Действие пыли на организм человека

Физико-химические свойства производственной пыли. Содержание пыли в воздухе рабочих помещений, предельно допустимые концентрации. Влияние пыли на организм. Технические, санитарно-технические и лечебно-профилактические мероприятия по защите от пыли.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид курсовая работа
Язык русский
Дата добавления 17.05.2014
Размер файла 102,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

Теоретическая часть

1. Производственная пыль и физико-химические свойства

1.1 Производственная пыль

1.2 Физико-химические свойства производственной пыли

1.3 Содержание пыли в воздухе рабочих помещений. Предельно допустимые концентрации

2. Действие пыли на организм человека

2.1 Влияние пыли на организм человека

2.2 Меры профилактики пылевых заболеваний

2.2.1 Методы и средства защиты от пыли

2.2.2 Технические и санитарно-технические мероприятия

2.2.3 Лечебно-профилактические мероприятия

Практическая часть

3. ЗАО «Новгородский металлургический завод»

3.1 Характеристика предприятия

3.2 Методы и результаты исследований

Заключение

  • Список использованной литературы
  • пыль производственный защита концентрация

Введение

Производственная пыль является одним из наиболее распространенных неблагоприятных факторов профессиональной вредности. При этом производственный процесс и факторы производственной среды оказывают на организм человека многостороннее действие. Пыль встречается на подавляющем числе производств, где самые разнообразные технологические процессы и операции сопровождаются образованием и выделением пыли в зону влияния на большие контингенты работающих [1].

По данным Госкомстата России, в 2000 г. в промышленности, строительстве, транспорте и связи более 2 млн. 317 тыс. человек работали в условиях повышенной запыленности и загазованности воздуха рабочей среды, при этом в 17,43 % случаев отмечено превышение ПДК.

В горнорудной промышленности значительное количество пыли возникает во время бурения и при взрывных работах. В угольной -- при работе комбайнов и породопогрузочных машин, при сортировке угля и т.д. Отмечается, что на большинстве предприятий угольной промышленности отсутствуют эффективные средства борьбы с пылью, в связи, с чем концентрации угольно-породной пыли при бурении, погрузке и транспортировке угля превышают ПДК от 2 до 150 раз. На обогатительных фабриках пыль поступает в воздух при дроблении и размоле породы. Вся промышленность строительных материалов связана с процессами дробления, помола, смешения и транспортировки пылевидного сырья и продукта (цемент, кирпич, шамот, динас и др.). В машиностроительной промышленности процессы пылеобразования имеют место в литейных цехах при приготовлении формовочной земли; при выбивке, обдирке, обдувке форм и очистке литья, а также в механических цехах -- главным образом при шлифовке и полировке изделий. Многие процессы в металлургии, электросварочные работы, плазменная и электроискровая обработка металла сопровождаются выделением в воздух пыли и паров, конденсирующихся в аэрозоли. При неполном сгорании топлива в воздух рабочих мест наряду с продуктами возгонки и смолистыми веществами могут поступать копоть и сажа, также представляющие собой аэрозоли в виде дыма и пыли. В химической промышленности многие процессы также связаны с пылеобразованием. В сельском хозяйстве пыль образуется при рыхлении и удобрении почвы, использовании порошкообразных пестицидов, очистки зерна и семян, хлопка, льна и др. [3].

Основной целью данной работы являлось: охарактеризовать производственную пыль, как один из вредных факторов на производстве.

Для достижения данной цели были поставлены следующие задачи:

ѕ Дать определение производственной пыли;

ѕ Рассмотреть физическо-химические свойства;

ѕ Изучить влияние производственной пыли на организм человека;

ѕ Ознакомится с методами и средствами защиты от пыли.

Теоретическая часть

1. Производственная пыль и физико-химические свойства

1.1 Производственная пыль

Производственная пыль является одним из широко распространенных неблагоприятных факторов, оказывающих негативное влияние на здоровье работающих. Целый ряд технологических процессов сопровождается образованием мелкораздробленных частиц твердого вещества (пыль), которые попадают в воздух производственных помещений и более или менее длительное время находятся в нем во взвешенном состоянии.

За последние годы появились крупные учреждения массового обслуживания населения (супер- и гипермаркеты, комбинаты сервисного обслуживания, косметические салоны, выставочные комплексы, залы для обслуживания клиентов финансовых предприятий), в которых движение больших людских и товарных потоков создает повышенное содержание пыли в помещениях. Производственная пыль занимает одно из первых мест среди причин профессиональной патологии. Это обусловлено тем, что большое количество пыли образуется при многих производственных процессах: при размоле, шлифовке, сверлении, дроблении, просеивании, электросварке, взрывных работах и транспортировке пылящих материалов. Большая запыленность воздуха имеет место в шахтах, рудниках и при некоторых сельскохозяйственных работах.

Производственной пылью называют взвешенные в воздухе, медленно оседающие твердые частицы размерами от нескольких десятков до долей микрона. Многие виды производственной пыли представляют собой аэрозоль, т.е измельченные или полученные иным путем мелкие частицы твердых веществ, витающие (находящиеся в движении) некоторое время в воздухе. Такое витание происходит вследствие малых размеров этих частиц (пылинок) под действием движения самого воздуха [9].

