Конструкция и принцип работы елктропечи
Предназначение и классификация плавильных печей. Производство стали в электрических печах. Устройство и механическое оборудование дуговых электропечей. Плавка стали в основной дуговой электропечи. Подготовка материалов, процессы и технология плавки.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 12.11.2008 |
Размер файла | 30,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
23
Содержание
- Заключение 13
- Список использованных источников 14
- Введение
- В настоящее время в промышленности очень широко используется печное оборудование. В таких важных отраслях, как черная и цветная металлургия, машиностроение, производство строительных материалов, легкая и даже пищевая промышленность, эксплуатируется большое число различных печей и нагревательных установок. Развитие и совершенствование печного оборудования происходило по мере возникновения и развития всех важных отраслей промышленности.
- По технологическому назначению металлургические печи делят на плавильные и нагревательные.
- Плавильные печи предназначены для получения металлов из руд и переплавки металла с целью предания ему необходимых свойств. В этих печах металлы изменяют свое агрегатное состояние.
- Нагревательные печи применяют для нагрева материала материалов с целью обжига и сушки, а также для придания металлу пластических свойств перед обработкой давлением, для термической обработки, чтобы изменить внутреннее строение и структуру металла. В нагревательных печах металлы и материалы не изменяют своего агрегатного состояния.
- По схеме работы печи делятся на печи-теплообменники, усвоение тепла обрабатываемым материалом в зоне технологического процесса зависит от теплопередачи из зоны теплогенерации; и печи-теплогенераторы, тепло как возникает, так и усваивается непосредственно в зоне технологического процесса.
- В цветной металлургии все более широко используются печи-теплогенераторы, в которых осуществляется теплогенерация за счет выгорания серы, содержащейся в размельченных шихтовых материалах, выдуваемых в рабочее пространство печи. Протекающие при этом процессы называются автогенными.
- Производство стали в электрических печах.
- В электропечи можно получать легированную сталь с низким содержанием серы и фосфора, неметаллических включений, при этом потери легирующих элементов значительно меньше. В процессе электроплавки можно точно регулировать температуру металла и его состав, выплавлять сплавы почти любого состава.
- Электрические печи обладают существенными преимуществами по сравнению с другими сталеплавильными агрегатами, поэтому высоколегированные инструментальные сплавы, нержавеющие шарикоподшипниковые, жаростойкие и жаропрочные, а также многие конструкционные стали выплавляют только в этих печах.
- Мощные электропечи успешно применяют для получения низколегированных и высокоуглеродистых сталей мартеновского сортамента. Кроме того, в электропечах получают различные ферросплавы, представляющие собой сплавы железа с элементами, которые необходимо выводить в сталь для легирования и раскисления.
- Устройство дуговых электропечей.
- Первая дуговая электропечь в России была установлена в 1910 г. на Обуховском заводе. За годы пятилеток были построены сотни различных печей. Вместимость наиболее крупной печи в СССР 200 т. Печь состоит из железного кожуха цилиндрической формы со сферическим днищем. Внутри кожух имеет огнеупорную футеровку. Плавильное пространство печи закрывается съемным сводом. Печь имеет рабочее окно и выпускное отверстие со сливным желобом. Питание печи осуществляется трехфазным переменным током. Нагрев и плавление металла осуществляются электрическими мощными дугами, горящими между концами трех электродов и металлом, находящимся в печи. Печь опирается на два опорных сектора, перекатывающихся по станине. Наклон печи в сторону выпуска и рабочего окна осуществляется при помощи реечного механизма. Перед загрузкой печи свод, подвешенный на цепях, поднимают к порталу, затем портал со сводом и электродами отворачивается в сторону сливного желоба и печь загружают бадьей.
- Механическое оборудование дуговой печи.
- Кожух печи должен выдерживать нагрузку от массы огнеупоров и металла. Его делают сварным из листового железа толщиной 16-50 мм в зависимости от размеров печи. Форма кожуха определяет профиль рабочего пространства дуговой электропечи. Наиболее распространенным в настоящее время является кожух конической формы. Нижняя часть кожуха имеет форму цилиндра, верхняя часть -- конусообразная с расширением кверху. Такая форма кожуха облегчает заправку печи огнеупорным материалом, наклонные стены увеличивают стойкость кладки, так как она дальше расположена от электрических дуг. Используют также кожухи цилиндрической формы с водоохлаждаемыми панелями. Для сохранения правильной цилиндрической формы кожух усиливается ребрами и кольцами жесткости. Днище кожуха обычно выполняется сферическим, что обеспечивает наибольшую прочность кожуха и минимальную массу кладки. Днище выполняют из немагнитной стали для установки под печью электромагнитного перемешивающего устройства.
