Характерные свойства деталей из стали

Основные отличия кипящей стали от спокойной. Определение динамической прочности металлов. Структурные и фазовые превращения при медленном охлаждении жидкого состояния сплава. Химический состав сплава и выбор режима термической обработки детали из стали.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 02.05.2009
Размер файла 211,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

22

Содержание

1. В чем отличие кипящей стали от спокойной? Когда и какую из них рекомендуется применять?

2. Как определяются динамическая прочность металлов и критическая температура перехода металла в хрупкое состояние?

3. По диаграмме состояний «железо - цементит» опишите, какие структурные и фазовые превращения будут происходить при медленном охлаждении из жидкого состояния сплава с заданным содержанием углерода. Охарактеризуйте этот сплав и определите для него при заданной температуре количество, состав фаз и процентное соотношение, используя данные, приведенные в табл. 2. Постройте кривую охлаждения сплава

4. Что собой представляют порошковые материалы? Как их получают и где применяют? Приведите примеры

5. Выберите режим термической обработки детали из стали указанной марки для получения заданных свойств и обоснуйте его. На основе диаграммы состояний «железо - цементит» и построенного графика термической обработки опишите превращения в структуре стали при нагреве, выдержке, охлаждении при закалке и отпуске, используя данные табл. 3.

6. Для изготовления детали выбран сплав Д1. Какой химический состав этого сплава? Опишите, каким видам термической обработки он подвергается. В чем сущность процесса старения?

Список литературы

1. В чем отличие кипящей стали от спокойной? Когда и какую из них рекомендуется применять?

По способу раскисления различают кипящие, полуспокойные и спокойные стали [6, с. 256].

Кипящая сталь наиболее дешевая, так как при ее выплавке расходуется минимальное количество специальных добавок и обеспечивается максимальный выход годного продукта. Пониженное содержание кремния и марганца обусловливает меньшую прочность и большую пластичность, чем у спокойной стали .

Недостатками кипящей стали являются развитая ликвация, в головной части слитка неоднородность содержания углерода достигает 400 %, серы - 900 % от их среднего содержания [6, с. 256].

В спокойной стали неоднородность содержания углерода лишь на 60 %, а по сере на 110 % превышает их среднее содержание в стали [6, с. 256].

Прокат из кипящей стали более неоднороден по химическому составу, чем прокат из спокойной стали. Листы и профили, изготовленные из разных частей слитка, различаются по содержанию углерода, серы и фосфора. Поэтому прокат из кипящей стали характеризуется неоднородностью структуры и механических свойств даже для металла одной плавки. В среднем кипящая сталь содержит около 0,02 % кислорода, что в несколько раз больше, чем у спокойной стали. Хладостойкость кипящей стали понижена, в среднем Т50 у нее на 10-20 °С выше по сравнению с Т50 для спокойной стали. Пониженное сопротивление хрупкому разрушению особенно характерно для проката значительной толщины (14-20 мм и более) из кипящей стали [6, с. 256].

Спокойная сталь гораздо однороднее по химическому составу, чем кипящая сталь. Благодаря присутствию в спокойной стали остаточного (кислоторастворимого) алюминия у нее ниже склонность к росту зерна, чем у кипящей стали. Поэтому прочность и хладостойкость более однородного и мелкозернистого проката из спокойной стали выше, чем проката из кипящей стали.

Но при затвердевании спокойной стали в изложницах образуется большая усадочная раковина, для удаления которой прибегают к обрезанию слитка (12-16 % по массе) [6, с. 257]. Вследствие этих потерь, а также дополнительных расходов, в том числе на ферросплавы и алюминий для раскисления, спокойная сталь дороже кипящей.

Существует сталь с промежуточной степенью раскисления - полуспокойная. В отличие от кипящей она обрабатывается перед разливкой небольшим количеством раскислителей.

По однородности химического состава, микроструктуры и механических свойств, по сопротивлению хрупкому разрушению и прочностным показателям прокат из полуспокойной стали уступает прокату из спокойной стали и занимает между ним и прокатом из кипящей стали промежуточное положение.

