Работа токарного резца

Образование и виды стружки, срез. Силы, действующие на резец. Зависимость силы резания от условий работы. Определение силы резания и ее практическое значение. Движения, скорость, глубина резания, подача при точении. Части резца и элементы его головки.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 08.08.2009
Размер файла 684,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ОБРАЗОВАНИЕ И ВИДЫ СТРУЖКИ

Процесс образования стружки впервые исследован (1870 г.) русским ученым проф. И.А. Тиме, наблюдения и выводы которого сохраняют свою силу и в настоящее время. Стружки, образующиеся при резании вязких металлов (сталь, латунь), проф. И.А. Тиме назвал стружками скалывания, а получающийся при обработке хрупких металлов (чугун, бронза) - стружками надлома.

Рис. 10 - Образование стружки скалывания

Образование стружки скалывания происходит следующим образом. Резец (рис. 10 а) под действием силы P внедряется в обрабатываемый металл, преодолевая сопротивление его смятию. Это смятие происходит лишь внутри элемента 1 металла, ограниченного плоскостью, называемой плоскостью скалывания (условно изображена на рис. 10 а линией АА) и передней поверхностью резца. В некоторый момент движение резца начинается смещение (скалывание) элемента 1 относительно следующего элемента (рис. 10 б), происходящее по плоскости АА.

При дальнейшем движении резца одновременно с продолжающимся смещением (скалыванием) элемента 1 образуется элемент 2, перемещающийся относительно элемента 3, и т.д. По мере продвижения резца все элементы отделяются один от другого, образуя элементную стружку скалывания (рис. 11 а).

Рис. 11 - Виды стружки: скалывания (а, б, в,) и надлома (г)

Такая стружка получается при обработке с малой скоростью твердых, но вязких металлов, например твердой стали. С уменьшением твердости металла и увеличением его вязкости элементы стружки образуют более или менее непрерывную ленту (рис. 11 в, 11 б), называемую сливной стружкой скалывания. Поверхность стружки, соприкасающаяся с передней поверхностью резца, получается гладкой, а противоположная ей - шероховатой.

Русский исследователь Я.Г. Усачев, продолживший работу И.А. Тиме, доказал, что при резании вязких, но твердых материалов, например стали средней твердости и твердой, кроме скалывания элементов стружки, происходит еще и сдвиг частиц металла в каждом элементе по плоскости ВВ (рис. 10 а), называемой плоскостью сдвига. Угол между плоскостями скалывания и сдвига колеблется в пределах 0-30є. Чем вязче металл, тем больше этот угол, и наоборот.

Я.Г. Усачев установил также, что при резании сравнительно мягкой стали перемещения частиц стружки происходят лишь по плоскостям, параллельным плоскости сдвига.

Образование стружки надлома при резании твердых и хрупких металлов (чугун, бронза) происходит без заметного смятия металла. Элементы стружки, отделяясь от основной массы металла по произвольной поверхности (рис. 11 г), и имеют различную величину и форму. Поверхности отрыва элементов получаются неровными, вследствие чего и обрабатываемая поверхность получается с большой шероховатостью.

Вид стружки зависит не только от обрабатываемого материала, но и от ряда других условий. Например, при точении стали средней твердости резцом с большим углом резания может образоваться не сливная стружка скалывания, а элементная. При повышении скорости резания некоторые элементы стружки не успевают настолько деформироваться, чтобы отделиться один от другого, вследствие чего вместо элементной может получиться сливная стружка скалывания.

СИЛЫ ДЕЙСТВУЮЩИЕ НА РЕЗЕЦ

В результате сопротивления срезаемого слоя металла деформации сжатия, трения стружки о переднюю поверхность резца и нескольких других причин возникает сила резания. Направление ее и величина зависят от многих факторов и непосредственно не могут быть определены.