- Сверху печь закрыта сводом. Свод набирают из огнеупорного кирпича в металлическом водоохлаждаемом сводовом кольце, которое выдерживает распирающие усилия арочного сферического свода В нижней части кольца имеется выступ - нож, который входит в песчаный затвор кожуха печи. В кирпичной кладке свода оставляют три отверстия для электродов. Диаметр отверстий больше диаметра электрода, поэтому во время плавки в зазор устремляются горячие газы, которые разрушают электрод и выносят тепло из печи. Для предотвращения этого на своде устанавливают холодильники или экономайзеры, служащие для уплотнения электродных отверстий и для охлаждения кладки свода. Газодинамические экономайзеры обеспечивают уплотнение с помощью воздушной завесы вокруг электрода. В своде имеется также отверстие для отсоса запыленных газов и отверстие для кислородной фурмы. Для загрузки шихты в печи небольшой емкости и подгрузки легирующих и флюсов в крупные, печи скачивания шлака, осмотра, заправки и ремонта печи имеется загрузочное окно, обрамленное литой рамой. К раме крепятся направляющие, по которым скользит заслонка. Заслонку футеруют огнеупорным кирпичом. Для подъема заслонки используют пневматический, гидравлический или электромеханический привод.
- С противоположной стороны кожух имеет окно для выпуска стали из печи. К окну приварен сливной желоб. Отверстие для выпуска стали может быть круглым диаметром 120--150 мм или квадратным 150 на 250 мм. Сливной желоб имеет корытообразное сечение и приварен к кожуху под углом 10--12° к горизонтали. Изнутри желоб футеруют шамотным кирпичом, длина его составляет 1--2 м.
- Электрододержатели служат для подвода тока к электродам и для зажима электродов. Головки электрододержателей делают из бронзы или стали и охлаждают водой, так как они сильно нагреваются как теплом из печи, так и контактными токами. Электрододержатель должен плотно зажимать электрод и иметь небольшое контактное сопротивление. Наиболее распространенным в настоящее время является пружинно-пневматический электрододержатель. Зажим электрода осуществляется при помощи неподвижного кольца и зажимной плиты, которая прижимается к электроду пружиной. Отжатие плиты от электрода и сжатие пружины происходят при помощи сжатого воздуха.
- Электрододержатель крепится на металлическом рукаве - консоли, который скрепляется с Г-образной подвижной стойкой в одну жесткую конструкцию. Стойка может перемещаться вверх или вниз внутри неподвижной коробчатой стойки. Три неподвижные стойки жестко связаны в одну общую конструкцию, которая покоится на платформе опорной люльки печи. Перемещение подвижных телескопических стоек происходит или с помощью системы тросов и противовесов, приводимых в движение электродвигателями, или с помощью гидравлических устройств. Механизмы перемещения электродов должны обеспечить быстрый подъем электродов в случае обвала шихты в процессе плавления, а также плавное опускание электродов во избежание их погружения в металл или ударов о нерасплавившиеся куски шихты. Скорость подъема электродов составляет 2,5--6,0 м/мин, скорость опускания 1,0-- 2,0 м/мин.
- Механизм наклона печи должен плавно наклонять печь в сторону выпускного отверстия на угол 40--45° для выпуска стали и на угол 10--15 градусов в сторону рабочего окна для спуска шлака. Станина печи, или люлька, на которой установлен корпус, опирается на два - четыре опорных сектора, которые перекатываются по горизонтальным направляющим. В секторах имеются отверстия, а в направляющих - зубцы, при помощи которых предотвращается проскальзывание секторов при наклоне печи. Наклон печи осуществляется при помощи рейки и зубчатого механизма или гидравлическим приводом. Два цилиндра укреплены на неподвижных опорах фундамента, а штоки шарнирно связаны с опорными секторами люльки печи.
- Система загрузки печи бывает двух видов: через завалочное окно мульдозавалочной машиной и через верх при помощи бадьи. Загрузку через окно применяют только на небольших печах. При загрузке печи сверху в один-два приема в течение 5 мин меньше охлаждается футеровка, сокращается время плавки; уменьшается расход электроэнергии; эффективнее используется объем печи. Для загрузки печи свод приподнимают на 150--200 мм над кожухом печи и поворачивают в сторону вместе с электродами, полностью открывая рабочее пространство печи для введения бадьи с шихтой. Свод печи подвешен к раме. Она соединена с неподвижными стойками электрододержателей в одну жесткую конструкцию, покоящуюся на поворотной консоли, которая укреплена на опорном подшипнике. Крупные печи имеют поворотную башню, в которой сосредоточены все механизмы отворота свода. Башня вращается вокруг шарнира на катках по дугообразному рельсу. Бадья представляет собой стальной цилиндр, диаметр которого меньше диаметра рабочего пространства печи. Снизу цилиндра имеются подвижные гибкие сектора, концы которых стягиваются через кольца тросом.