Основным преимуществом кипящей стали является высокий (более 95 %) выход годного. У полуспокойной стали, раскисляемой марганцем и в ковше кремнием, выход годного составляет около 90 % [6, с. 257].

Спокойная сталь раскисляется кремнием, марганцем и алюминием. Выход годного слитков спокойной стали около 85%, но металл значительно более плотен и имеет более однородный химический состав.

2. Как определяются динамическая прочность металлов и критическая температура перехода металла в хрупкое состояние?

Нагрузка на металл, возрастающая медленно, называется статической. Нагрузка, прикладываемая к металлу с большой скоростью, называется динамической.

Для расчетов на прочность при действии повторно-переменных напряжений необходимо знать механические характеристики материала. Они определяются путем испытания образцов на специальных машинах.

Испытание ведут в следующей последовательности. Берут 10 одинаковых образцов обычно диаметром 6 10 мм с полированной поверхностью. Первый образец нагружают до значительного напряжения д1для того, чтобы он разрушился при сравнительно небольшом числе N1 оборотов (циклов). При этом имеется в виду наибольшее напряжение цикла для наиболее напряженной точки сечения. При изгибе, как известно, наибольшее напряжение возникает в крайних точках сечения и определяется по формуле

Результаты испытании наносят на диаграмму, которая строится в координатах .

После испытания первого образца на диаграмме появляется точка А, координаты которой N1 и д1max (или просто д1).

Затем испытывают второй образец, создавая в нем несколько меньшее напряжение д2. Естественно, что он разрушится при большем числе циклов N2.На диаграмму наносят точку В с координатами N2 и д2 и т. д.

Испытав все образцы и соединив точки А, В, С и т. д. плавной линией, получим некоторую кривую АВСД, которая называется кривой усталости (или кривой Вёлера).

Наибольшее значение максимального по величине напряжения цикла, которому материал может сопротивляться без разрушения неограниченно долго, называется пределом выносливости (пределом усталости) и обозначатеся д-1.

Практически, как показывает опыт, образец из углеродистой стали, выдержавший 107 циклов (это число называется базой испытаний), может выдержать их неограниченно много.

Поэтому после прохождения 107 циклов для стальных образцов опыты прекращают.

Напряжение д-1, соответствующее N = 107, принимается за предел выносливости.

Для цветных металлов и для закаленных сталей не удается установить такое число циклов, выдержав которое, образец не разрушился бы в дальнейшем. Для этих случаев введено понятие предела ограниченной выносливости, как наибольшего по величине максимального напряжения цикла, при котором образец способен выдержать определенное число циклов (обычно N = 108).

Аналогичным образом, но на других машинах проводят испытания и находят пределы выносливости при действии осевых сил д-1, при кручении (ф-1) и при сложных деформациях.

В настоящее время для многих материалов пределы выносливости найдены и приводятся в справочниках. Из этих данных видно, что для большинства металлов предел выносливости при симметричном цикле меньше предела текучести.

Многие детали машин за время своей службы испытывают только ограниченное число перемен напряжений. В этих случаях расчет ведут по более высокому пределу ограниченной выносливости, при которой материал выдерживает заданное число циклов. Его величина определяется по кривой усталости для заданного числа циклов.

Хрупкость, свойство материала разрушаться при небольшой (преимущественно упругой) деформации под действием напряжений, средний уровень которых ниже предела текучести. Образование хрупкой трещины и развитие процесса хрупкого разрушения связано с образованием малых зон пластической деформации.

Относительная доля упругой и пластической деформации при хрупком разрушении зависит от свойств материала (характера межатомных или межмолекулярных связей, микро- и кристаллической структуры) и от условий его работы. Приложение растягивающих напряжений по трём главным осям (трёхосное напряжённое состояние), концентрация напряжений в местах резкого изменения сечения детали, понижение температуры и увеличение скорости нагружения, а также повышение запаса упругой энергии нагруженной конструкции способствуют переходу материала в хрупкое состояние. Например, существенно упругий материал - мрамор, хрупко разрушающийся при растяжении, в условиях несимметричного по трём главным осям сжатия ведёт себя как пластичный материал; чем выше концентрация напряжений, тем сильнее проявляется Х. материала. Поэтому Х следует рассматривать в связи с условиями работы материала.

