Классификация чугунов

Общие сведения о сплавах и их химические свойства. Основные разновидности чугунов: белые (передельные), серые, ковкие, высокопрочные - их состав, обработка, литейные и механические свойства. Рекомендации по отливу, отжигу и повышению свойств сплавов.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 27.02.2009
Размер файла 239,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

10

Содержание

  • 1. Общие сведения 3
  • 2. Белые чугуны 5
  • 3. Серые чугуны 6
  • 4. Ковкие чугуны 8
  • 5. Высокопрочные чугуны 9
  • Список литературы 11

1. Общие сведения

Чугун -- сплав Fe (основа) с С (обычно 2...4 %), содержащий постоянные примеси (Si, Мn, S, Р), а иногда и легирующие элементы (Cr, Ni, V, Аl и др.); как правило, хрупок.

Рис. 1. Фазовая диаграмма стабильного равновесия Fe --С

Фазовая диаграмма состояния Fe -- С (стабильная) представлена на рис. 1 (штриховые линии соответствуют выделению графита, а сплошные -- цементита). Температуры плавления чугунов значительно ниже (на 300...400 °С), чем у стали.

Углерод в чугуне может находиться в виде цементита, графита или одновременно в виде цементита и графита. Образование стабильной фазы - графита в чугуне может происходить в результате непосредственного выделения его из жидкого (твердого) раствора или вследствие распада предварительно образовавшегося цементита (при замедленном охлаждении расплавленного чугуна цементит может подвергнуться разложению Fе3С -> Fe + 3С с образованием феррита и графита). Процесс образования в чугуне (стали) графита называют графитизацией.

Графит повышает износостойкость и антифрикционные свойства чугуна вследствие собственного смазочного действия и повышения прочности пленки смазочного материала. Чугуны с графитом, как мягкой и хрупкой составляющей, хорошо обрабатываются резанием (с образованием ломкой стружки) и обеспечивают более чистую поверхность, чем стали (кроме автоматных сталей).

Присутствие эвтектики в структуре чугунов обусловливает его использование исключительно в качестве литейного сплава. Высокие литейные свойства при небольшой стоимости обеспечили широкое применение чугунов в промышленности.

Механические свойства чугуна обусловлены, главным образом, количеством и структурными особенностями графитной составляющей. Влияние графитных включений на механические свойства чугуна можно оценить количественно (ГОСТ 3443--87). Чем меньше графитных включений, чем они мельче и больше степень их изолированности, тем выше прочность чугуна при одной и той же металлической основе. Наиболее высокую прочность обеспечивает шаровидная форма графитной составляющей, а для хлопьевидной составляющей характерны высокие пластические свойства. Чугун с пластинчатым графитом можно рассматривать как сталь, в который графит играет роль надрезов, ослабляющих металлическую основу.

Применяемые для отливок чугуны имеют в среднем состав: С -- 2...4%, Si-- 1,5...4%, Мn--0,6... 1,25%, Р-- 0,1...1,2%, S <0,06%.

Самым распространенным видом термообработки чугунов является отжиг отливок при 430...600 °С для уменьшения литейных напряжений, которые могут вызвать даже коробление фасонных изделий. Нормализация чугуна проводится для аустенизации ферритной и ферритно-перлитной матриц и последующего перлитного превращения, что обеспечивает упрочнение. Закалку чугуна на мартенсит с нагревом до 850...930 °С и охлаждением в воде и масле применяют для повышения прочности и износостойкости. После закалки проводят низкий отпуск (200 °Q для уменьшения закалочных напряжений или высокий отпуск (600...700 °C) для получения микроструктур сорбита или зернистого перлита, обеспечивающих повышенную вязкость.

Классификацию чугунов проводят по виду и форме углеродосо-держащей структурной составляющей, то есть по наличию и форме графита.

По виду структурной составляющей выделяют чугуны без графита -- белые чугуны, в которых практически весь углерод находится в химически связанном состоянии в виде цементита. Промежуточное положение занимает половинчатый чугун, большая (« 0,8 %) часть углерода которого находится в Fе3С. Структура половинчатого чугуна -- перлит, ледебурит и пластинчатый графит.

