Принцип получения аморфных материалов
Особенности атомной структуры аморфных металлических сплавов, их магнитные, механические, электрические свойства и коррозионная стойкость. Методы получения аморфных металлов и практическое использование сочетания их магнитных и механических свойств.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 23.06.2009 |
Размер файла | 260,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Федеральное агентство по образованию РФ
Пермский государственный технический университет
Кафедра: «Сварочного производства и технологии конструкционных материалов»
Реферат
По предмету «Технология конструкционных материалов»
На тему:
Принцип получения аморфных материалов
Выполнил:
ст. гр. ПКМ-07-1
Глезман А.В.
Проверил:
доцент
Лямин Я.В.
г. Пермь 2009.
Содержание
Введение
1. Структура аморфных сплавов
2. Аморфные ферромагнетики
3. Образование аморфной структуры
4. Методы получения аморфных металлов
5. Практическое использование аморфных сплавов
Список используемой литературы
Введение
В последние годы XX столетия внимание физиков и материаловедов привлечено к конденсированным средам, для которых характерно неупорядоченное расположение атомов в пространстве.
В начале 60-х годов в научном мире распространилось сообщение о том, что получены металлические сплавы, не имеющие кристаллической структуры. Металлы и сплавы с беспорядочным расположением атомов стали называть аморфными металлическими стеклами, отдавая должное той аналогии, которая существует между неупорядоченной структурой металлического сплава и неорганическим стеклом.
Открытие аморфных металлов внесло большой вклад в науку о металлах, существенно изменив наши представления о них. Оказалось, что аморфные металлы разительно отличаются по своим свойствам от металлических кристаллов, для которых характерно упорядоченное расположение атомов.
Аморфные металлы часто называют материалами будущего, что обусловлено уникальностью их свойств, не встречающихся у обычных кристаллических металлов. Широкому распространению аморфных металлов препятствует высокая себестоимость, сравнительно низкая термическая устойчивость, а также малые размеры получаемых лент, проволоки, гранул. Кроме того, применение аморфных сплавов в конструкциях ограничено из-за их низкой свариваемости.
1. Структура аморфных сплавов
Сразу же после получения аморфных металлических сплавов (АМС) возникли вопросы, связанные с их атомной структурой.
С помощью рентгеновской, нейтронной, электронной дифракции было показано, что в АМС имеется более или менее четко определяемый на расстоянии двух-трех соседних атомов так называемый ближний порядок. Ближний порядок, лежащий в основе структуры аморфных сплавов, является системой метастабильной. При нагреве до температуры кристаллизации Тх он перестраивается в обычную кристаллическую структуру. В среднем для большинства аморфных сплавов Тх находится в пределах 650-1000 К. К счастью, при комнатной температуре аморфные сплавы могут сохранять структуру и свойства в течение 104 - 105 лет.
Аморфная структура характеризуется отсутствием дальнего порядка в расположении атомов, благодаря чему в ней нет кристаллической анизотропии, отсутствуют границы блоков, зерен и другие дефекты структуры, типичные для поликристаллических сплавов.
Следствием такой аморфной структуры являются необычные магнитные, механические, электрические свойства и коррозионная стойкость аморфных металлических сплавов.
2. Аморфные ферромагнетики
В настоящее время почти все сферы технического применения АМС основываются на уникальном сочетании магнитных и механических свойств, которое делает аморфные металлы одним из ключевых элементов современных информационных технологий. К сожалению, магнитные свойства вещества не являются тем предметом, о котором легко рассказать популярно, поэтому сначала нам придется хотя бы поверхностно затронуть удивительный природный феномен, получивший название "ферромагнетизм" (от лат. ferrum - железо).
При комнатной температуре ферромагнетизмом обладают три чистых металла: железо (Fe), никель (Ni) и кобальт (Co). Каждый из атомов этих элементов обладает магнитным моментом, то есть может рассматриваться как очень маленькая магнитная стрелка или постоянный магнит. Естественно, магнитный момент каждого атома мал, мал настолько, что для удобного его описания применяется специальная единица - магнетон Бора. Магнетон Бора mБ является самой маленькой единицей (квантом) магнетизма, и по современным представлениям никакая физическая система не может иметь отличный от нуля магнитный момент, меньший mБ . Величина магнетона Бора определяется по формуле и является комбинацией фундаментальных физических констант: e, m - заряд и масса электрона, " - постоянная Планка и c - скорость света.