Условием роста хрупкой трещины является нарушение равновесия между освобождающейся при этом энергией упругой деформации и приращением полной поверхностной энергии (включая и работу пластической деформации тонкого слоя, примыкающего к краям трещины). Хрупкая прочность элемента с трещиной обратно пропорциональна , где l - полудлина трещины. В линейной теории механики упругого разрушения вводится константа материала K1c (вязкость разрушения), характеризующая сопротивление развитию трещины в условиях плоской деформации. Хрупкая трещина распространяется с большой скоростью (около 1000 м/сек в стали, что составляет примерно 1/5 от скорости распространения упругой волны сдвига).

Склонность материала к хрупкому разрушению оценивают обычно по температурным зависимостям работы разрушения или характеристик пластичности, позволяющих определить критическую температуру хрупкости Ткр, т. е. температуру перехода из пластического состояния в хрупкое. Чем выше Ткр, тем более материал склонен к хрупкому разрушению.

3. По диаграмме состояний «железо - цементит» опишите, какие структурные и фазовые превращения будут происходить при медленном охлаждении из жидкого состояния сплава с заданным содержанием углерода. Охарактеризуйте этот сплав и определите для него при заданной температуре количество, состав фаз и процентное соотношение, используя данные, приведенные в табл. 2. Постройте кривую охлаждения сплава

На рис. 1 отражена диаграмма состояния железо - углерод, где показаны различные превращения, происходящих в сплавах (от чистого железа до цементита, содержащего 6,67% углерода) при температурах от комнатной до температуры плавления железа и цементита).

Рис.1. Диаграмма состояний железо - цементит

Линия АВСD - ликвидус системы.

На участке АВ начинается кристаллизация феррита (), на участке ВС начинается кристаллизация аустенита, на участке СD - кристаллизация цементита первичного.

Линия AHJECF - линия солидус. На участке АН заканчивается кристаллизация феррита (). На линии HJB при постоянной температуре 14990С идет перетектическое превращение, заключающееся в том, что жидкая фаза реагирует с ранее образовавшимися кристаллами феррита (), в результате чего образуется аустенит:

При температуре ниже 727o С в состав ледебурита входят цементит первичный и перлит, его называют ледебурит превращенный (ЛП).

Перлит может существовать в зернистой и пластинчатой форме, в зависимости от условий образования.

По линии PQ начинается выделение цементита третичного из феррита, обусловленное снижением растворимости углерода в феррите при понижении температуры.

Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо - цементит, т.е. критические точки, имеют условные обозначения.

Обозначаются буквой А (от французского arret - остановка):

А1 - линия PSK (7270С) - превращение П А;

A2 - линия MO (7680С, т. Кюри) - магнитные превращения;

A3 - линия GOS ( переменная температура, зависящая от содержания углерода в сплаве) - превращение Ф А;

A4 - линия NJ (переменная температура, зависящая от содержания углерода в сплаве) - превращение ;

Acm - линия SE (переменная температура, зависящая от содержания углерода в сплаве) - начало выделения цементита вторичного (иногда обозначается A3).

Так как при нагреве и охлаждении превращения совершаются при различных температурах, чтобы отличить эти процессы вводятся дополнительные обозначения. При нагреве добавляют букву с, т.е , при охлаждении - букву r, т.е. .

Структура стали, содержащая углерода менее 0,8%, как в нашем случае, состоит из механической смеси феррита с перлитом. Если содержание углерода в аустените больше 0,8%, то в области между линиями SE и SK из аустенита будет выделяться цементит, в связи с чем, в связи с чем процентное содержание углерода в аустените будет уменьшаться, и когда оно достигнет 0,8%, аустенит при температуре 727С перейдет в перлит.