При изучении работы токарного резца (рис. 13) эту силу разлагают на три составляющие: собственно силу резания Рz, силу подачи Рx и радиальную силу Рy. Сила резания Рz, касательная к поверхности резания, действует в направлении главного движения. Сила Рx действует в направлении подачи. Радиальная сила Рy перпендикулярна к подаче. Единица измерения всех трех сил является килограмм-сила (кгс).

Рис. 13 - Силы резания при точении

В единой международной системе единиц (СИ), за единицу измерения  принят ньютон (Н) ( 1кгс = 9,80665Н ). Если силу Рz принять за единицу, можно считать, что сила Рx при достаточно остром резце изменяется в пределах от 1/8 до 1/4 величины силы Рz, а сила Рy - от 1/4 до 1/2 величины той же силы.

ЗАВИСИМОСТЬ СИЛЫ РЕЗАНИЯ ОТ УСЛОВИЙ РАБОТЫ РЕЗЦА

На величину силы резания влияют обрабатываемый материал, площадь среза и его форма, углы реза, скорость резания и ряд других менее существенных факторов.

Влияние на силу резания обрабатываемого материала видно из следующих сопоставлений. Силы резания при обработке стали средней твердости примерно в 2,2 раза больше, чем при резании чугуна средней твердости. Сила резания при обработке самой мягкой стали значительно меньше силы резания при обработке самой твердой стали. При обработке чугуна различных твердостей эта разница не так велика.

Сила резания возрастает с увеличением площади среза. Если при этом увеличение площади среза получается за счет увеличения глубины резания, сила Рz возрастает пропорционально глубине резания. При увеличении подачи сила Рz так же возрастает, но менее. Так например, если увеличить глубину резания вдвое, сохранив ту же подачу, сила резания увеличится так же вдвое. Но если, не изменяя глубины резания, увеличить в два раза подачу, сила резания возрастет не в два раза, а несколько меньше. Это объясняется тем, что при сравнительно большой подаче не происходит столь значительной деформации металла, как это имеет место при малой подаче.

Сила резания получается различной при одинаковых площадях среза, но разных их формах. Она меньше при больших значениях толщины среза, чем при меньших. Например, сила резания при глубине 4мм и подаче 2мм/об несколько меньше, чем при глубине резания 8мм и подаче 1мм/об, несмотря на то, что площадь среза в обоих случаях одинакова и равна 8 ммІ. Это объясняется так же разной степенью деформации металла в срезаемом слое.

С уменьшением переднего угла резца, т.е. с увеличением угла резания, села резания возрастает, так как при этом увеличивается угол клина, которым является резец. При увеличении главного угла в плане примерно до 50-55є сила резания уменьшится. С дальнейшим увеличением этого угла сила резания возрастает. Изменение величины силы резания, вызываемое изменением главного угла в плане не значительно. При увеличении радиуса закругления вершины резца сила резания возрастает, но так же не значительно. Затупление резца вызывает увеличение силы резания. На величину силы резания влияет так же введение в зону резания смазочно-охлаждающей жидкости (СОЖ). Маслянистые вещества, содержащиеся в охлаждающей жидкости, проникая в микроскопические трещины деформируемого резцом металла, уменьшают силы трения, появляющиеся в зоне образования стружки. Благодаря этому сопротивление резанию уменьшается. Чем больше с больше в смазочно-охлаждающей жидкости содержится смазочных веществ, тем существеннее ее влияние на силу резания.

ОПРЕДЕЛЕНИЕ СИЛЫ РЕЗАНИЯ И ЕЕ ПРАКТИЧЕСКОЕ ЗНАЧЕНИЕ

Величина силы резания определяется непосредственным измерением ее с помощью особых приборов (динамометров) или теоретическим расчетом. В последнем случае возникает ряд затруднений, обусловливаемых большим количеством факторов, влияющих на силу резания. Поэтому определение ее величины производится по упрощенным формулам. Получающиеся при этом погрешность в величине силы резания в большинстве случаев не имеет практического значения.