Воздух всех производственных помещений в той или иной степени загрязнен пылью; даже в тех помещениях, которые обычно принято считать чистыми, не запыленными, в небольших количествах пыль все же есть (иногда она даже видна невооруженным глазом в проходящем солнечном луче). Однако во многих производствах в силу особенностей технологического процесса, применяемых способов производства, характера сырьевых материалов, промежуточных и готовых продуктов и многих других причин происходит интенсивное образование пыли, которая загрязняет воздух этих помещений в большой степени. Это может представлять определенную опасность для работающих. В подобных случаях находящаяся в воздухе пыль становится одним из факторов производственной среды, определяющих условия труда работающих; она получила название промышленной пыли.

Пыли образуются вследствие дробления или истирания (аэрозоль дезинтеграции), испарения с последующей конденсацией в твердые частицы, (аэрозоль конденсации), сгорания с образованием в, воздухе твердыхчастиц -- продуктов горения (дымы), ряда химических реакций и т. д.

В производственных условиях с образованием пыли чаще всего связаны процессы дробления, размола, просева, обточки, распиловки, пересыпки и других перемещений сыпучих материалов, сгорания, плавления и др. [11]

1.2 Физико-химические свойства производственной пыли

Гигиеническое значение промышленных аэрозолей с твердой фазой обусловливается их физическими и химическими свойствами, из которых наиболее важными являются дисперсность, форма частиц, их консистенция, электрический заряд, растворимость, химический состав. С некоторыми из указанных свойств связана взрывчатость пыли.

Для гигиенической оценки пыли важным признаком является степень дисперсности ее, или размеры пылевых частиц, так как с этим связана как длительность пребывания взвешенной пылевой частицы в воздушной среде, так и глубина проникновения в дыхательные пути, патогенность и физико-химическая активность, электрозаряд частиц и другие свойства [23].

Физико-химические свойства пыли в основном зависят от ее природы, то есть от того материала или вещества, из которого образовалась эта пыль, и механизма ее образования - каким образом она получена: размельчением, конденсацией, сгоранием и т. п. По природе образования пыли делятся на две группы:

· органическую

· неорганическую.

К органической относятся: пыли растительного происхождения (древесины, хлопка, льна, различных видов муки и др.), животного (шерсти, волоса, размолотых костей и др.), химического (пластмасс, химических волокон и других органических продуктов химических реакций). В группу неорганических пылей входят пыль металлов и их окислов, различных минералов, неорганических солей и других химических соединений. Однако выделяют ещё один тип: смешанная, т.е.содержащая пыли первой и второй групп например, пыль, получающаяся при заточке инструментов и состоящая из минеральных и металлических частиц. В зависимости от происхождения пыли она может быть растворимой и нерастворимой в воде и в других жидкостях, включая и биосреды (кровь, лимфу, желудочный сок и т. п.). От происхождения пыли зависит также ее химический состав, удельный вес и ряд других свойств [16].

Однако наиболее важные физические и химические свойства пылей обуславливаются их дисперсностью, формой частиц, способностью к растворению и химическим составом. Структура пыли, то есть форма пылинок, зависит и от природы и от механизма образования пыли. По структуре пыль может быть аморфной (пылинки округлой формы), кристаллической (пылинки с острыми гранями), волокнистой (пылинки удлиненной формы), пластинчатой (пылинки в виде слоистых пластинок) и др.

Для гигиенической оценки пыли наиболее важным признаком является ее дисперсность. С размерами пылевых частиц связаны длительность пребывания их во взвешенном состоянии в воздухе, глубина проникновения в дыхательные пути, физико-химическая активность и другие свойства.

Дисперсность и поведение пылевых частиц в воздухе

При измельчении твердого вещества образующиеся пылинки получают то или иное количество электричества вследствие частичного перехода механической энергии в электрическую, кроме того, пылинки получают электрический заряд, адсорбируя на себе ионы из воздушной среды. Таким образом, пыль, находящаяся в воздухе, в той или иной степени несет на себе электрический заряд. Степень электрозаряженности оказывает существенное влияние на поведение пыли в воздухе. Электрозаряженные пылинки с противоположным знаком соединяются между собой (схлапливаются), образуя более крупные частицы, за счет чего быстрее осаждаются; пылинки с одинаковым зарядом, наоборот, отталкиваются друг от друга, что усиливает их движение в воздухе и замедляет осаждение. Исследования показывают, что высокодисперсная пыль в большей степени подвержена электрическим зарядам. Электрозаряженности способствует также нагревание пыли. Повышенная влажность воздуха или самой пыли снижает ее электрозаряженность.

Высокодисперсная пыль вследствие электрозаряженности обладает активной поверхностью, поэтому на ней сарбируются газы и другие мелкие частицы, находящиеся в воздухе. Чем меньше пылевые частицы, тем больше их активность. Газы, обволакивая пылевую частицу, способствуют более длительному витанию ее в воздухе, то есть сорбирование на пылевых частицах газов замедляет осаждение пыли.

При значительной запыленности воздуха высокодисперсной пылью электрические заряды пылевых частиц могут суммироваться и, достигнув определенного потенциала, образовывать электрические разряды -- взрывы. Чаще всего такие взрывы пыли возникают при наличии огня или сильно нагретого предмета в чрезмерно запыленной атмосфере, так как при повышении температуры резко увеличивается заряженность пылевых частиц, быстрее и с большей силой происходит электрический разряд [20].