Возникновение ферромагнетизма связано с проявлением так называемого обменного взаимодействия, которое получает объяснение в рамках квантовой теории. Для нас важен результат этого процесса, который сводится к следующему: существует определенная критическая температура TC (температура Кюри), ниже которой весь объем ферромагнетика разбивается на области, получившие название доменов, внутри которых магнитные моменты атомов параллельны друг другу. Температура Кюри зависит от сорта атомов и структурного состояния вещества и является одной из важнейших характеристик ферромагнетика.
Величина магнитного поля, возникшего в веществе вследствие упорядочения ориентации атомных магнитных моментов, называется намагниченностью. В материалах, не обладающих ферромагнетизмом, намагниченность возникает под влиянием внешнего магнитного поля, ориентирующего магнитные моменты атомов. Внутри доменов ферромагнетика намагниченность возникает самопроизвольно под действием сил обменного взаимодействия. Поэтому домены называют областями спонтанной (то есть самопроизвольной) намагниченности. На границе двух доменов магнитные моменты атомов постепенно меняют ориентацию в тонком переходном слое, который называется доменной стенкой.
Изменение намагниченности в зависимости от внешнего поля принято изображать графически. При этом по оси абсцисс откладывается внешнее магнитное поле H, прикладываемое к ферромагнетику, а по оси ординат - намагниченность M. При отсутствии внешнего поля намагниченность равна нулю. По мере возрастания внешнего магнитного поля происходит движение доменных стенок таким образом, что объем доменов, спонтанная намагниченность которых параллельна внешнему полю, также возрастает (средняя часть растущего отрезка кривой). Дальнейшее увеличение внешнего поля приводит к тому, что весь объем ферромагнетика намагничивается до насыщения. Максимальное значение намагниченности называют намагниченностью насыщения и обозначают Ms (от англ. saturation - насыщение).
При уменьшении внешнего поля до нуля намагниченность ферромагнетика не становится нулевой. Всегда остается так называемая остаточная намагниченность, которая обозначается Mr (от англ. remainder - остаток). Наличие остаточной намагниченности лежит в основе существования постоянных магнитов. Чтобы снять остаточную намагниченность, необходимо прикладывать внешнее магнитное поле с обратным знаком (то есть в противоположном направлении). Значение размагничивающего поля, которое необходимо для того, чтобы остаточная намагниченность образца стала равной нулю, называется коэрцитивной силой и обозначается Hc . Название не очень удачное, никакой силы нет, есть только магнитное поле. Поэтому в настоящее время термин "коэрцитивная сила" вытесняется термином "коэрцитивное поле".
Коэрцитивное поле является очень важной характеристикой ферромагнитного материала, величина которой определяет, является ли материал магнитомягким (Hc < 100 A/м) или магнитожестким (Hc > 100 A/м). Магнитомягкие материалы применяются для изготовления сердечников трансформаторов и электромагнитов, статоров электромоторов, магнитных головок записи и воспроизведения. Магнитожесткие материалы используются главным образом для изготовления постоянных магнитов.
Еще одной важнейшей характеристикой ферромагнитных материалов (главным образом магнитомягких) является начальная магнитная проницаемость где H берется на восходящем участке кривой намагничивания равным Hc по абсолютной величине. Для магнитомягких материалов коэрцитивное поле всегда мало, поэтому mi измеряется на начальном участке кривой намагничивания. Типичные значения mi при малых (менее 1 МГц) частотах перемагничивания лежат в интервале 104-105. С ростом частоты изменения внешнего поля начальная магнитная проницаемость кристаллических ферромагнетиков уменьшается до 102-103.
Долгое время существовало мнение, что ферромагнетизм присущ только упорядоченным кристаллическим структурам. А.И. Губанов в 1960 году первым предсказал существование ферромагнетизма в аморфных металлических сплавах. Следует подчеркнуть, что ферромагнетизм аморфных сплавов обусловлен наличием в них одного, двух или всех трех ферромагнитных элементов: железа, никеля и кобальта. Двойные ферромагнитные сплавы можно разделить на следующие группы: сплавы ферромагнитных элементов с переходными металлами: Fe-Au, Co-Zr, Ni-Pt и т.д.; сплавы ферромагнитных элементов с неметаллами: Fe-C, Co-B, Ni-P и т.д.; сплавы ферромагнитных элементов с одним из редкоземельных металлов: Fe-Tb, Co-Sm, Ni-Nd и т. д. Кроме двойных разработано большое количество трех-, четырех- и многокомпонентных аморфных ферромагнитных сплавов.