Линия эвтектоидного превращения PSK при охлаждении соответствует распаду аустенита (0,8 % С) с образованием эвтектоида - ферритоцементитной структуры, получившей название перлит.

Рис.2. График охлаждения сплава феррит + перлит

В данном случае мы имеем доэтектоидный сплав.

При охлаждении доэвтектического сплава выделение кристаллов б-фазы начинается с температуры, отвечающей точке A. В первоначальный момент состав этой фазы отвечает точке A, лежащей на линии солидус.

По мере последующего охлаждения состав б-фазы меняется в соответствии с отрезком линии солидус, а состав жидкости - по линии ликвидус от 6 до E. При температуре, соответствующей, когда оставшаяся жидкая фаза будет иметь состав, определяемый точкой E, начнётся эвтектическое превращение. После его окончания фазовыми составляющими сплава будут б- и в-фазы, а структурными составляющими - кристаллы б-фазы и эвтектика, состоящая из б- и в-кристаллов. При дальнейшем охлаждении происходит изменение состава б-фазы: она обедняется компонентом B в соответствии с линией FM; при этом образуется в-фаза. Её выделение имеет место как в б-фазе, находящейся в эвтектике, так и в участках первичной б-фазы. В последнем случае частицы в-фазы могут быть обнаружены при микроструктурном исследовании.

4. Что собой представляют порошковые материалы? Как их получают и где применяют? Приведите примеры

Важную роль в развитии технологии создания материалов с заданными свойствами играет порошковая металлургия - метод, при помощи которого в настоящее время изготовляют широкий ассортимент порошковых и композиционных материалов.

Сущность получения деталей методами порошковой металлургии заключается в том, что из порошков металлов и неметаллов под давлением 200- 800 МПа получают в пресс - формах смеси (прессовки), которые спекают при температуре на 1/3 ниже температуры плавления металла основного компонента смеси [7, с. 96].

В условиях массового производства этот метод отличается:

-высокой производительностью;

-экономичностью;

-безотходностью (сокращает потери материала до 5%);

-позволяет получать изделия высокой размерной точности;

-дает возможность создавать новые материалы с широким диапазоном свойств, в некоторых случаях уникальных, не достижимых другими методами.

Первой операцией типовой технологии порошковой металлургии является получение порошков и/или приготовление шихты, то есть смешивание порошков различных компонентов, содержание которых определяется составом материалов [7, с. 96].

Металлический порошок представляет собой совокупность частиц металла, сплава или металлоподобного соединения, находящихся в контакте и не связанных между собой. Лигатурами называются вспомогательные сплавы, применяемые для введения в состав металлических сплавов легирующих элементов для придания сплавам определённых физических, химических или механических свойств. Металлические порошки характеризуются совокупностью физико-химических и технологических свойств.

К химическим свойствам металлических порошков относятся их химический и фазовый состав, газонасыщенность, пирофорность, токсичность, взрывоопасность.

Химический состав оценивают содержанием основных металлов, легирующих элементов, загрязнений и газов. Неметаллическими включениями являются преимущественно оксиды основного и примесных элементов. Характерной особенностью порошков является их газонасыщенность. Газы могут адсорбироваться как на поверхности, так и находиться внутри пор частиц порошка. С уменьшением размеров частиц увеличивается интенсивность взаимодействия порошка с окружающей средой, что приводит к повышению его газонасыщенности и окисленности металла. Предельное содержание примесей в порошках определяется их допустимым количеством в готовой продукции.

К физическим свойствам порошков относятся: плотность, удельная поверхность, форма, размер и микротвердость частиц, функциональные свойства (электрические, магнитные, оптические).

Порошки, используемые в порошковой металлургии, имеют развитую поверхность и высокое содержание поверхностных и объемных дефектов, что во многом определяет их поведении при дальнейшей обработке и отличает от объемных материалов идентичного состава. В большинстве случаев размеры частиц порошков составляют 0,5-500 мкм.