Использование для определения силы резания даже упрошенных формул в производственных условиях связано с некоторыми затруднениями. Поэтому сила резания обычно указывается во всех справочниках по режимам резания, к которым и следует обращаться, если окажется необходимым определить силу резания.

Сила резания имеет важное значение, так как при умножении ее на радиус обрабатываемой детали мы получаем крутящий момент- величину, показывающую, насколько при данных условиях работы нагружен станок и не опасна ли эта нагрузка для наиболее слабых звеньев станка. При умножении силы резания на скорость резания находим мощность, потребную на резание в кВт. Сопоставляя эту мощность с действительной мощностью станка, можно судить о том, насколько рационально станок используется.

Необходимо отметить, что эти вопросы в производственных условиях возникают сравнительно редко.

ДВИЖЕНИЯ РЕЗАНИЯ ПРИ ТОЧЕНИИ

На рис.2 схематически показано обтачивание детали 1 резцом 2. Деталь при этом вращается по стрелке х, а резец перемещается по стрелке s и снимает с детали стружку. Первое из этих движений является главным. Оно характеризуется скоростью резания. Второе движение - движение подачи.

Рис. 2 - Движения и элементы резания при точении

СКОРОСТЬ РЕЗАНИЯ

Каждая точка обрабатываемой по поверхности детали (рис.2), например точка А, проходит в единицу времени, например в одну минуту, некоторый путь. Длина этого пути может быть больше или меньше в зависимости от числа оборотов в минуту детали и от ее диаметра и определяет собой скорость резания.

Скорость резания называется длина пути, который проходит в одну минуту точка обрабатываемой поверхности детали относительно режущей кромки резца. Скорость резания измеряется в метрах в минуту и обозначается буквой х. Для краткости вместо слов «метров в минуту» принять писать м / мин.

Скорость резания при точении находится по формуле:

где х - искомая скорость резания в м / мин;

р - отношение длины окружности к ее диаметру, равное 3,14;

D - диаметр обрабатываемой поверхности детали в мм.;

n - число оборотов детали в минуту.

Произведение в формуле должно быть разделено на 1000, чтобы найденная скорость резания была выражена в метрах. Формула эта читается так: скорость резания равна произведению длины окружности обрабатываемой детали на число оборотов ее в минуту, разделенному на 1000.

ПОДАЧА

Перемещение резца при резании в зависимости от условий работы может происходить быстрее или медленнее и характеризуется, как это отмечено выше, подачей. Подачей называется величина перемещения резца за один оборот обрабатываемой детали. Подача измеряется в миллиметрах на один оборот детали и обозначается буквой s (мм/об). Подача называется продольной, если перемещение резца происходит параллельно оси обрабатываемой детали, и поперечной, когда резец перемещается перпендикулярно к этой оси.

ГЛУБИНА РЕЗАНИЯ

При перемещении резец снимает с детали слой материала, толщина которого характеризуется глубиной резания. Глубиной резания называется толщина снимаемого слоя материала, измеренная по перпендикуляру к обработанной поверхности детали. Глубина резания измеряется с миллиметрах и обозначается буквой t. Глубиной резания при наружном обтачивании является половина разности диаметров обрабатываемой детали до и после прохода резца. Таким образом, если диаметр детали до обтачивания был 100мм., а после одного прохода резца стал равен 90мм., то это значит что глубина резания была 5мм.

СРЕЗ, ЕГО ТОЛЩИНА, ШИРИНА И ПЛОЩАДЬ

В следствии остаточной деформации стружки, происходящей в процессе ее образования, ширена и особенно толщина ее получаются больше размеров b и a на рис. 2. Длина стружки оказывается меньше соответственного размера обрабатываемого участка поверхности детали. Поэтому площадь ѓ, заштрихованная на рис. 2 и называемая срезом, не отражает поперечного сечения стружки, снимаемой в этом случае.

Срезом называется поперечное сечение слоя металла, снимаемого при данной глубине резания и подаче. Размеры среза характеризуются его толщиной и шириной.