Степень дисперсности промышленных аэрозолей зависит прежде всего от способа их образования. Только что образовавшиеся аэрозоли конденсации (дымы) имеют размеры меньше 1 мкм. С течением времени они агрегируются и в виде хлопьев выпадают из воздуха. Размеры аэрозолей дезинтеграции (пыли) зависят от вещества, из которого они получены, и интенсивности его размельчения. Чем тверже вещество и чем интенсивнее его размельчение, тем выше степень дисперсности пылевых частиц.

Благодаря сравнительно быстрому оседанию крупных пылевых частиц от 10 мкм и более, обычно в воздухе производственных помещений преобладают пылевые частицы до 10 мкм, причем 70--90% из них составляют частицы размером до 5 мкм.

Микроскопические частицы размером от 200 до 0,1 мк, как и все прочие тела, подчиняются закону тяготения. Но вследствие относительно большой поверхности на единицу массы они испытывают большое сопротивление воздуха и поэтому не оседают с постоянной скоростью по закону Стокса. В начале падения сила тяжести уравновешивает сопротивление воздуха, дальнейшее увеличение скорости падения вследствие этого прекращается и микроскопическая частица оседает с постоянной незначительной скоростью, измеряемой сантиметрами или миллиметрами в час. Сопротивление воздуха при движении в нем частицы изменяется в зависимости от ее размеров и формы, скорости ее оседания и подвижности воздуха.

В неподвижном воздухе кварцевые частицы диаметром 10 мк оседают медленно, а частицы менее 0,1 мк практически не оседают и находятся в постоянном броуновском движении. Таким образом, чем меньше размер пылевых частиц, тем дольше они задерживаются взвешенными в воздухе, следовательно, тем больше возможность попадания их в дыхательные пути.
Некоторые изменения скорости оседания пылевых частиц возникают в связи с процессом флоккуляции. Это имеет значение в основном для аэрозолей конденсации, которые даже в неподвижном воздухе благодаря энергичному броуновскому движению часто сталкиваются друг с другом, агрегируются и в виде хлопьев выпадают из воздуха. Аэрозоли дезинтеграции не поддаются агрегированию главным образом вследствие относительно больших размеров-частиц; более того, пылевые частицы в них могут приобретать меньшие размеры.

Аэрозоли конденсации окиси магния минимальных размеров с течением времени превращаются в хлопья, а аэрозоли дезинтеграции мела в виде хлопьев -- в мельчайшие пылевые частицы. Влияние движения воздуха на флокуляцию незначительно. Увлажнение воздуха оказывает эффективное влияние на флокуляцию лишь в том случае, если оно интенсивное. Исследования показали, что аэрозоли дезинтеграции малого диаметра могут флокулироваться при наличии в воздухе водяных аэрозолей размером 0,55--0,4 мк в количестве, значительно превышающем количество твердых аэрозолей.

Степень дисперсности промышленных аэрозолей зависит прежде всего от способа их образования. Свежеполученные аэрозоли конденсации (дымы) имеют размеры частиц меньше 1 мк. Величина частиц аэрозолей дезинтеграции (пыль) зависит от вещества, из которого они получены, интенсивности дезинтеграции и возраста аэрозолей. Чем тверже вещество, чем интенсивнее дезинтеграция и чем больше возраст аэрозолей, тем больше пыли и тем выше степень дисперсности ее частиц [23].

Химический состав пыли.

Для гигиенической оценки пыли важно знать ее химический состав, от которого зависит биологическая активность, в частности фиброгенное (перерождение легочной ткани в соединительную), аллергенное, токсическое и раздражающее действие. Фиброгенность пыли зависит главным образом от содержания в ней свободной двуокиси кремния. Пыль, образующаяся при производстве огнеупорного кирпича, содержит 98% свободной двуокиси кремния; формовочная земля в чугунолитейных цехах - 60-80%; железная руда - до 30%, вмещающие ее породы - кварцит - до 70%; почти все породы угольных пластов Донбасса содержат более 10% свободной двуокиси кремния. Чем больше содержание в пыли двуокиси кремния, тем она более агрессивна.

Химическая активность пыли увеличивается с повышением ее дисперсности, т. е. с увеличением удельной поверхности размельчаемых веществ.

Большое значение имеет растворимость пыли. Если пыль не токсична и действие ее на ткань сводится к механическому раздражению, то хорошая растворимость такой пыли в тканевых жидкостях является благоприятным фактором. В случае токсичной пыли хорошая растворимость является отрицательным фактором.

Пыль оказывает вредное действие главным образом на дыхательные пути, вызывая заболевания как их верхних отделов, так и легких, а также действует на кожу и глаза.

При вдыхании пылевых частиц размером 5 мкм и более они всецело задерживаются в верхних дыхательных путях, в первую очередь в полости носа. Это вызывает травмирование и раздражение слизистой, которое при дальнейшем развитии процесса переходит в катар, вначале гипертрофический (т. е. с разрастанием ткани), а затем атрофический с заменой мерцательного эпителия плоским и гибелью железистого аппарата. Фильтрующая способность носовой полости поэтому сильно снижается, а в далеко зашедших случаях вовсе исчезает. Постепенно под влиянием длительного воздействия различных видов пылей развиваются хронические воспалительные процессы и на других участках дыхательных путей (риниты, фарингиты, трахеиты, бронхиты). Некоторые виды пыли, обладающие большой химической активностью (хром, мышьяк), могут при длительном воздействии вызвать изъязвление и прободение носовой перегородки.