2. Белые чугуны

Белые чугуны (передельные) редко используются в народном хозяйстве в качестве конструкционных материалов, так как из-за большого содержания цементита очень хрупкие и твердые, с трудом отливаются и обрабатываются инструментом. Из них делают детали гидромашин, пескометов и других конструкций, работающие в условиях повышенного абразивного изнашивания. Для увеличения износостойкости белые чугуны легируют хромом, ванадием, молибденом и другими карбидообразующими элементами. Маркировка белых чугунов не установлена.

Разновидностью белых чугунов является отбеленные чугуны. Поверхностные слои изделий из таких чугунов имеют структуру белого (или половинчатого) чугуна, а сердцевина - серого чугуна. Отбел на некоторую глубину (12...30 мм) получают путем быстрого охлаждения поверхности (например, отливка чугуна в металлические или песчаные формы). Для снятия структурных напряжений, которые могут привести к образованию трещин, отливки подвергают нагреву при 500..550 °С. Высокая износостойкость отбеленных чугунов обусловлена твердостью поверхности, достигающей 400..500 HV. Из отбеленного чугуна изготовляют прокатные валки листовых станов, колеса, шары для мельниц и др.

3. Серые чугуны

Структура серого (литейного) чугуна состоит из металлической основы с графитом пластинчатой формы, вкрапленным в эту основу. Такая структура образуется непосредственно при кристаллизации чугуна в отливке в соответствии с диаграммой состояния системы Fe--С (стабильной). Причем, чем больше углерода и кремния в сплаве и чем ниже скорость его охлаждения, тем выше вероятность кристаллизации по этой диаграмме с образованием графитной эвтектики. При низком содержании углерода и кремния чугун модифицируют небольшими дозами некоторых элементов (например, алюминий, кальций, церий).

Модифицирование металлов -- введение в металлические расплавы модификаторов, то есть веществ, небольшие количества которых (обычно не более десятых долей %) способствуют созданию дополнительных искусственных центров кристаллизации, и следовательно, образованию структурных составляющих в измельченной или округлой форме, что улучшает механические свойства металла.

Для характеристики структуры серого чугуна необходимо определять размеры, форму, распределение графита, а также структуру металлической основы. В обычном сером чугуне при медленном охлаждении во время кристаллизации графит очень слабо разветвляется. Он похож на розетку с небольшим числом изогнутых лепестков.

Металлическая основа серых чугунов формируется из аустенита при этектоидном распаде и может быть перлитной, ферритной и ферритно-перлитной. Образование перлита происходит легко, в сравнительно короткий промежуток времени. Для получения ферритного белого чугуна используют изотермическую выдержку при 690...650 °С, в результате которой цементит перлита распадается на феррит и пластинчатый графит.

Механические свойства серых чугунов зависят от свойств металлической основы и, главным образом, от количества, формы и размеров графитных включений. Перлитная основа обеспечивает наибольшие значения показателей прочности и износостойкости.

Марки серых чугунов согласно ГОСТ 1412--85 состоят из букв «СЧ» и цифр, соответствующих минимальному пределу прочности при растяжении ов, МПа / 10. Чугун СЧ10 -- ферритный; СЧ15, СЧ18, СЧ20 -- ферритно-перлитные чугуны, начиная с СЧ25 -- перлитные чугуны.

На долю серого чугуна с пластинчатым графитом приходится около 80 % общего производства чугунных отливок. Серые чугуны обладают высокими литейными качествами (жидкотекучесть, малая усадка, незначительный пригар металла к форме и др.), хорошо обрабатываются и сопротивляются износу, однако из-за низких прочности и пластических свойств в основном используются для неответственных деталей. В станкостроении серый чугун является основным конструкционным материалом (станины станков, столы и верхние салазки, колонки, каретки и др.); в автомобилестроении из ферритноперлитных чугунов делают картеры, крышки, тормозные барабаны и др., а из перлитных чугунов -- блоки цилиндров, гильзы, маховики и др. В строительстве серый чугун применяют, главным образом, для изготовления деталей, работающих при сжатии (башмаков, колонн), а также санитарно-технических деталей (отопительных радиаторов, труб). Значительное количество чугуна расходуется для изготовления тюбингов, из которых сооружается туннель метрополитена. Из серого чугуна, содержащего фосфор (0,5 %), изготавливают архитектурно-художественные изделия.

4. Ковкие чугуны

Ковкие чугуны с хлопьевидной формой графита получают из белых доэвтектических чугунов, подвергая их специальному графи-тизирующему отжигу. Графитизирующий отжиг белого чугуна основан на метастабильности цементита и состоит обычно из двух стадий (рис. 2).