К основным технологическим свойствам порошков относятся: насыпная плотность, угол естественного откоса, текучесть, прессуемость и спекаемость.

Промышленность России производит широкую номенклатуру порошков таких металлов, как железо и его сплавы, никель, медь, кобальт, алюминий, титан, олово, цинк, свинец, магний, вольфрам, молибден, тантал, ниобий, лигатур и модификаторов.

Порошки, используемые в современной порошковой металлургии, представляют собой продукты высокого передела, на свойства которых непосредственно влияет способ изготовления [4, с. 132].

Работы ученых привели к созданию ряда оригинальных процессов получения металлических порошков, различающихся по гранулометрическому, химическому, фазовому составам, форме и микроструктуре частиц.

В настоящее время ведется разработка научных принципов создания и методов управления структурой и свойствами нанокристаллических композиционных порошков различного функционального назначения с размером кристаллитов менее 100 нм.

Порошковые металлические материалы используются практически в любой области техники, и объем их применения непрерывно расширяется. Спеченные антифрикционные материалы позволили повысить надежность и долговечность узлов трения, снизить потери на трение, существенно уменьшить стоимость. Разработка таких материалов, состоящих из пористой металлической матрицы, заполненной твердыми смазками, сделала возможным их применение в устройствах, где использование жидких смазок вообще не допустимо, например, в пищевой промышленности, при высоких температурах.

Пористые порошковые материалы широко используются в узлах трения, фильтрах, тепловых трубах, уплотнениях.

Электротехнические материалы, контакты, магнитомягкие и магнитотвердые материалы, инструменты для электроэрозионной обработки, точечной и роликовой сварки находят все более широкое применение в электротехнике, энерго- и аппаратостроении, автоматике и телемеханике, радиоэлектронике и других отраслях.

Порошковые конструкционные материалы являются наиболее распространенной продукцией порошковой металлургии, которая применяется не только в технике, но и, например, в медицине при изготовлении имплантатов для стоматологии и ортопедии.

Жаропрочные, жаростойкие и композиционные материалы определяют развитие таких отраслей современной техники, где без обеспечения специальных свойств невозможна эксплуатация машин и агрегатов: авиационной, ракетно-космической техники, химического машиностроения. Для их нужд были созданы тугоплавкие металлы и сплавы, тугоплавкие соединения, получаемые в большинстве случаев только методами порошковой металлургии. Тугоплавкие, твердые бескислородные соединения и материалы на их основе - карбиды, бориды, нитриды, силициды и другие - находят применение благодаря своим уникальным свойствам во многих отраслях промышленности, например инструментальной.

Твердые сплавы - важнейшие широко распространенные порошковые материалы, при получении которых в полной мере реализуются возможности порошковой металлургии: получение композиционных материалов из компонентов с резко различной температурой плавления, достижение уникального комплекса физико-механических свойств, безотходная технология. Применяются твердые сплавы в инструментальной промышленности, буровой технике, при обработке давлением.

5. Выберите режим термической обработки детали из стали указанной марки для получения заданных свойств и обоснуйте его. На основе диаграммы состояний «железо - цементит» и построенного графика термической обработки опишите превращения в структуре стали при нагреве, выдержке, охлаждении при закалке и отпуске, используя данные табл. 3.

Сталь У9 является инструментальной сталью, значит, при термообработке нам нужно добиться высокой твердости.

Такие свойства как пластичность нас не интересуют значит проводим не полную закалку

ПA+ЦII МЗАК +Аост+ЦII

так как сталь заэвтектоидная нагреваем до температуры АС1+30-50°С, после закалки проводим низкий отпуск, так как при нагреве свыше 200°С происходит полный отпуск и теряется твердость, для снятия внутренних напряжений после закалки. При низком отпуске твердость практически не падает. Температура отпуска 150-200°C выдержка 1-2,5 часа.