Принято считать, что около 50% пыли достигает легких и там задерживается. Как правило, это пылинки размером менее 5 мкм, причем более 95% -- пылинки размером менее 3 мкм.

Вне зависимости от физико-химических свойств все виды пылевых частиц вначале оказывают на легочную ткань механическое действие. При этом легочная ткань реагирует на них, как на инородное тело, стремясь удалить его. Защитная функция организма, способствующая очищению легких от пыли, носит название фагоцитоза и состоит в следующем.

Пыль, попавшая в легкие, поглощается так называемыми пылевыми клетками (клетками легочного эпителия), которые затем стремятся удалить пыль из легких различными путями. Один из путей -- удаление пыли вместе с мокротой. Другой путь -- удаление пыли по лимфатическим путям. Частицы пыли размером менее 1 мкм фагоцитируются легче; более крупные пылинки, а также кварцевая пыль удаляются медленно и накапливаются в легких и в лимфатических, узлах, приводя их к поражению.

Пыль, проникшая глубоко в дыхательные пути, может привести к развитию в них специфического заболевания -- пневмокониоза, сущность которого заключается в развитии фиброза, т. е. замещения легочной ткани соединительной тканью. В зависимости от характера вдыхаемой пыли различают следующие виды пневмокониозов:

· силикатоз, вызываемый воздействием пыли, содержащей двуокись кремния в связанном состоянии (силикаты -- пыль асбеста, талька);

· антракоз -- пневмокониоз, вызываемый воздействием угольной пыли;

· сидероз -- пневмокониоз, вызываемый, например, пылью железа.

Силикоз -- наиболее тяжелый и наиболее распространенный вид пневмокониоза. Это медленно протекающий хронический процесс, который, как правило, развивается только у лиц, проработавших несколько лет в условиях значительного загрязнения воздуха кремниевой пылью. Силикоз развивается обычно через 5--10 или 15 лет работы, связанной с вдыханием кварцсодержащей пыли при очень высоком содержании свободной SiO2 во вдыхаемой пыли, однако в отдельных случаях возможно более быстрое возникновение и течение этого заболевания, когда за сравнительно короткий срок (2~4 года) процесс достигает конечной, терминальной, стадии.

Силикоз следует рассматривать как тяжелое заболевание организма в целом, при котором происходят значительные изменения в различных органах и системах (нервной, сердечно-сосудистой, лимфатической и др.). Нередко он осложняется туберкулезом.

Кроме пневмокониоза, вдыхание пыли может быть причиной повышенной заболеваемости воспалением легких. Особенно это относится к томасовой пыли, образующейся в сталеплавильном производстве и содержащей в своем составе фосфорные соединения.

Пыли, оказывающие раздражающее действие на кожу (пыли синтетических смол, извести, карбида кальция), могут вызвать различные воспалительные процессы вплоть до язвенных поражений (дерматиты, экземы). При большой запыленности воздуха попадающие на кожу пылевые частицы могут проникнуть в отверстия сальных и потовых желез, вызвать их закупорку, а следовательно, нарушить нормальную деятельность кожи, чем будет снижена ее сопротивляемость к проникновению микробов [22].

1.3 Содержание пыли в воздухе рабочих помещений. Предельно допустимые концентрации

Многочисленные исследования показывают, что запыленность воздуха рабочих помещений колеблется в широких пределах в зависимости от характера производства, технологического процесса, состояния оборудования, характера производственных операций, состояния технических мер борьбы с пылью и др.

В зависимости от указанных условий в воздухе рабочих помещений можно обнаружить количество пыли от 1 мг/м3 и меньше до десятков и сотен миллиграммов в 1 м3 воздуха и от 200 до десятков тысяч микроскопических пылевых частиц в 1 см3 воздуха, а ультрамикроскопических частиц -- до нескольких сотен тысяч. Следует, однако, отметить, что, несмотря на интенсификацию производственных процессов и в связи с этим, увеличение пылеобразования, запыленность воздуха рабочих помещений в настоящее время значительно ниже, чем была 10--20 лет назад. Объясняется это рационализацией технологических процессов и оборудования, а также совершенствованием и широким применением специальных технических мер по борьбе с пылью.

Исходя из установленного положения о наибольшей агрессивности кварцевой (SiO2) пыли, в России установлены следующие предельно допустимые концентрации пыли в воздухе рабочих помещений в весовых единицах: при содержании в пыли более 70% свободной двуокиси кремния - 1 мг/м3, при содержании ее от 10 до 70% - 2 мг/м3, для асбестовой пыли и смешанной, содержащей более 10% асбеста - 2 мг/м3, для пыли стеклянного и минерального волокна - 4 мг/м3. Всего нормировано более 30 видов нетоксичной пыли, причем для пыли, содержащей свободную двуокись кремния в количестве меньше. 10%,. установлены предельно допустимые концентрации в пределах 2 - 6 мг/м3, а для пыли, не содержащей свободной двуокиси кремния, например угольной и др., установлена предельно допустимая концентрация 10 мг/м3. Предельно допустимые концентрации пыли, установленные в России, значительно ниже, чем в других странах, в частности в США [23].