Какие полезные магнитные свойства улучшаются в результате образования аморфной структуры? Известно, что в обычных ферромагнетиках всегда имеется магнитная анизотропия, обусловленная кристаллическим порядком расположения магнитных моментов атомов. Магнитная анизотропия существенно уменьшает подвижность доменных стенок и увеличивает коэрцитивное поле. В принципе в аморфных ферромагнетиках магнитная анизотропия должна быть равна нулю, поскольку отсутствует кристаллический дальний порядок. Практически реальные аморфные ферромагнетики все же обладают магнитной анизотропией, которая, однако, на два порядка меньше, чем в кристаллических. Уменьшение магнитной анизотропии приводит к резкому снижению коэрцитивного поля до значений 0,01 А/м, что уменьшает потери при перемагничивании. Таким образом, аморфные металлические сплавы почти всегда являются магнитомягкими ферромагнетиками.
Другим полезным свойством аморфных ферромагнетиков является более высокое значение начальной магнитной проницаемости как на низких (0,1-1 МГц), так и на высоких (5-15 МГц) частотах. Это свойство определяется высоким удельным электрическим сопротивлением аморфных ферромагнетиков, значительно снижающим потери на токи Фуко.
Завершая описание магнитных свойств аморфных ферромагнетиков, мы приходим к выводу, что присущие им магнитные свойства возникают благодаря неупорядоченному расположению атомов. Некоторые из этих свойств являются уникальными и не могут быть получены в кристаллических сплавах.
3. Образование аморфной структуры
Аморфные металлические сплавы (АМС) получают быстрой закалкой расплавов при скоростях охлаждения жидкого металла 104-106 град/с и при условии, что сплав содержит достаточное количество элементов-аморфизаторов. Аморфизаторами являются неметаллы: бор, фосфор, кремний, углерод и металлы. Соответственно аморфные металлические сплавы разделяются на сплавы «металл--неметалл» и «металл--металл».
Структура аморфных сплавов подобна структуре замороженной жидкости. Затвердевание происходит настолько быстро, что атомы вещества оказываются замороженными в тех положениях, которые они занимали, будучи в жидком состоянии.
Затвердевание с образованием аморфной структуры принципиально возможно для всех металлов и сплавов. Для практического применения обычно используют сплавы переходных металлов (Fe, Co, Mn, Cr, Ni и др.), в которые для образования аморфной структуры добавляют аморфообразующие элементы типа В, C, Si, P, S. Такие аморфные сплавы обычно содержат около 80 % ат. одного или нескольких переходных металлов и 20 % металлоидов, добавляемых для образования и стабилизации аморфной структуры. Амортизаторы понижают температуру плавления и обеспечивают достаточно быстрое охлаждение расплава ниже его температуры стеклования так, чтобы в результате образовалась аморфная фаза. На термическую стабильность аморфных сплавов оказывает наибольшее влияние кремний и бор, наибольшей прочностью обладают сплавы с бором и углеродом, а коррозионная стойкость зависит от концентрации хрома и фосфора.
4. Методы получения аморфных металлов
Сверхвысокие скорости охлаждения жидкого металла для получения аморфной структуры можно реализовать различными способами. Общим в них является необходимость обеспечения скорости охлаждения не ниже 106 град/с. Известны методы катапультирования капли на холодную пластину, распыление струи газом или жидкостью, центрифугирование капли или струи, расплавление тонкой пленки поверхности металла лазером с быстрым отводом тепла массой основного металла, сверхбыстрое охлаждение из газовой среды и др. Использование этих методов позволяет получать ленту различной ширины и толщины, проволоку и порошки.
Наиболее эффективными способами промышленного производства аморфной ленты являются охлаждение струи жидкого металла на внешней (закалка на диске) или внутренней (центробежная закалка) поверхностях вращающихся барабанов или прокатку расплава между холодными валками, изготовленными из материалов с высокой теплопроводностью.