Рис. 3. График термической обработки стали У9

Поскольку с понижением температуры скорость диффузии углерода замедляется, процессы превращения аустенита, связанные с перераспределением углерода, не успевают получить своего полного развития. Вследствие этого у быстро охлажденной стали возникают неравновесные структурные состояния: сорбит, тростит и мартенсит. Сорбитом называется смесь феррита и цементита. Практически сорбит возникает при распаде аустенита в условиях сравнительно невысокой скорости охлаждения.

Дальнейшее увеличение переохлаждения приводит к образованию тростита, представляющего также смесь феррита и цементита, но большей степени дисперсности.

При наиболее резком охлаждении возникает принципиально отличная от вышеуказанных состояний структурная форма стали - мартенсит.

На схеме диаграммы изотермического превращения условно показана область мартенситного превращения (ниже Мн). Мартенситное превращение интенсивно протекает при непрерывном охлаждении в интервале температур от Мн до Мк. Малейшая изотермическая выдержка в этом интервале температур приводит к стабилизации аустенита, т. е. превращение не доходит до конца, и кроме мартенсита в структуре наблюдается так называемый остаточный аустенит. Для получения мартенситной структуры аустенит углеродистых сталей необходимо очень быстро и непрерывно охлаждать, применяя для этого холодную (лучше соленую) воду. Быстрое охлаждение необходимо для того, чтобы подавить возможные диффузионные процессы и образование перлитньых и бейнитных структур.

В процессе мартенситного г -> б-превращения углерод остается в твердом растворе, искажая кристаллическую решетку Fеа. Мартенсит имеет тетрагональную пространственную решетку.

6. Для изготовления детали выбран сплав Д1. Какой химический состав этого сплава? Опишите, каким видам термической обработки он подвергается. В чем сущность процесса старения?

Сплав Д1 - относится к числу дюралюминов.

Такой вид сплавов обладает достаточно высокой прочностью, пластичностью и относится к числу нормальных дюралюминов [7, с. 71].

Химический состав данного сплава характеризуется следующими данными.

Основой данной сплава выступает Al. Примерное его содержание в данном сплаве составляет 91,6- 95,4%.

Содержание иных основных элементов в данном сплаве отражено в таблице 1

Таблица 1. Химический состав в % атериала Д1

Fe

Si

Mn

Ni

Ti

Cu

Mg

Zn

Примеси:

до 0,7

до 0,7

0,4-0,8

до 0,1

до 0,1

3,8-4,8

0,4-0,8

до 0,3

Прочие, каждая 0,05, всего 0,1

Сплав упрочивается термической обработке.

Сплав хорошо обрабатывается в холодном и горячем состояниях. Температурный интервал горячей деформации 310-470°C [7, с. 71]. Охлаждение после горячей деформации на воздухе. Прессованные профили имеют пониженную коррозионную стойкость. Сплав хорошо сваривается точечной сваркой. Профили из сплава Д 1 могут поставляться в закаленном и естественно состаренном, а так же в отожженном состояниях.

Процесс старения сплавов - это изменение механических, физических и химических свойств металлов и сплавов, обусловленное термодинамической неравновесностью исходного состояния и постепенным приближением структуры к равновесному состоянию в условиях достаточной диффузной подвижности атомов [3, с. 83].

При быстром охлаждении от высоких температур (при закалке) или после кристаллизации и горячей пластической деформации) металлы и сплавы полностью или частично сохраняют атомную структуру, характерную для высокотемпературного состояния [3, с. 83].

В чистых металлах неравномерность этой структуры состоит в избыточной (для низких температур) концентрации вакансий и наличии других дефектов кристаллической структуры.

В сплавах неравновесность структуры может быть связана с сохранением фаз, неустойчивых при низких температурах. Наиболее важно старение сплавов, обусловленное процессами распада пересыщенного твёрдого раствора.

Состояние пересыщения твёрдого раствора возникает после охлаждения сплавов от высоких температур, поскольку обычно с повышением температуры растворимость примесей (или специально вводимых легирующих элементов) растет.

Имеется большое число сплавов, для которых старение проводится как специальная операция термической обработки, как и для данного сплава

Д 1 и обеспечивает получение комплекса важных механических или физических свойств.