Толщиной среза называется расстояние между крайними точками работающей части режущей кромки резца. Ширина среза измеряется в миллиметрах (мм) и обозначается буквой b. Четырехугольник, заштрихованный на рис. 2, изображает площадь среза.

Площадь среза равна произведению подачи на глубину резания. Площадь среза измеряется в ммІ, обозначается буквой ѓ и определяется по формуле:

где - глубина резания в мм.

ПОВЕРХНОСТИ И ПЛОСКОСТИ В ПРОЦЕССЕ РЕЗАНИЯ

На обрабатываемой детали при снятии с нее стружки резцом различают поверхности: обрабатываемую, обработанную и поверхность резания (рис. 3).

Рис. 3 - Поверхность и плоскость в процессе резания

Обрабатываемой поверхностью называется та поверхность, с которой снимается стружка. Обработанной поверхностью называется поверхность детали, полученная после снятия стружки. Поверхностью резания называется поверхность, образуемая на обрабатываемой детали непосредственно  режущей кромкой резца. Для определения углов резца установлены понятия: плоскость резания и основная плоскость. Плоскость резания называется плоскость, касательная к поверхности резания и проходящая через режущую кромку резца. Основной поверхностью называется плоскость, параллельная продольной и поперечной подачам. Она совпадает с опорной поверхностью резца.

ЧАСТИ РЕЗЦА И ЭЛЕМЕНТЫ ЕГО ГОЛОВКИ

Резец (рис. 4) состоит из головки, т.е. рабочей части, и тела, служащего для закрепления резца. Поверхностям и другим элементам головки резца присвоены следующие названия. Передней поверхностью резца называется та поверхность, по которой сходит стружка. Задними поверхностями резца называются поверхности, обращенные к обрабатываемой детали, причем одна из них называется главной, а другая вспомогательной.

Рис. 4 - Части резца и элементы его головки

Режущими кромками резца называются линии, образованные пересечением передней и задних поверхностей его. Режущая кромка, выполняющая основную работу резания, называется главной. Другая режущая кромка резца называется вспомогательной. Из рис. 4 видно, что главной задней поверхностью резца является поверхность, примыкающая к его главной режущей кромке, а вспомогательной - примыкающая к вспомогательной режущей кромке.

Вершиной резца называется место сопряжения главной и вспомогательной кромкой. Вершина резца может быть острой, плоскосрезанной или закругленной.

УГЛЫ РЕЗЦА

Главными углами резца являются главный задний угол, передний угол, угол заострения и угол резания. Эти углы измеряются в главной секущей плоскости (рис. 5).

Главная секущая плоскость есть плоскость, перпендикулярная к главной режущей кромке и основной плоскости. Главным задним углом называется угол между главной задней поверхностью резца и плоскостью резания.

.

Рис. 5 - Углы токарного резца.

Этот угол обозначается греческой буквой б (альфа). Угол заострения называется угол между передней и главной задней  поверхностями резца. Этот угол обозначатся греческой буквой в (бета). Передним углом называется угол между передней поверхностью резца и плоскостью, проведенной через главную режущую кромку перпендикулярно к плоскости резания. Этот угол обозначается буквой г (гамма). Угол резания называется между передней поверхностью резца и плоскостью резания. Этот угол обозначается греческой буквой д (дельта).

Кроме перечисленных, различают следующие углы резца: вспомогательный задний угол, главный угол в плане, вспомогательный угол в плане, угол при вершине резца и угол наклона главной режущей кромки. Вспомогательным задним углом называется угол между вспомогательной задней поверхностью и плоскостью, проходящей через вспомогательную режущую кромку перпендикулярно к основной плоскости. Этот угол измеряется во вспомогательной секущей плоскости, перпендикулярной к вспомогательной режущей кромке, и основной плоскости и обозначается б№. Главным углом в плане называется угол между главной режущей кромкой и направлением подачи. Этот угол обозначается буквой ц (фи). Вспомогательным углом в плане называется угол между вспомогательной режущей кромкой и направлением подачи. Этот угол обозначается ц№. Углом при вершине называется угол, образованный пересечением главной и вспомогательной режущих кромок. Этот угол обозначается греческой буквой е (ипсилон). Упрощенное изображение углов резца, принятое на практике, указано на рис. 6, а и б (линия АА - плоскость резания). На рис. 6, в показаны углы резца в плане.