- Взвешивание и загрузка шихты производятся на шихтовом дворе лектросталеплавильного цеха. Бадья на тележке подается в цех, поднимается краном и опускается в печь. При помощи вспомогательного подъема крана трос выдергивают из проушин секторов и при подъеме бадьи сектора раскрываются и шихта вываливается в печь в том порядке, в каком она была уложена в бадье.
- При использовании в качестве шихты металлизованных окатышей загрузка может производиться непрерывно по трубопроводу, который проходит в отверстие в своде печи.
- Во время плавления электроды прорезают в шихте три колодца, на дне которых накапливается жидкий металл. Для ускорения расплавления печи оборудуются поворотным устройством, которое поворачивает корпус в одну и другую сторону на угол в 80°. При этом электроды прорезают в шихте уже девять колодцев. Для поворота корпуса приподнимают свод, поднимают электроды выше уровня шихты и поворачивают корпус при помощи зубчатого венца, прикрепленного к корпусу, и шестерен. Корпус печи опирается на ролики.
- Очистка отходящих газов.
- Современные крупные сталеплавильные дуговые печи во время работы выделяют в атмосферу большое количество запыленных газов. Применение кислорода и порошкообразных материалов еще более способствует этому. Содержание пыли в газах электродуговых печей достигает 10 г/м3 и значительно превышает норму. Для улавливания пыли производят отсос газов из рабочего пространства печей мощным вентилятором. Для этого в своде печи делают четвертое отверстие с патрубком для газоотсоса. Патрубок через зазор, позволяющий наклонять или вращать печь, подходит к стационарному трубопроводу. По пути газы разбавляются воздухом, необходимым для дожигания СО. Затем газы охлаждаются водяными форсунками в теплообменнике и направляются в систему труб Вентури, в которых пыль задерживается в результате увлажнения. Применяют также тканевые фильтры, дезинтеграторы и электрофильтры. Используют системы газоочистки, включающие полностью весь электросталеплавильный цех, с установкой зонтов дымоотсоса под крышей цеха над электропечами.
- Футеровка печей.
- Большинство дуговых печей имеет основную футеровку, состоящую из материалов на основе MgO. Футеровка печи создает ванну для металла и играет роль еплоизолирующего слоя, уменьшающего потери тепла. Основные части футеровки - подина печи, стены, свод. Температура в зоне электрических дуг достигает нескольких тысяч градусов. Хотя футеровка электропечи отделена от дуг, она все же должна выдерживать нагрев до температуры 1700°С. В связи с этим применяемые для футеровки материалы должны обладать высокой огнеупорностью, механической прочностью, термо- и химической устойчивостью. Подину сталеплавильной печи набирают в следующем порядке. На стальной кожух укладывают листовой асбест, на асбест--слой шамотного порошка, два слоя шамотного кирпича и основной слой из магнезитового кирпича. На магнезитовой кирпичной подине набивают рабочий слой из магнезитового порошка со смолой и пеком -- продуктом нефтепереработки. Толщина набивного слоя составляет 200 мм. Общая толщина подины равна примерно глубине ванны и может достигать 1 м для крупных печей. Стены печи выкладывают после соответствующей прокладки асбеста и шамотного кирпича из крупноразмерного безобжигового магнезитохромитового кирпича длиной до 430 мм.
- Кладка стен может выполняться из кирпичей в железных кассетах, которые обеспечивают сваривание кирпичей в один монолитный блок. Стойкость стен достигает 100--150 плавок. Стойкость подины составляет один-два года. В трудных условиях работает футеровка свода печи. Она выдерживает большие тепловые нагрузки от горящих дуг и тепла, отражаемого шлаком. Своды крупных печей набирают из агнезитохромитового кирпича. При наборе свода используют нормальный и фасонный кирпич. В поперечном сечении свод имеет форму арки, что обеспечивает плотное сцепление кирпичей между собой. Стойкость свода составляет 50 - 100 плавок. Она зависит от электрического режима плавки, от длительности пребывания в печи жидкого металла, состава выплавляемых стали, шлака. В настоящее время широкое распространение получают водоохлаждаемые своды и стеновые панели. Эти элементы облегчают службу футеровки.