Кроме высокой прочности, стареющие сплавы могут приобретать и др. ценные свойства, например высокую коэрцитивную силу.

При достаточно большой степени пересыщения твёрдый раствор оказывается полностью нестабильным и его расслоение идёт во всей массе материала с образованием сначала неоднородного твёрдого раствора с непрерывно меняющимся составом, а затем периодически расположенных частиц с чёткими границами раздела. Распад такого типа называется спинодальным и наблюдается в ряде технически важных сплавов (сплавы для постоянных магнитов типа кунифе). Более общим для стареющих сплавов является метастабильное состояние твёрдого раствора, распад которого должен идти путём образования и роста зародышей новой фазы, а процесс зарождения требует преодоления энергетического барьера. Этот барьер оказывается существенно пониженным при образовании когерентных частиц, т. е. частиц, у которых кристаллическая решётка упруго сопряжена с решёткой исходного твёрдого раствора. При сравнительно низких температурах распад твёрдых растворов часто останавливается на стадии образования зон - весьма дисперсных областей, обогащенных избыточным компонентом и сохраняющих кристаллическую структуру исходного раствора, впервые обнаруженных по эффектам диффузного рассеяния рентгеновских лучей (зоны Гинье - Престона). С помощью электронной микроскопии зоны Гинье - Престона наблюдали в сплавах Al - Ag в виде сферических частиц диаметром Старение металлов10A , в сплавах Al - Cu - в виде пластин толщиной порядка периодов решётки (<10A). Образование зон характерно для так называемого естественного старения, которое протекает при комнатных температурах в случае сплавов на основе Al, а также низкоуглеродистой стали или технического железа, где имеется твёрдый раствор, пересыщенный углеродом или азотом. В некоторых случаях зоны можно рассматривать как зародыши фазы выделения.

Понятию «естественное старение» противопоставляется «искусственное старение», которое в случае алюминиевых сплавов (исторически первых материалов, упрочняемых старением) проводилось при повышенных температурах (выше 100°С); в современной литературе вместо этих терминов чаще используются термины «низкотемпературное старение» и «высокотемпературное старение». В связи с различиями процесса распада в разных температурных интервалах для некоторых сплавов оптимальный комплекс свойств достигается после сложного старения в определенной последовательности при низкой и при более высокой температурах.

Различают два основных механизма распада пересыщенного твёрдого раствора: непрерывный, который идёт путём образования и роста отдельных зародышей - частиц фазы, содержащей избыточный компонент твёрдого раствора, и прерывистый (или ячеистый), при котором возникают и растут ячейки или колонии, состоящие обычно из равновесных фаз - новой фазы, обогащенной избыточным компонентом, и обеднённого (равновесного) твёрдого раствора. В первом случае частицы образуются по всему объёму и их рост сопровождается постепенным и непрерывным обеднением матричного твёрдого раствора. Во втором случае происходит движение границы раздела колония - непревращённая область твёрдого раствора. Колонии имеют обычно пластинчатое строение, зарождаются на границе зерна, и их движущийся фронт представляет собой подвижную высокоугловую границу с зерном исходного твёрдого раствора.

Сравнительно слабая холодная пластическая деформация, сама по себе не очень сильно меняющая свойства материала, существенно ускоряет процессы размежевания компонентов твёрдого раствора, которые приводят к образованию сегрегатов (а затем выделений) возле дислокаций. Этот суммарный эффект деформации и старения («деформационное старение») резко ухудшает вязкость и пластичность сплавов, что особенно нежелательно для материалов, подвергаемых глубокой штамповке (например, листовая сталь для автомобилестроения). Специальным легированием и термической обработкой можно существенно снизить вредные эффекты старения.

Список литературы

1. Алексеев В. С., Материаловедение. Конспект лекций. - М.: Эксмо, 2008.- 160с.

2. Арзамасов В. Б., Черепахин А. А., Материаловедение: Учебник для вузов/ В. Б. Арзамасов, А. А. Черепахин - М.: Экзамен, 2005.- 352с.