Первая стадия (950... 1050 °С) подбирается по длительности такой, чтобы весь цементит, находящийся в структуре отливки, распался на аустенит и хлопьевидный графит. Процесс графитообразования облегчается при модифицировании (например, алюминием и бором). Чугун, полученный таким образом, называется модифицированным.

Рис. 2. Схема отжига белого чугуна на ковкий

На второй стадии графитизирущего отжига при температуре эвтектоидного превращения формируется металлическая основа ковкого чугуна. В зависимости от режимов охлаждения ковкие чугуны могут иметь перлитную (непрерывное охлаждение), ферритную (очень медленное охлаждение в интервале 760...720 °С или изотермическая выдержка при 720...700 °С) или ферритно-перлитную (сокращение продолжительности второй стадии отжига) металлические основы. Для получения в модифицированном ковком чугуне перлитной основы рекомендуется увеличивать содержание марганца, хрома и некоторых других элементов, которые повышают устойчивость цементита к распаду на феррит и пластинчатый графит в области температур эвтектоидного превращения.

Ковкие чугуны, обладая высокими пластическими свойствами, находят применение при изготовлении разнообразных тонкостенных (до 50 мм) деталей, работающих при ударных и вибрационных нагрузках, -- фланцы, муфты, картеры, ступицы и др. Масса этих деталей -- от нескольких граммов до нескольких тонн.

Для повышения твердости, износостойкости и прочности изделий из ковкого чугуна иногда применяют нормализацию или закалку. Закалка с последующим высоким отпуском позволяет получить структуру зернистого перлита.

5. Высокопрочные чугуны

Высокопрочный чугун (ЧШГ -- чугун с шаровидным графитом) получают модифицированием жидкими присадками (0,1...0,5 % магния от массы обрабатываемой порции чугуна, 0,2...0,3 % церия, иттрия и некоторых других элементов). При этом перед вводом модификаторов необходимо снизить содержание серы до 0,02...0,03 °/о.

Рекомендуемый химический состав высокопрочного чугуна (2,7...3,7 % С; 0,5...3,8 % Si) выбирается в зависимости от толщины стенок отливки (чем тоньше стенка, тем больше углерода и кремния).

Чтобы избежать образования в высокопрочных чугунах ледебурита, их подвергают графитизирующему отжигу. Продолжительность такого отжига благодаря повышенному содержанию графитизирующих элементов (углерода, кремния) значительно короче, чем при отжиге белого чугуна.

Высокопрочные чугуны обладают хорошими литейными и потребительскими свойствами (обрабатываемость резанием, способность гасить вибрации, высокая износостойкость и др.) свойствами. Они используются для массивных отливок взамен стальных литых и кованых деталей -- цилиндры, шестерни, коленчатые и распределительные валы и др.

Для повышения механических свойств (пластичности и вязкости) и снятия внутренних напряжений отливки подвергают термической обработке (отжигу, нормализации, закалке и отпуску). Рекомендуется подвергать чугунные изделия объемной закалке. Образование мелкоигольчатого мартенсита в закаленном поверхностном слое изделий повышает их износостойкость в три и более раз. Для повышения износостойкости применяется также азотирование (или азотирование с последующей «обдувкой дробью»), при котором в поверхностных слоях изделий создаются благоприятные сжимающие напряжения.

Список литературы

1. Александровский А.В. Материаловедение для штукатуров, плиточников, мозаичников: Учеб. для средн. проф.-техн. училищ. -- 7-е изд., перераб. и доп. -- М.: Высшая школа, 1981. -- 272 с.: ил. -- (Профтехобразование. Строит, материалы).

2. Болотин и др. / Под общ. ред. В.В. Васильева, Ю.М. Тарнопольского. -- М.: Машиностроение, 1990. -- 512 с.: ил.

3. Брату хин А. Г., Шалин Р.Е., Черкасов В. В. Новые конструкционные и функциональные материалы и возможности их более широкого применения. -- СПб.: Политехника, 1992. -- 55 с.: ил.

4. Бушуев Ю.Г., Перси» М.И., Соколов В.А. Углеродные композиционные материалы: Справ, изд. -- М.: Металлургия, 1994. 128 с.