- Ток в плавильное пространство печи подается через электроды, собранные из секций, каждая из которых представляет собой круглую заготовку диаметром от 100 до 610 мм и длиной до 1500 мм. В малых электропечах используют угольные электроды, в крупных - графитированные. Графитированные электроды изготавливают из малозольных углеродистых материалов: нефтяного кокса, смолы, пека. Электродную массу смешивают и прессуют, после чего сырая заготовка обжигается в газовых печах при 1300 градусах и подвергается дополнительному графитирующему обжигу при температуре 2600 - 2800 градусах в электрических печах сопротивления. В процессе эксплуатации в результате окисления печными газами и распыления при горении дуги электроды сгорают. По мере укорачивания электрод опускают в печь. При этом электрододержатель приближается к своду. Наступает момент, когда электрод становится настолько коротким, что не может поддерживать дугу, и его необходимо наращивать. Для наращивания электродов в концах секций сделаны отверстия с резьбой, куда ввинчивается переходник-ниппель, при помощи которого соединяются отдельные секции. Расход электродов составляет 5--9 кг на тонну выплавляемой стали. Электрическая дуга--один из видов электрического разряда, при котором ток проходит через ионизированные газы, пары металлов. При кратковременном сближении электродов с шихтой или друг с другом возникает короткое замыкание. Идет ток большой силы. Концы электродов раскаляются добела. При раздвигании электродов между ними возникает электрическая дуга. С раскаленного катода происходит термоэлектронная эмиссия электронов, которые, направляясь к аноду, сталкиваются с нейтральными молекулами газа и ионизируют их. Отрицательные ионы направляются к аноду, положительные к катоду. Пространство между анодом и катодом становится ионизированным, токопроводящим. Бомбардировка анода электронами и ионами вызывает сильный его разогрев. Температура анода может достигать 4000 градусов. Дуга может гореть на постоянном и на переменном токе. Электродуговые печи работают на переменном токе. В последнее время в ФРГ построена электродуговая печь на постоянном токе.
- В первую половину периода, когда катодом является электрод, дуга горит. При перемене полярности, когда катодом становится шихта -- металл, дуга гаснет, так как в начальный период плавки металл еще не нагрет и его температура недостаточна для эмиссии электронов. Поэтому в начальный период плавки дуга горит неспокойно, прерывисто. После того как ванна покрывается слоем шлака, дуга стабилизируется и горит более ровно.
- Электрооборудование.
- Рабочее напряжение электродуговых печей составляет 100 - 800 В, а сила тока измеряется десятками тысяч ампер. Мощность отдельной установки может достигать 50 - 140 МВ*А. К подстанции электросталеплавильного цеха подают ток напряжением до 110 кВ. Высоким напряжением питаются первичные обмотки печных трансформаторов. В электрическое оборудование дуговой печи входят следующие приборы:
- 1. Воздушный разъединитель, предназначен для отключения всей электропечной установки от линии высокого напряжения во время.
- 2. Главный автоматический выключатель, служит для отключения под нагрузкой электрической цепи, по которой протекает ток высокого напряжения. При неплотной укладке шихты в печи в начале плавки, когда шихта еще холодная, дуги горят неустойчиво, происходят обвалы шихты и возникают короткие замыкания между электродами. При этом сила тока резко возрастает. Это приводит к большим перегрузкам трансформатора, который может выйти из строя. Когда сила тока превысит установленный предел, выключатель автоматически отключает установку, для чего имеется реле максимальной силы тока.
- 3. Печной трансформатор необходим для преобразования высокого напряжения в низкое (с 6--10 кВ до 100--800 В) . Обмотки высокого и низкого напряжения и магнитопроводы, на которых они помещены, располагаются в баке с маслом, служащим для охлаждения обмоток. Охлаждение создается принудительным перекачиванием масла из трансформаторного кожуха в бак теплообменника, в котором масло охлаждается водой. Трансформатор устанавливают рядом с электропечью в специальном помещении. Он имеет устройство, позволяющее переключать обмотки по ступеням и таким образом ступенчато регулировать подаваемое в печь напряжение. Так, например, трансформатор для 200-т отечественной печи мощностью 65 МВ*А имеет 23 ступени напряжения, которые переключаются под нагрузкой, без отключения печи.
- Участок электрической сети от трансформатора до электродов называется короткой сетью. Выходящие из стены трансформаторной подстанции фидеры при помощи гибких, водоохлаждаемых кабелей подают напряжение на электрододержатель. Длина гибкого участка должна позволять производить нужный наклон печи и отворачивать свод для загрузки. Гибкие кабели соединяются с медными водоохлаждаемыми шинами, установленными на рукавах электрододержателей. Трубошины непосредственно присоединены к головке электрододержателя, зажимающей электрод. Помимо указанных основных узлов электрической сети в нее входит различная измерительная аппаратура, подсоединяемая к линиям тока через трансформаторы тока или напряжения, а также приборы автоматического регулирования процесса плавки.