Рис. 6 - Упрощенное изображение углов токарного резца

Главная режущая кромка резца может составлять различные углы наклона с линией, проведенной через вершину резца параллельно основной плоскости (рис. 7).

Рис. 7 - Углы наклона главной режущей кромки: положительный (а), равный нулю (б) и отрицательный (в)

Угол наклона измеряется в плоскости, проходящей через главную режущую кромку перпендикулярно к основной плоскости, и обозначается греческой буквой л (лямбда). Угол этот считается положительным (рис. 7, а), когда вершина резца является самой низкой точкой режущей кромки; равным нулю (рис. 7, б) - при главной режущей кромке, параллельной основной плоскости, и отрицательным (рис. 7, в) - когда вершина резца является наивысшей точкой режущей кромки.

ЗНАЧЕНИЕ УГЛОВ РЕЗЦА И ОБЩИЕ СООБРАЖЕНИЯ ПРИ ИХ ВЫБОРЕ

Все перечисленные углы имеют важное значение для процесса резания и к выбору величины их следует подходить очень осторожно. Чем больше передний угол г резца, тем легче происходит снятие стружки. Но с увеличением этого угла (рис. 6, а) уменьшается угол заострения резца, а поэтому и прочность его. Передний угол резца может быть вследствие этого сравнительно большим при обработке мягких материалов и , наоборот, должен быть уменьшен, если обрабатываемый материал тверд. Передний угол может быть и отрицательным (рис. 6, б), что способствует повышению прочности резца. Из рис. 6, а ясно, что с уменьшением переднего угла резца увеличивается угол резания. Сопоставляя это со сказанным выше о зависимости переднего угла от твердости обрабатываемого материала, можно сказать, что чем тверже обрабатываемый материал, тем больше должен быть угол резания, и наоборот.

Чтобы определить величину угла резания д, когда известен передний угол резца, достаточно, как это видно из рис. 6, а, вычесть из 90є данную величину переднего угла. Например, если передний угол резца равен 25є, угол резания его составляет 90є - 25є = 65є; если передний угол составляет - 5є, то угол резания будет равен 90є - (-5є) = 95є.

Задний угол резца б необходим для того, чтобы между задней поверхностью резца и поверхностью резания обрабатываемой детали не было трения. При слишком малом заднем угле это трение получается настолько значительным, что резец сильно нагревается и становится негодным для дальнейшей работы. При слишком большом заднем угле угол заострения оказывается настолько малым, что резец становится непрочным.

Величина угла заострения в определяется сама собой после того, как выбраны задний и передний углы резца. В самом деле, из рис. 6, а очевидно, что для определения угла заострения данного резца достаточно вычесть из 90є сумму заднего и переднего его углов. Так, например, если резец имеет задний угол равным 8є, а передний 25є, то угол заострения его равен 90є - (8є+25є) = 90є - 33є=57є. Это правило следует помнить, так как им иногда приходится пользоваться при измерении углов резца.

Значение главного угла в плане ц вытекает из сопоставления рис. 8 а и б, на которых схематически показаны условия работы резцов при одинаковых подачах s и глубине резания t, но при разных значениях главного угла в плане.


Рис. 8 - Влияние главного угла в плане на процесс резания

При главном угле в плане, равном 60є, сила P, возникающая в процессе резания, вызывает меньший прогиб обрабатываемой детали, чем аналогичная сила Q при угле в плане 30є. Поэтому резец с углом ц=60є более пригоден для обработки нежестких деталей (относительно небольшого диаметра при большой длине) в сравнении с резцом, имеющим угол ц=30є. С другой стороны, при угле ц=30є длина lІ режущей кромки резца, непосредственно участвующая в его работе, больше соответственной длины l при ц=60є. Поэтому резец, изображенный на рис. 8 б, лучше поглощает теплоту, возникающую при образовании стружки и дольше работает от одной заточки до другой.