2. Действие пыли на организм человека

2.1 Влияние пыли на организм человека

Не вся пыль, попадающая в дыхательные пути, достигает легких: часть ее задерживается в верхних дыхательных путях, в первую очередь в полости носа. Волоски слизистой оболочки носа, извилистые ходы, липкая слизь, покрывающая оболочку, мерцательный эпителий слизистой носа являются отличными механизмами, задерживающими пылевые частицы. Большое значение в задержании пыли в полости носа имеют изменения направления и скорости движения воздушной струи по воздухоносным путям. Такого же рода механизмы, задерживающие пыль, имеются в средних отделах воздушных путей: изменение сечения, задержка в голосовой щели, бифуркация и перистальтика бронхов, фагоцитоз на поверхности слизистой оболочки бронхов. Количество задержанной пыли в верхних дыхательных путях зависит от физико-химических свойств пыли, размеров пылевых частиц, состояния дыхательных путей и др.

Значительная часть задержанной пыли выделяется обратно при чихании и кашле. По данным разных авторов, количество выделяемой пыли колеблется от 10 до 70%- В среднем принято считать, что около 50% пыли достигает легких и там задерживается.

Вне зависимости от физико-химических свойств, все виды пылевых частиц вначале оказывают механическое действие на легочную ткань, которая реагирует на них как на инородное тело пролиферативной клеточной реакцией. В легких происходит процесс фагоцитоза пылевых частиц, в первую очередь клетками легочного эпителия. Фагоцитоз является защитной функцией организма и способствует очищению легких от пыли. Клетки, поглотившие пылевые частицы, так называемые пылевые клетки, стремятся удалить пыль из легких различными путями. Один из путей -- удаление пыли вместе с мокротой, другой -- удаление пыли по лимфатическим путям легкого в бронхиальные железы и по направлению к плевре, где, скапливаясь, пыль вызывает пролиферативную реакцию. Активность фагоцитоза различных видов пыли неодинакова.

Хорошо фагоцитирующаяся пыль, как, например, угольная, сравнительно легко удаляется из легких, в то время как кварцевая пыль, несмотря на высокую активность фагоцитоза, вследствие быстрой гибели фагоцитов удаляется медленно и накапливается в легких. Пыль, транспортируемая пылевыми клетками по лимфатическим путям, может задерживаться в местах бифуркации и изгибов лимфатических сосудов, закупоривать их, вызывать лимфостаз, способствующий в дальнейшем развитию соединительной ткани.

Часть пылевых клеток под влиянием токсического действия пыли (кварца) разрушается, пылевые частицы в этом случае задерживаются в альвеолах, внедряются в ткань межальвеолярных перегородок и вызывают пролиферативную клеточную реакцию.

В дальнейшем в зависимости от агрессивности пыли процессы могут протекать в двух направлениях: развитие специфических процессов -- образование патологической соединительной ткани, т. е. фиброза легких и развитие неспецифических патологических процессов, например воспаление легких, туберкулез легких, рак легких и др. [21].

Итак, неблагоприятное воздействие пыли на организм может быть причиной возникновения заболеваний. Пыль может оказывать такие действия как:

o Фиброгенное;

o Токсическое;

o Раздражающее;

o Аллергенное;

o Канцерогенное;

o радиоактивное действие.

Обычно различают специфические (пневмокониозы, аллергические болезни) и неспецифические (хронические заболевания органов дыхания, заболевания глаз и кожи) пылевые поражения [15].

Среди специфических профессиональных пылевых заболеваний большое место занимают пневмокониозы -- болезни легких, в основе которых лежит развитие склеротических и связанных с ними других изменений, обусловленных отложением различного рода пыли и последующим ее взаимодействием с легочной тканью [3].

Термин «пневмокониоз» введен в медицинскую литературу в 1866 г. Ценкером (от греч. pneumon -- легкое, conia -- пыль). В течение многих лет запыление легких любой пылью, независимо от патологоанатомических изменений при этом, характеризовалось как пневмокониоз. Вследствие этого возникло множество нозологических форм пневмокониоза, носящих название соответственно вдыхаемой пыли: силикоз -- при вдыхании кварцевой пыли, антракоз -- угольной, асбестоз -- асбестовой, сидероз -- железной, амилоз -- мучной и крахмальной пыли, алюминоз -- глины и т. д.

Однако в дальнейшем, на основании изучения секционного материала, выяснилось, что некоторые виды пыли приводят к фиброзу легких, а другие не вызывают его. Пневмокониозом стали называть заболевание, при котором вследствие вдыхания пыли возникает фиброз легких. Это привело к тому, что из всех видов пневмокониоза был выделен только силикоз, возникающий при вдыхании пыли, содержащей в большом количестве свободную SiO2. Антракоз также считали силикозом в связи с тем, что угольная пыль содержит некоторое количество SiO2. Асбестоз, возникающий под влиянием асбестовой пыли, не содержащей свободной двуокиси кремния и являющейся магниевой солью кремневой кислоты, считали исключением из общего правила. Таким образом, укоренилось мнение, что фиброз легких может быть вызван только вдыханием пыли, содержащей свободную двуокись кремния и термин «пневмокониоз» может быть заменен термином «силикоз».