3. Бондаренко Г. Г., Кабанова Т. А., Рыбалко В. В., Материаловедение: Учебник для высших учебных заведений/ Г. Г. Бондаренко, Т. А. Кабанова, В. В. Рыбалко.- М.: Высшая школа, 2007.- 360с.

4. Евстратова Н. Н., Компанец В. Т., Сухарникова В. А., Материаловедение: Учебное пособие.- Ростов н/Д : Феникс, 2006.- 272с.

5. Никулин Н. В. Электроматериаловедение: Учебник для сред. - проф. тех училищ,- М.: Высшая школа, 1984.- 175с.

6. Солнцев Ю. П., Пряхин Е. И., Материаловедение: Учебное пособие/ Ю. П. Солнцев, Е. И. Пряхин.- М.: Химиздат, 2007.- 784с.

7. Чумак Н. Г. Материалы и технологии машиностроения - М. : Машиностроение, 1985.-256с.


Подобные документы

  • Характеристика стали 60С2А, химический состав и механические свойства. Структурные превращения в стали при термической обработке. Выбор оборудования для обработки детали. Разработка технологии термообработки и маршрутной технологии изготовления пружины.

    курсовая работа [2,7 M], добавлен 05.12.2014

  • Принцип построения диаграммы состояний сплавов, образующих ограниченные твердые растворы. Описание структурных и фазовых превращений при медленном охлаждении из жидкого состояния сплава с заданным содержанием углерода. Превращения в структуре стали.

    контрольная работа [1,1 M], добавлен 17.10.2011

  • Определение температуры закалки, охлаждающей среды и температуры отпуска деталей машин из стали. Превращения при термической обработке и микроструктура. Состав и группа стали по назначению. Свойства и применение в машиностроении органического стекла.

    контрольная работа [1,3 M], добавлен 28.08.2011

  • Марочный химический состав стали по ГОСТ. Превращения переохлажденного аустенита в изотермических условиях и при непрерывном охлаждении. Определение критической скорости закалки и температуры начала мартенситного превращения. Режимы термической обработки.

    курсовая работа [4,4 M], добавлен 13.02.2013

  • Фазовые превращения в стали. Основные виды предварительной термической обработки. Структурные изменения доэвтектоидной стали при полной фазовой перекристаллизации. Исправление структуры кованой, литой или перегретой стали. Устранение дендритной ликвации.

    реферат [1,8 M], добавлен 13.06.2012

  • Фазовые превращения в сплавах при нагреве и охлаждении. Процесс и этапы образования аустенита при нагреве. Структура стали после термической обработки. Диаграмма изотермического превращения переохлажденного аустенита. Мартенситное превращение в стали.

    презентация [574,6 K], добавлен 29.09.2013

  • Термическая обработка металлов и ее основные виды. Превращения, протекающие в структуре стали при нагреве и охлаждении. Основы химико-термической обработки. Цементация, азотирование, нитроцементация и цианирование, борирование и силицирование стали.

    реферат [160,5 K], добавлен 17.12.2010

  • Теория термической обработки. Превращения в стали при нагреве и охлаждении. Отжиг и нормализация. Дефекты термической обработки. Дефекты при отжиге и нормализации. Дефекты при закалке. Химико-термическая обработка и поверхностное упрочнение стали.

    доклад [411,0 K], добавлен 06.12.2008

  • Повышение твердости стали за счет образования мартенситной структуры. Превращение перлита в аустенит. Нагрев заэвтектоидной стали до температуры выше критической точки. Основные фазовые превращения, протекающие в сталях при нагреве и охлаждении.

    доклад [19,3 K], добавлен 17.06.2012

  • Процессы, протекающие в стали 45 во время нагрева и охлаждения. Применение стали 55ПП, свойства после термообработки. Выбор марки стали для роликовых подшипников. Обоснование выбора легкого сплава для сложных отливок. Способы упрочнения листового стекла.

    контрольная работа [71,5 K], добавлен 01.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.