5. ГаевикД Т Справочник смазчика. -- М.: Машиностроение, 1990. -- 352 с.: ил.

6. Геллер Ю.А., Рахштадт А.Г. Материаловедение. Методы анализа, лабораторные работы и задачи. -- М.: Металлургия, 1983. -- 384 с.

7. Горчаков Г И., Баженов Ю М. Строительные материалы: Учеб. для вузов. -- М.: Стройюдат, 1986. -- 688 с.: ил.

8. Иванова Т.П. и др. Покрытия для деталей машиностроения: Учеб. пособ. -- Л.: Ленингр. мех. инст-т, 1989. -- 70 с.

9. Колачев Б.А., Елагин В.И., Ливанов В.А. Металловедение и термическая обработка цветных металлов и сплавов: Учеб. для вузов. -- 3-е изд., перераб. и доп. -- М.:МИСИС, 1999. --416с.

10. Комар А Г. Строительные материалы и изделия: Учеб. для вузов. -- 5-е изд., перераб. и доп. -- М.: Высшая школа, 1988. -- 527 с.: ил.

11. Композиционные материалы: Справочник / В.В. Васильев, В.Д. Протасов, В.В.

12. Кубарев А.И. Надежность в машиностроении. -- 2-е изд., перераб. и доп. -- М.: Изд-во стандартов, 1989. -- 224 с.


Подобные документы

  • Маркировка, химический состав и механические свойства хромистых чугунов. Основные легирующие элементы, стойкость чугунов в коррозии. Литая структура чугунов с карбидами. Строение евтектик белых износостойких чугунов, области применения деталей из них.

    курсовая работа [435,0 K], добавлен 30.01.2014

  • Классификация чугунов по составу и технологическим свойствам. Температуры эвтектического и эвтектоидного превращений. Процесс образования графита в сплавах железа с углеродом. Схема образования структур при графитизации. Специальные свойства чугунов.

    презентация [7,7 M], добавлен 14.10.2013

  • Роль в процессе кристаллизации, которую играет число центров и скорость роста кристаллов. Изменение свободной энергии в зависимости от температуры. Классификация чугунов по строению металлической основы. Основные применения цветных металлов и их сплавов.

    контрольная работа [878,0 K], добавлен 06.03.2013

  • Определение эксплуатационных свойств белых чугунов количеством, размерами, морфологией и микротвердостью карбидов. Влияние температуры отжига на механические свойства промышленного чугуна. Технологические схемы изготовления изделий повышенной стойкости.

    доклад [50,8 K], добавлен 30.09.2011

  • Анализ влияния микроструктуры графита на свойства чугунов. Графит и механические свойства отливок. Расчет зависимости параметра формы от минимального размера учитываемых включений. Гистограмма распределения параметра формы по количеству включений.

    курсовая работа [2,6 M], добавлен 08.02.2013

  • Условия эксплуатации и особенности литейных свойств сплавов. Механические свойства стали 25Л, химический состав и влияние примесей на ее свойства. Последовательность изготовления отливки. Процесс выплавки стали и схема устройства мартеновской печи.

    курсовая работа [869,1 K], добавлен 17.08.2009

  • Механические свойства, обработка и примеси алюминия. Классификация и цифровая маркировка деформируемых алюминиевых сплавов. Характеристика литейных алюминиевых сплавов системы Al–Si, Al–Cu, Al–Mg. Технологические свойства новых сверхлегких сплавов.

    презентация [40,6 K], добавлен 29.09.2013

  • Железоуглеродистые сплавы - стали и чугуны, как важнейшие металлические сплавы, их химический состав и основные компоненты. Фазы в железоуглеродистых сплавах. Свойства и использование цементита. Структурные составляющие в железоуглеродистых сплавах.

    контрольная работа [347,8 K], добавлен 17.08.2009

  • Классификация, маркировка, состав, структура, свойства и применение алюминия, меди и их сплавов. Диаграммы состояния конструкционных материалов. Физико-механические свойства и применение пластических масс, сравнение металлических и полимерных материалов.

    учебное пособие [4,8 M], добавлен 13.11.2013

  • Титановые сплавы - материалы, плохо поддающиеся обработке резанием. Общие сведения о существующих титановых сплавах. Уровни механических свойств. Выбор инструментальных материалов для токарной обработки титановых сплавов. Нанесение износостойких покрытий.

    автореферат [1,3 M], добавлен 27.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.