Рис.1. Методы получения тонкой ленты путем закалки из расплава: а) центробежная закалка; б) закалка на диске; в) прокатка расплава; г) центробежная закалка; д) планетарная закалка
На рис. 1 приведены принципиальные схемы этих методов. Расплав, полученный в индукционной печи, выдавливается нейтральным газом из сопла и затвердевает при соприкосновении с поверхностью вращающегося охлаждаемого тела (холодильника). Различие состоит в том, что в методах центробежной закалки и закалки на диске расплав охлаждается только с одной стороны. Основной проблемой является получение достаточной степени чистоты внешней поверхности, которая не соприкасается с холодильником. Метод прокатки расплава позволяет получить хорошее качество обеих поверхностей ленты, что особенно важно для аморфных лент, используемых для головок магнитной записи. Для каждого метода имеются свои ограничения по размерам лент, поскольку есть различия и в протекании процесса затвердевания, и в аппаратурном оформлении методов. Если при центробежной закалке ширина ленты составляет до 5 мм, то прокаткой получают ленты шириной 10 мм и более. Метод закалки на диске, для которого требуется более простая аппаратура, позволяет в широких пределах изменять ширину ленты в зависимости от размеров плавильных тиглей. Данный метод позволяет изготавливать как узкие ленты шириной 0,1-0,2 мм, так и широкие -- до 100 мм, причем точность поддержания ширины может быть ± 3 мкм. Разрабатываются установки с максимальной вместимостью тигля до 50 кг.
Во всех установках для закалки из жидкого состояния металл быстро затвердевает, растекаясь тонким слоем по поверхности вращающегося холодильника. При постоянстве состава сплава скорость охлаждения зависит от толщины расплава и характеристик холодильника. Толщина расплава на холодильнике определяется скоростью его вращения и скоростью истечения расплава, т. е. зависит от диаметра сопла и давления газа на расплав. Большое значение имеет правильный выбор угла подачи расплава на диск, позволяющий увеличить длительность контакта металла с холодильником. Скорость охлаждения зависит также от свойств самого расплава: теплопроводности, теплоемкости, вязкости, плотности.
Для получения тонкой аморфной проволоки используют разные методы вытягивания волокон из расплава.
Рис. 2 Методы получения тонкой проволоки, закаленной из расплава: а) протягивание расплава через охлаждающую жидкость (экструзия расплава); б) вытягивание нити из вращающегося барабана; в) вытягивание расплава в стеклянном капилляре; 1 -- расплав; 2 -- охлаждающая жидкость; 3 -- стекло; 4 -- форсунка; 5 -- смотка проволоки
0В первом методе (рис. 2, а) расплавленный металл протягивается в трубке круглого сечения через водный раствор солей. Во втором (рис. 2, б) -- струя расплавленного металла падает в жидкость, удерживаемую центробежной силой на внутренней поверхности вращающегося барабана: затвердевшая нить сматывается затем из вращающейся жидкости. Известен метод, состоящий в получении аморфной проволоки путем максимально быстрого вытягивания расплава в стеклянном капилляре (рис. 2, в). Этот метод также называют методом Тейлора. Волокно получается при протягивании расплава одновременно со стеклянной трубкой, при этом диаметр волокна составляет 2-5 мкм. Главная трудность здесь состоит в отделении волокна от покрывающего его стекла, что, естественно, ограничивает составы сплавов, аморфизируемых данным методом.
5. Практическое использование аморфных сплавов
Использование аморфных сплавов в качестве диффузионных барьеров устройств привело к тому, что линейные размеры токоведущих дорожек, контактных площадок и других элементов современных интегральных схем не превышают 0,5-1 мкм. При субмикронных размерах рабочих элементов создаются условия для взаимного проникновения атомов - диффузии на границе раздела металл-полупроводник. Этот процесс со временем приводит к замыканию токоведущих дорожек и выходу прибора из строя. Чтобы предотвратить диффузию, необходимо создать тонкий барьерный слой между полупроводником и металлом. Наилучшими барьерными свойствами обладают аморфные металлические сплавы. Диффузия через аморфные слои сильно затруднена вследствие нерегулярности атомной структуры. Особенно хорошими барьерными свойствами обладают аморфные сплавы тугоплавких металлов, например Re - Ta , Re - Nb.