Значение ушла наклона л заключается в том, что выбирая положительное или отрицательное значение его, мы можем направлять отходящую стружку в ту или другую сторону, что в некоторых случаях бывает очень полезно. Если угол наклона главной режущей кромки резца положителен, то завивающаяся стружка отходит вправо (рис. 9 а); при угле наклона, равном нулю, стружка отходит в направлении, перпендикулярном главной режущей кромке (рис. 9 б); при отрицательном угле наклона стружка отходит влево (рис. 9 в).

Рис. 9 - Направление схода стружки при положительном (а), равном нулю (б) и отрицательном (в) угле наклона главной режущей кромки.


Подобные документы

  • Роль теплоотвода из зоны резания на температуру резания. Обработка титановых сплавов лезвийным и абразивным инструментом. Определение главных действительных углов и периода стойкости токарного резца. Рациональный режим резания при точении и сверлении.

    контрольная работа [1,9 M], добавлен 08.02.2011

  • Полный аналитический расчет режимов резания. Выбор геометрических параметров резца. Определение подач, допускаемых прочностью пластинки, шероховатостью обработки поверхности. Расчет скорости, глубины, силы резания, мощности и крутящего момента станка.

    курсовая работа [711,8 K], добавлен 21.10.2014

  • Выбор режима, силы, мощности резания. Конструктивные размеры фасонного резца, элементы крепления и выбор геометрических параметров, технические условия на изготовление. Исследование углов режущих кромок резца. Аппроксимация криволинейных участков профиля.

    контрольная работа [231,8 K], добавлен 29.11.2016

  • Определение длины рабочего хода головки, стойкость инструмента наладки. Расчет скорости резания, частоты вращения ведущего вала, минутной подачи. Основное время обработки для каждой головки. Определение осевой силы и мощности резания инструмента.

    контрольная работа [47,7 K], добавлен 27.06.2013

  • Определение габаритных и присоединительных размеров резца. Точность размеров и формы инструментальных материалов. Расчет конструктивных элементов державки. Определение силы резания и крутящего момента на резце. Вычисление зубчиков муфты на смятие.

    курсовая работа [1,5 M], добавлен 14.11.2017

  • Выбор инструментального материала и геометрических параметров режущего инструмента. Геометрия резьбового токарного резца. Назначение режима резания. Расчет тангенциальной силы резания и размеров поперечного сечения державки. Определение основного времени.

    курсовая работа [3,1 M], добавлен 24.05.2009

  • Определение элементов, силы, мощности и скорости резания, основного времени. Расчет и назначение режимов резания при точении, сверлении, зенкеровании, развертывании, фрезеровании, зубонарезании, протягивании, шлифовании табличным и аналитическим методами.

    методичка [193,5 K], добавлен 06.01.2011

  • Выбор станка, типа резца и его характеристик для обработки заданной поверхности. Влияние параметров режима резания на протекание процесса точения. Расчёт режимов резания при черновом и чистовом точении. Уравнения кинематического баланса токарного станка.

    курсовая работа [2,7 M], добавлен 18.12.2013

  • Геометрические параметры токарного расточного резца с пластиной из твердого сплава, предназначенного для предварительного растачивания на проход без ударных нагрузок заготовки. Скорость резания при обработке заготовки. Частота вращения шпинделя станка.

    контрольная работа [177,0 K], добавлен 06.09.2012

  • Выбор схемы резания и форма среза. Выбор материала инструмента и геометрии режущего клина. Конструктивные параметры резца. Определение режимов резания. Составление фрагмента технологического маршрута обработки детали. Причины и виды искажения профиля.

    курсовая работа [1,7 M], добавлен 04.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.