- Автоматическое регулирование.
- По ходу плавки в электродуговую печь требуется подавать различное количество энергии. Менять подачу мощности можно изменением напряжения или силы тока дуги. Регулирование напряжения производится переключением обмоток трансформатора. Регулирование силы тока осуществляется изменением расстояния между электродом и шихтой путем подъема или опускания электродов. При этом напряжение дуги не изменяется. Опускание или подъем электродов производятся автоматически при помощи автоматических регуляторов, установленных на каждой фазе печи. В современных печах заданная программа электрического режима может быть установлена на весь период плавки.
- Устройство для электромагнитного перемешивания металла.
- Для перемешивания металла в крупных дуговых печах, для ускорения и облегчения проведения технологических операций скачивания шлака под днищем печи в коробке устанавливается электрическая обмотка, которая охлаждается водой или сжатым воздухом. Обмотки статора питаются от двухфазного генератора током низкой частоты, что создает бегущее магнитное поле, которое захватывает ванну жидкого металла и вызывает движение нижних слоев металла вдоль подины печи в направлении движения поля. Верхние слои металла вместе с прилегающим к нему шлаком движутся в обратную сторону. Таким образом можно направить движение либо в сторону рабочего окна, что будет облегчать выход шлака из печи, либо в сторону сливного отверстия, что будет благоприятствовать равномерному распределению легирующих и раскислителей и усреднению состава металла и его температуры. Этот метод в последнее время имеет ограниченное применение, так как в сверхмощных печах металл активно перемешивается дугами.
- Плавка стали в основной дуговой электропечи.
- Сырые материалы.
- Основным материалом для электроплавки является стальной лом. Лом не должен быть сильно окисленным, так как наличие большого количества ржавчины вносит в сталь значительное количество водорода. В зависимости от химического состава лом необходимо рассортировать на соответствующие группы. Основное количество лома, предназначенное для плавки в электропечах, должно быть компактным и тяжеловесным. При малой насыпной массе лома вся порция для плавки не помещается в печь. Приходится прерывать процесс плавки и подгружать шихту. Это увеличивает продолжительность плавки, приводит к повышенному расходу электроэнергии, снижает производительность электропечей. В последнее время в электропечах используют металлизованные окатыши, полученные методом прямого восстановления. Достоинством этого вида сырья, содержащего 85-- 93 % железа, является то, что оно не загрязнено медью и другими примесями. Окатыши целесообразно применять для выплавки высокопрочных конструкционных легированных сталей, электротехнических, шарикоподшипниковых сталей.
- Легированные отходы образуются в электросталеплавильном цехе в виде недолитых слитков, литников; в обдирочном отделении в виде стружки, в прокатных цехах в виде обрези и брака и т, д. ; кроме того много легированного лома поступает от машиностроительных заводов. Использование легированных металлоотходов позволяет экономить ценные легирующие, повышает экономическую эффективность электроплавок.
- Мягкое железо специально выплавляют в мартеновских печах и конвертерах и применяют для регулирования содержания углерода в процессе электроплавки. В железе содержится 0,01--0,15 % С и <0,020 % Р. Поскольку в электропечах выплавляют основное количество легированных сталей, то для их производства используют различные легирующие добавки; электролитический никель или МЮ, феррохром, ферросилиций, ферромарганец, ферромолибден, ферровольфрам и др. В качестве раскислителя помимо ферромарганца и ферросилиция применяют чистый алюминий. Для науглероживания используют передельный чугун, электродный бой; для наведения шлака применяют свежеобожженную известь, плавиковый шпат, шамотный бой, доломит и MgO в виде магнезита.
- Подготовка материалов к плавке.
- Все присадки в дуговые печи необходимо прокаливать для удаления следов масла и влаги. Это предотвращает насыщение стали водородом. Ферросплавы подогревают для ускорения их проплавления. Присадка легирующих, раскислителей и шлакообразующих в современной печи во многом механизирована. На бункерной эстакаде при помощи конвейеров происходит взвешивание и раздача материалов по мульдам, которые загружаются в печь мульдовыми машинами. Сыпучие для наводки шлака вводят в электропечи бросательными машинами.
- Технология плавки.
- Плавка в дуговой печи начинается с заправки печи. Жидкоподвижные нагретые шлаки сильно разъедают футеровку, которая может быть повреждена и при загрузке. Если подина печи во время не будет закрыта слоем жидкого металла и шлака, то она может быть повреждена дугами. Поэтому перед началом плавки производят ремонт - заправку подины. Перед заправкой с поверхности подины удаляют остатки шлака и металла. На поврежденные места подины и откосов - места перехода подины в стены печи - забрасывают сухой магнезитовый порошок, а в случае больших повреждений - порошок с добавкой пека или смолы.