Использование аморфных сплавов для изготовления магнитных головок и датчиков
Как известно, для записи и хранения информации используются ферромагнитные материалы. В результате исследований, направленных на увеличение информационной плотности, уже получены материалы, плотность записи на которых достигает 108 бит/см2. При этом размер области, хранящей один бит, не превышает 1 мкм2. Такие носители делают из магнитожестких материалов, обладающих большиим коэрцитивным полем. При этом магнитная головка, используемая при записи информации, должна быть из материала, имеющего высокое значение намагниченности насыщения Мг. К тому же при считывании информации важно, чтобы материал сердечника головки имел высокую начальную магнитную проницаемость.
Всем этим требованиям удовлетворяют аморфные ферромагнитные сплавы. Используя напыление, можно изготовить головку, обладающую высокой намагниченностью насыщения Мг = 1,2-1,5 Тл, любых мыслимых размеров, способную перемагничивать микроскопические области носителя (около 0,1 мкм). Аморфные головки относительно дешевы, обладают высокой износостойкостью (время работы порядка 10000 часов), характеризуются высокими значениями начальной электромагнитной проницаемости на частотах 5-15 МГц.
Аморфные слои, полученные с помощью ионно-плазменного напыления можно использовать для создания высокочувствительных датчиков, сенсорных устройств и малогабаритных трансформаторов. Новые сенсорные устройства можно использовать в технологических процессах производства автомобилей, индустриальных роботов, в промышленных измерителях различного рода свойств.
Список используемой литературы
1. Солнцев Ю.П., Пряхин Е. И. Материаловедение: Учебник для вузов. Изд. 3-е перераб. и доп.- Спб.: ХИМИЗДАТ, 2004
2. Золотухин И.В. «Физические свойства аморфных металлических материалов». М: Металлургия, 1986
Подобные документы
Свойства металлов и сплавов. Коррозионная стойкость, холодостойкость, жаростойкость, антифринционность. Механические свойства металлов. Диаграмма растяжения образца. Испытание на удар. Физический смысл упругости. Виды изнашивания и прочность конструкции.
контрольная работа [1006,5 K], добавлен 06.08.2009Характеристика основных механических свойств металлов. Испытания на растяжение, характеристики пластичности (относительное удлинение и сужение). Методы определения твердости по Бринеллю, Роквеллу, Виккерсу; ударной вязкости металлических материалов.
реферат [665,7 K], добавлен 09.06.2012Определение механических свойств конструкционных материалов путем испытания их на растяжение. Методы исследования качества, структуры и свойств металлов и сплавов, определение их твердости. Термическая обработка деформируемых алюминиевых сплавов.
учебное пособие [7,6 M], добавлен 29.01.2011Классификация, маркировка, состав, структура, свойства и применение алюминия, меди и их сплавов. Диаграммы состояния конструкционных материалов. Физико-механические свойства и применение пластических масс, сравнение металлических и полимерных материалов.
учебное пособие [4,8 M], добавлен 13.11.2013Методы получения наноматериалов. Синтез наночастиц в аморфных и упорядоченных матрицах. Получение наночастиц в нульмерных и одномерных нанореакторах. Цеолиты структурного типа. Мезопористые алюмосиликаты, молекулярные сита. Слоистые двойные гидроксиды.
курсовая работа [978,0 K], добавлен 01.12.2014Методы получения ферромагнетиков: самосборка аминокислот в полипептидную цепь и катализ химической реакции. Технология получения наноструктурированных магнитных материалов в лабораторных условиях. Использование магнитных наночастиц в биомедицинских целях.
курсовая работа [5,2 M], добавлен 29.08.2013Керамика на основе ZrO2: структура и механические свойства. Керамика на основе ультрадисперсных порошков. Технология получения керамических материалов. Метод акустической эмиссии. Структура, фазовый состав и механические свойства керамики ZrO2.
дипломная работа [1,2 M], добавлен 04.08.2012Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".
курсовая работа [1,6 M], добавлен 19.03.2013Аустенитные и азотосодержащие коррозионно-стойкие стали: способы получения, технология производства, выплавка, термомеханическая обработка, основные свойства. Метод электрошлакового переплава металлических электродов в водоохлаждаемый кристаллизатор.
дипломная работа [2,7 M], добавлен 19.06.2011Реакция синтеза полимера из соединений, имеющих две или более функциональные группы, сопровождающаяся образованием низкомолекулярных продуктов (H2O, HN3, HCl, CH2O). Форма и структура макромолекул полимеров. Физическое состояние аморфных полимеров.
презентация [3,0 M], добавлен 21.06.2017