Однако в 30-х годах XX столетия выяснилось, что не только свободная SiO2 может вызвать фиброз легких -- он может возникнуть также при вдыхании солей кремневой кислоты, в которых она находится в связанном состоянии в виде многочисленных силикатов (серциты, тальк, нефелин и др.). В последние годы установлено, что пневмокониоз, т. е. фиброз легких, может возникнуть при вдыхании видов пыли, которые не содержат кремневой кислоты ни в свободном, ни в связанном виде, например при вдыхании окиси железа при электросварке, чистой угольной пыли, пыли металлического алюминия, пыли пластмасс и др. Таким образом, в настоящее время можно считать пневмокониоз полиэтиологическим заболеванием, возникающим при вдыхании многих видов пыли. Следует, однако, подчеркнуть, что наиболее агрессивной фиброгенной пылью является все же кварцевая пыль, содержащая большое количество свободной двуокиси кремния.

Наиболее фиброгенным является кристаллический кремний, менее активен аморфный, но в виде аэрозолей конденсации SiO2 он не менее фиброгенен, чем кристаллический. Из аэрозолей конденсации SiO2 наиболее агрессивны аэрозоли электротермического происхождения.

Лучше всего изучен патогенез силикоза как наиболее агрессивного вида пневмокониоза. В исследовании патогенеза силикоза можно отметить два основных этапа: первый этап -- выяснение механизма действия пыли в связи с ее физико-химическими свойствами, второй этап -- выяснение механизма образования патологической соединительной ткани -- фиброза легких. Существует несколько теорий механизма действия пыли. Первой возникла теория механическая, объясняющая действие пылевых частиц как механически раздражающего инородного тела, вызывающего вначале клеточную реакцию, а затем образование грубоволокнистой соединительной ткани как защитную реакцию организма. Механическое действие пыли подтверждено опытами Гарднера с асбестовой пылью. В его опытах измельченная асбестовая пыль не приводила к фиброзу легких у кроликов, в то время как крупная пыль его вызывала. Отсюда сделан вывод, что асбестовая пыль действует механически, а не химически. Однако нельзя считать, что этот механизм является единственным.

В 20-х годах большое внимание привлекла к себе токсико-химическая теория, объясняющая фиброгенные свойства кварца его растворимостью и токсическим действием иономолекулярного раствора кремневой кислоты. Эта теория длительное время была господствующей, однако в настоящее время доказано, что между степенью растворимости кварца и степенью фиброгенности нет прямой зависимости. Так, например, растворимость аморфного кремния примерно в 2 раза больше, чем растворимость кристаллического кварца и тридимита, в то время как наибольшей фиброгенностью обладает тридимит, затем кристаллический кварц и наименьшей -- аморфный кварц.

При добавлении к кварцу 30% щелочи растворимость кварца увеличивается в 16 раз, однако такая смесь оказалась нефиброгенной, в то время как чистый кварц вызывает развитие фиброза.

Все эти данные показывают, что токсико-химическая теория механизма действия пыли не объясняет развития фиброза легких при действии кварцевой пыли.

Голт и Осборн создали новую теорию механизма действия кварцевой пыли -- «теорию полимеризации» кремневой кислоты. Согласно этой теории, кварц растворяется до ортокремневой кислоты, которая в организме полимеризуется до образования поликремневых кислот, содержащих большие молекулы, являющиеся строительным материалом для коллагена -- основного белка соединительной ткани. Полимеризация успешно проходит при рН среды 5,5--6,0; при создании в легких высокой щелочности полимеризация не происходит и фиброз не развивается. В настоящее время еще нет достаточных данных, подтверждающих эту теорию.

Определенного внимания заслуживает также «коллоидная» теория действия пыли. Кристаллическая решетка, кварца в неповрежденном состоянии очень устойчива и не способна вступать в реакцию с тканями. Если же кристаллическая решетка повреждается, что происходит при раздроблении кварца, то она легко вступает в реакцию с аминокислотами белковых молекул, образуя нерастворимые комплексы, служащие в дальнейшем исходным материалом для образования патологической соединительной ткани. Эта теория требует дальнейшей разработки и накопления точных фактов.

В последнее время в образовании патологической соединительной ткани придают большое значение силанольным группам -- радикалам = Si(OH) и = Si (ОН)2, образующимся на гидратированной поверхности кварцевой частицы. Их роль в развитии фиброза подтверждается тем, что обработка гидратированного кварца триметилхлорсиланом блокирует значительную часть силанольных групп и подавляет развитие силикотического процесса. Пока эти факты имеют познавательное значение.

Подводя итоги исследованиям в области патогенеза силикоза в физико-химическом аспекте, нужно признать, что в настоящее время имеют право на существование и дальнейшую разработку физико-химические концепции: теория полимеризации кремневой кислоты, коллоидная теория и теория механического действия кварца.

Решение вопроса о механизме действия пыли еще не отвечает на вопрос о механизме развития под ее влиянием патологической соединительной ткани -- фиброза. Установлен бесспорный факт, что под влиянием пыли, особенно кварцевой, происходит денатурация тканевых белков, т. е. нарушение структуры белковой молекулы. Это подтверждено многочисленными исследованиями, но отнюдь не раскрывает механизма образования фиброзной ткани. Доказательств того, что в дальнейшем денатурированный белок каким-то путем превращается в грубоволокнистую соединительную ткань, не имеется. Не доказано также, что патологическая соединительная ткань является результатом защитной реакции на денатурированный белок. Некоторую связь с денатурацией белков имеет иммунобиологическая теория патогенеза пылевого фиброза, согласно которой частицы кварца адсорбируют б- и ?-глобулины крови.

