочая часть детали нагревается. Температура отпуска при этом способе закалки определяют по цветам побежалости, возникающие на поверхности детали при температурах 220-300 0С.

Отпуск при 180-200°С проводится для снятия внутренних напряжений и получение более устойчивого структурного состояния, повышение вязкости и пластичности, а также понижение твердости и уменьшение хрупкости закаленной стали. Он выполняется с целью получения структуры мартенсита отпуска и для частичного снятия внутренних напряжений в закаленной стали с целью повышения вязкости без заметного снижения твердости. После такого режима термической обработки структура поверхностного слоя - мелкоигольчатый мартенсит с вкраплениями избыточного цементита, а сердцевины - мелкозернистый феррит+перлит.

Механические свойства стали после термической обработки:

- Твердость НВ 302 - 252

- Предельная прочность (ув) равна 578 Н/мм2;

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА:

1. Самохоцкий А.И. Технология термической обработки металлов, М., Машгиз, 1962.

2. Пожидаева С.П. Технология конструкционных материалов: Уч. Пособие для студентов 1 и 2 курса факультета технологии и предпринимательства. Бирск. Госуд. Пед. Ин-т, 2002.

3. Гуляев А.П. Металловедение. - М.: Металлургия, 1977.

4. Марочник сталей и сплавов. 2-е изд., доп. и испр. / А.С. Зубченко, М.М. Колосков, Ю.В. Каширский и др. Под общей ред. А.С. Зубченко - М.: Машиностроение, 2003.

5. Металловедение и термическая обработка стали. Справочник. / Под ред. Л.М. Бернштейна, А.Г. Рахштадта, М.: Металлургия, 1987.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.