- Заправку производят заправочной машиной, выбрасывающей через. насадку при помощи сжатого воздуха заправочные материалы, или, разбрасывающей материалы по окружности с быстро вращающегося диска, который опускается в открытую печь сверху.
- Плавка с окислением.
- Рассмотрим ход плавки с окислением. После окончания периода расплавления начинается окислительный период, задачи которого заключаются в следующем:
- окисление избыточного углерода, окисление и удаление фосфора;
- дегазация металла;
- удаление неметаллических включений, нагрев стали.
- Окислительный период плавки начинают присадкой железной руды, которую дают в печь порциями. В результате присадки руды происходит насыщение шлака FeO и окисление металла по реакции: (FeO) =Fe+[O]. Растворенный кислород взаимодействует с растворенным в ванне углеродом по реакции [C] +[O]=CO. Происходит бурное выделение пузырей CO, которые вспенивают поверхность ванны, покрытой шлаком. Поскольку в окислительный период на металле наводят известковый шлак с хорошей жидкоподвижностью, то шлак вспенивается выделяющимися пузырями газа. Уровень шлака становится выше порога рабочего окна и шлак вытекает из печи. Выход шлака усиливают, наклоняя печь в сторону рабочего окна на небольшой угол. Шлак стекает в шлаковик) , стоящую под рабочей площадкой цеха. За время окислительного периода окисляют 0,3--0,6 % C со средней скоростью 0,3--0,5 % С/ч. Для обновления состава шлака одновременно с рудой в печь добавляют известь и небольшие количества плавикового шпата для обеспечения жидкоподвижности шлака.
- Непрерывное окисление ванны и скачивание окислительного известкового шлака являются непременными условиями удаления из стали фосфора. Для протекания реакции окисления фосфора 2[P]+5[O]=(P2O5) ; (Р2O5) +4(СаО) ==(СаО) 4*P2O5 необходимы высокое содержание кислорода в металле и шлаке, повышенное содержание CaO в шлаке и пониженная температура.
- В электропечи первые два условия полностью выполняются. Выполнение последнего условия обеспечивают наводкой свежего шлака и постоянным обновлением шлака, так как шлак, насыщенный (СаО) 4*P2O5 скачивается из печи. По ходу окислительного периода происходит дегазация стали--удаление из нее водорода и азота, которые выделяются в пузыри СО, проходящие через металл.
- Выделение пузырьков СО сопровождается также и удалением из металла неметаллических включений, которые выносятся на поверхность потоками металла или поднимаются наверх вместе с пузырьками газа. Хорошее кипение ванны обеспечивает перемешивание металла, выравнивание температуры и состава.
- Одношлаковый процесс.
- В связи с интенсификацией процесса электроплавки в последние годы получил большое распространение метод плавки в дуговой печи под одним шлаком. Сущность этого метода заключается в следующем: дефосфорация металла совмещается с периодом расплавления. Во время расплавления из печи скачивают шлак и производят добавки извести.
- В окислительный период выжигают углерод. По достижении в металле << 0,035 % Р производят раскисление стали без скачивания шлака ферросилицием и ферромарганцем. Затем присаживают феррохром и проводят сокращенный (50--70 мин) восстановительный период с раскисленем шлака порошками ферросилиция и кокса и раскислением металла кусковыми раскислителями. Окончательное раскисление производят в ковше ферросилицием и алюминием. В некоторых случаях вообще не проводят раскисления шлака в печи порошкообразными раскислителями.
- В литейном производстве электродуговые печи используют для выплавки стали из металлического лома и для перегрева жидкого чугуна, получаемого в вагранках.
- Электрический режим работы дуговой печи зависит от режима процесса плавки. При расплавлении металлического лома печь работает на максимальной мощности. При доводке жидкого металла до нужного химического состава мощность печи сравнительно невелика.
- Регулировать режим печи можно, изменяя напряжение на электродах или длину дуги, т. е. силу тока дуги. В первом случае переключают трансформатор с одной ступени на другую, во втором -- опускают или поднимают электроды с помощью автоматической системы.
- Печь подключают к трехфазной сети промышленной частоты напряжением 6000 кВ. Рабочее напряжение на электродах регулируют переключением трансформатора.
- Для малых печей предусматривают 2--4 ступени напряжения трансформатора; для крупных печей---до 25 ступеней, что позволяет для каждого режима плавки подбирать оптимальное напряжение. Печные трансформаторы устанавливают на минимальном расстоянии от печи с тем, чтобы уменьшить потери электроэнергии.