Адсорбированные белки приобретают свойства аутоантигенов. Развитие фиброзного процесса, следовательно, является результатом иммунобиологической реакции организма. Эта концепция требует еще доказательств.

В последние годы усиленно разрабатывается новый путь раскрытия механизма фиброзообразования под влиянием пыли. Путем динамического исследования изменения аминокислотного состава легочной ткани под влиянием кварцевой пыли установлен активный биосинтез коллагена -- основного белкового вещества соединительной ткани. Образованию коллагена предшествует накопление аминокислот, пролина и лизина, являющихся предшественниками оксипролина и оксилизина -- аминокислот, входящих в состав коллагена. В легких происходит накопление аскорбиновой кислоты, необходимой для синтеза коллагена. При исключении из пищи аскорбиновой кислоты коллаген не накапливается и пылевой фиброз не развивается. Одновременно происходит накопление мукопротеидов -- основного межуточного вещества соединительной ткани. Коллаген в дальнейшем гиалинизируется и превращается в грубоволокнистую ткань.

Из сказанного можно сделать вывод, что раскрытие патогенеза пылевого фиброза возможно путем выяснения механизма биосинтеза коллагена под влиянием пыли. Не исключено, что активный биосинтез коллагена имеет непосредственную связь с иммунобиологическими процессами в организме, происходящими под влиянием указанных выше антигенов. Выяснение патогенеза пылевого фиброза позволит разработать меры индивидуальной профилактики и на известном этапе заболевания методы патогенетического лечения.

Имеется ряд доказательств участия гормональной системы в патологическом процессе при пылевом фиброзе. Некоторые из гормонов угнетают фиброзную реакцию, другие -- стимулируют ее. Так, например, АКТГ, адреналин в малых дозах, кортизон, эстрогены, инсулин, тироксин подавляют склеротическую реакцию, в то время как дезоксикортикостеронацетат и тестостеронпропионат, наоборот, активируют ее.

Огромное значение для развития фиброзного процесса имеет функциональное состояние центральной нервной системы. Доказано, что сенсибилизация организма, т. е. повышение его реактивности, усиливает образование склеротической ткани. В молодом возрасте вследствие повышенной реактивности фиброзный процесс под влиянием кварцевой пыли протекает агрессивнее.

Введение новокаина в организм подавляет фиброзную реакцию, возникшую под действием кварцевой пыли. Действие новокаина в данном случае не заключается в местной анестезии, а связано с его способностью подавлять интероцептивные рефлексы и угнетающе действовать на передачу возбуждения в центральных синапсах соответствующих рефлекторных дуг.

При силикозе поражается также нервная система. Морфологические изменения обнаружены в терминальных отделах нервной системы легких, а также подкорковых центрах и в коре головного мозга.

Выявление роли реактивности организма в фиброгенезе имеет не только теоретическое, но и большое практическое значение. В эксперименте получен положительный результат при нормализации реактивности организма путем облучения определенными дозами ультрафиолетовых лучей и применения преимущественно белкового пищевого рациона.

На течение силикоза и сроки его развития (по-видимому, в связи с изменением реактивности организма) оказывают влияние факторы внешней среды. Силикоз быстрее развивается при одновременном вдыхании пыли и раздражающих газов (сернистый ангидрид, окислы азота и др.), а также окиси углерода. Более быстрое развитие силикоза наблюдалось под влиянием умеренного охлаждения организма и при тяжелой физической работе. Указанные факты должны учитываться при трудоустройстве больных силикозом. Нередко силикоз осложняется туберкулезом [14].

Производственная пыль может отрицательно влиять на частоту и течение острой пневмонии. Известна так называемая томасшлаковая пневмония, возникающая при вдыхании пыли, образующейся при размоле шлака при бессемеровском процессе (шлак состоит из силикатов и фосфатов и является хорошим удобрением для полей). Массовые заболевания в Германии в 1887--1889 гг. (до 48% рабочих, занятых на размоле шлака) и тяжелое течение (до 30% случаев со смертельным исходом) позволяют считать, что пыль отрицательно влияет на течение этого инфекционного заболевания. Массовые заболевания томасшлаковой пневмонией наблюдались в Германии до 1937 г. После принятых мер по борьбе с пылью при размоле томасовского шлака и введения в практику профилактической иммунизации кокковой вакциной заболеваемость, особенно со смертельным исходом, резко снизилась.

Однако более важное значение имеет вдыхание производственной пыли для течения и частоты обычной пневмонии, так как при этом поражаются большие контингенты рабочих.

Исследования показали, что среди горняков Криворожского бассейна, у которых не было обнаружено пылевой патологии, заболевания пневмонией составили 8,7%, а среди больных силикозом наблюдались у 18% обследованных.

Можно считать установленной определенную связь заболеваний раком легких с асбестозом. Так, в отчете главного инспектора промышленности Великобритании указывается, что при патологоанатомическом вскрытии 235 умерших от асбестоза у 13,2% был обнаружен рак легких, в то время как за этот же период при вскрытии 6884 умерших от силикоза рак легких найден у 1,32%.