- В цепь высокого напряжения включают дроссель (реактор), который ограничивает силу тока при коротком замыкании электродов на металл.
- Печь состоит из следующих основных узлов: стального кожуха (каркаса), механизма наклона, футеровки (под, стены и свод), электродов и механизма перемещения электродов.
- Кожух печи может быть цилиндрической или конической формы, слегка расширяющейся кверху. Кожух сваривают из листовой стали толщиной 12--20 мм. Днище кожуха может быть плоским, коническим или сферическим. В кожухе вырезают отверстия для загрузочного окна и металлической летки. Кожух печи несет на себе всю тяжесть футеровки и расплавляемого металла и испытывает термические напряжения, поэтому он должен быть большой прочности.
- Механизм наклона печи. Для слива металла из печи ее необходимо наклонять в сторону сливного носка на 40--45°; для скачивания шлака -- на 10--15° в сторону рабочего окна. Печь надо наклонять с определенной скоростью с помощью специального механизма, находящегося с боку от нее или под ней.
- При боковом механизме наклона кожух печи опирается на литую постель, установленную на фундаменте, двумя литыми сегментами, жестко соединенными с кожухом. На сегментах и литой постели выполнены зубцы, надежно фиксирующие печь. Печь наклоняют при вращении винта, который ввинчен в гайку, шарнирно закрепленную на одном из сегментов. Для наклона печи используют также гидропривод.
- Футеровка печи. Подина состоит из нескольких слоев. Первый слой, соприкасающийся с жидким металлом и шлаком, -- набивной из огнеупорного порошка. При кислом процессе используют набивку из кварцевого песка, при основном -- набивку из магнезитового порошка. Второй слой подины при кислом процессе выполняют из динаса, а при основном -- из магнезита. Последующие слои -- из шамота, диатомита и асбеста.
- Стены печей делают многослойными. Первый слой в зависимости от процесса выкладывают из динасового или магнезитового кирпича, второй -- из шамотного кирпича, третий -- из диатомитового порошка, который, являясь теплоизоляцией, одновременно компенсирует расширение огнеупоров при нагреве печи и тем самым предохраняет ее кожух от разрушения.
- Вместо огнеупорных кирпичей иногда применяют набивные блоки, изготовленные из кварцевого песка или магнезитового порошка. Свод изготовляют с помощью специального шаблона из электродинасового нормального и фасонного кирпича.
- Электроды. Электрический ток подается внутрь рабочего пространства печи по угольным или графитированным электродам.
- Угольные электроды изготовляют из антрацита и кокса, а графитированные -- из искусственного графита. Угольные электроды по сравнению с графитированными имеют меньшую механическую прочность и более низкую электропроводность. Поэтому угольные электроды обычно применяют лишь на малых печах емкостью до 3 т.
- Электроды имеют круглое сечение и длину 1000--1800 мм. В торцах электродов сделаны отверстия с резьбой. По мере обгорания нижней части электрода, находящейся в печи, его наращивают. Для этого в верхнюю часть работающего электрода ввинчивают с помощью соединительного ниппеля новый электрод.
- Механизация загрузки печи. В печи емкостью 1,5 и 3 т металлолом загружают вручную. При загрузке печей большей емкости применяют специальные механизмы. Наиболее распространен метод загрузки сверху. При загрузке шихты свод печи вместе с электродами поднимают вверх и поворачивают на 80--100°. Открытую печь загружают с помощью специальных загрузочных корзин. По окончании загрузки печи свод возвращают в исходное положение.
- Расчет дуговой печи. Определяем мощность трансформатора, кВ·А,
- где Wтеор -- удельный расход электроэнергии на расплавление, кВт·ч/т; П -- производительность печи, т/ч; з -- КПД печи, равный 0,5--0,7; cos ц -- коэффициент мощности печной установки, равный 0,8--0,9.
- Вторичное напряжение выбирают с учетом мощности трансформатора, габаритных размеров печи, ее емкости и т. д. Для печей небольшой емкости вторичное напряжение 225--300 В, для печей средней емкости 300--400 В и для печей большой емкости до 600 В.
- 1. Сила тока в электроде печи, А,
- где U2л -- линейное напряжение, В.
- 2. Диаметр электрода, м,
- ,
- где j -- допустимая плотность тока в электроде, А/м2,
- j==(15ч25)104;
- 3. Полная высота ванны (угол наклона 45°) до порога рабочего окна, м,
- где А -- коэффициент для основных печей, равный 0,31--0,345, и для кислых печей 0,38; G -- масса стали в печи, т.
- 4. Диаметр ванны на уровне порога рабочего окна, м,
- где с - плотность жидкого металла, т/м3
- 5. Диаметр плавильного пространства на уровне верхнего края откоса, м
- где ДН = (0,14ч0,15)Н для печейемкостью до 20 т и (0,12ч0,13)Н для печей большей емкости.
- 6. Высота плавильного пространства печи, м
- 7. Толщина футеровки пода, м
- 8. Толщина s0 огнеупорного слоя стен 0,23 м для печей 0,5 -1,5 т; 0,30 м для 3-10 т; 0,35-0,40 м для 15,0-40 т. Толщина sт теплоизоляционного слоя стен 0,1 м для печей емкостью 0,5-1,5 т; 0,10-0,15 м для 3-10 т; 0,15-0,2 м для 15-40 т.
- 9. Диаметр кожуха печи , м
- Заключение
- Печи для плавки в жидкой ванне используются в цветной металлургии для получения медного штейна не везде из-за относительной новизны процесса. Но в будущем они по праву займут лидирующие позиции среди плавильных печей из-за сравнительной простоты конструкции печи, технологического процесса получения меди на штейн. Печи являются агрегатами непрерывного действия, позволяя производить процесс плавки без излишних остановок. Получаемый штейн является очень качественным и не требует повторной плавки.
- В своей работе я рассмотрел классификацию печей для автогенной плавки, описал конструкцию и принцип работы. Также указал тепловой и температурный режим работы печи.
Список использованных источников
1 Кривандин В.А., Кобахидзе В.В. и др. Металлургическая теплотехника. В 2 т. Т 2. Конструкция и работа печей: учебник для вузов/В.А. Кривандин, В.В. Кобахидзе и др.- М.:Металлургия, 1986. С. 495 - 506.
Подобные документы
Плавка стали в электрических печах. Очистка отходящих газов. Устройство для электромагнитного перемешивания металла. Плавка стали в основной дуговой электропечи. Методы интенсификации электросталеплавильного процесса. Применение синтетического шлака.
курсовая работа [74,8 K], добавлен 07.06.2009Классификация и маркировка стали, краткая характеристика способов производства. Виды и устройство дуговых печей, используемое сырье, заправка и плавление шихты. Окислительный и восстановительный периоды плавки, порядок легирования и составление баланса.
курсовая работа [421,8 K], добавлен 15.05.2014Классификация материалов по функциональному назначению. Схема устройства дуговой электросталеплавильной печи. Процесс плавки стали на углеродистой шихте и преимущества электрических печей перед другими плавильными агрегатами. Особенности сварки меди.
реферат [1007,0 K], добавлен 18.05.2011Строение и свойства стали, исходные материалы. Производство стали в конвертерах, в мартеновских печах, в дуговых электропечах. Выплавка стали в индукционных печах. Внепечное рафинирование стали. Разливка стали. Специальные виды электрометаллургии стали.
реферат [121,3 K], добавлен 22.05.2008Общее описание устройства дуговой электропечи переменного тока. Шихтовые материалы для печей переменного тока. Дуговые печи постоянного тока и их преимущество. Регуляторы электрического режима при плавке в ДСП. Основные тенденции развития дуговых печей.
курсовая работа [325,4 K], добавлен 17.04.2011Исследование особенностей сварки и термообработки стали. Технология выплавки стали в дуговых сталеплавильных печах. Анализ порядка легирования сталей. Применение синтетического шлака и порошкообразных материалов. Расчёт ферросплавов для легирования стали.
курсовая работа [201,2 K], добавлен 16.11.2014Особенности технологии выплавки стали. Разработка способов получения стали из чугуна. Кислородно-конвертерный процесс выплавки стали. Технологические операции кислородно-конверторной плавки. Производство стали в мартеновских и электрических печах.
лекция [605,2 K], добавлен 06.12.2008Механические свойства стали при повышенных температурах. Технология плавки стали в дуговой печи. Очистка металла от примесей. Интенсификация окислительных процессов. Подготовка печи к плавке, загрузка шихты, разливка стали. Расчет составляющих завалки.
курсовая работа [123,5 K], добавлен 06.04.2015Металлургия стали как производство. Виды стали. Неметаллические включения в стали. Раскисление и легирование стали. Шихтовые материалы сталеплавильного производства. Конвертерное, мартеновское производство стали. Выплавка стали в электрических печах.
контрольная работа [37,5 K], добавлен 24.05.2008Основы металлургического производства. Производство чугуна и стали. Процессы прямого получения железа из руд. Преимущество плавильных печей. Способы повышения качества стали. Выбор метода и способа получения заготовки. Общие принципы выбора заготовки.
курс лекций [5,4 M], добавлен 20.02.2010