Наиболее важным неспецифическим заболеванием легких в связи с вдыханием пыли является туберкулез легких. В настоящее время можно утверждать, что пыль способствует возникновению туберкулеза легких, однако не все виды пыли одинаково активны.

Производственная пыль может оказывать вредное влияние и на верхние дыхательные пути. Установлено, что в результате многолетней работы в условиях значительного запыления воздуха происходит постепенное истончение слизистой оболочки носа и задней стенки глотки. При очень высоких концентрациях пыли отмечается выраженная атрофия носовых раковин, особенно нижних, а также сухость и атрофия слизистой оболочки верхних дыхательных путей.

Как уже указывалось, почти половина пылевых частиц задерживается в полости носа, причем это наиболее крупные частицы, способные травмировать слизистую оболочку. Первоначальное раздражение слизистой переходит в гипертрофический катар с гиперемией и усилением секреции, что повышает фильтрующие свойства полости носа. При дальнейшем развитии гипертрофических процессов дыхание через нос затрудняется и осуществляется преимущественно через рот.

При длительном воздействии пыли гипертрофические процессы сменяются постепенно атрофическими с заменой мерцательного эпителия плоским и гибелью железистого аппарата. Фильтрующая способность носовой полости значительно снижается. Таким образом, возникающие под действием пыли гипертрофические и атрофические катары слизистой оболочки носа представляют собой два этапа единого процесса. Темпы развития обоих процессов зависят от количества пыли, ее физических и химических свойств, длительности работы в пыльных условиях и индивидуальных особенностей. Наиболее агрессивной является кварцевая пыль, под ее воздействием процессы протекают значительно быстрее.

Из других заболеваний полости носа можно указать на изъязвление и прободение носовой перегородки в кисельбаховом месте.

Под влиянием пыли вследствие поражения окончания чувствительных нервов слизистой оболочки носа может развиваться гипосмия и даже аносмия. Наконец, нужно указать на возможность заболевания носовой астмой под влиянием пыли, обладающей аллергенными свойствами. Заболевание это протекает по типу острого ринита.

Поражение слизистой оболочки более нижних отделов дыхательных путей, а также среднего отдела (носоглотка, гортань, трахея и бронхи) имеет такой же характер, как и поражение слизистой носа. Под воздействием пыли возможно развитие катаральных явлений: фарингита, ларингита, трахеита и бронхита. Однако патологический процесс в этих отделах дыхательных путей развивается более медленно, так как в эти отделы попадает меньше пыли, и пылевые частицы имеют значительно меньшие размеры.

Атрофия слизистой оболочки значительно нарушает защитные (барьерные) функции верхних дыхательных путей, что, в свою очередь, способствует глубокому проникновению пыли, т. е. поражению бронхов и легких.

При пылевом загрязнении кожи возможна закупорка сальных и потовых желез, что приводит к развитию воспалительного процесса кожи. Под влиянием различных видов пыли может возникнуть ряд поражений кожи: шероховатость и шелушение, утолщение и огрубение, перхоть и выпадение волос, расширение фолликулов, угри, комедоны, уртикарные сыпи, фурункулез, бородавки, сикоз и экзема. При этом нередки случаи временной потери трудоспособности. Своеобразны поражения кожи -- асбестовые бородавки, описанные при воздействии асбестовой пыли; при воздействии мучной пыли может возникнуть себорея (у хлебопекарей); у развесчиц чая наблюдаются красные угри. Ряд заболеваний кожи возникает вследствие воздействия на организм пыли, обладающей аллергенными свойствами, например древесной (бук, ольха, дуб, сосна, пихта и др.). Возможны также аллергические заболевания кожи под влиянием различных видов пыли: зерна, льняного семени, хлопка, муки, хемля, шерсти, волоса и др. Эти заболевания проявляются в виде экземы, дерматитов, различных высыпаний, длительно протекающих при контакте с пылью. Под воздействием пыли могут возникнуть и так называемые профессиональные стигмы -- аргироз, антракоз кожи вследствие импрегнации пылевых частиц серебра, угля. Наконец, следует указать, что загрязнение кожи пылью снижает ее потоотделительную функцию вследствие закупорки потовых желез [19].

Многие пыли растительного и животного происхождения обладают выраженным аллергическим действием. Пыль может оказывать отрицательное влияние на органы зрения, приводя к воспалительным процессам слизистых оболочек глаз, может проникать в кожу и в отверстия сальных и потовых желез, попадая, нарушает нормальную деятельность кожи, в некоторых случаях может развиться воспалительный процесс. Твердые пылинки с острыми краями могут вызвать травме глаз, приводит к развитию конъюктивита и изменению роговицы, травме кожи и верхних дыхательных путей. Действие пыли на глаза вызывает возникновение конъюнктивитов. Отмечается анестезирующее действие металлической и табачной пыли на роговую оболочку глаза. Установлено, что профессиональная анестезия у токарей возрастает со стажем.

Понижение чувствительности роговицы обусловливает позднюю обращаемость рабочих по поводу попадания в глаз мелких осколков металла и других инородных тел. У токарей с большим стажем иногда обнаруживают множественные мелкие помутнения роговицы из-за травматизма пылевыми частицами [7].

Не исключена возможность возникновения язвенных дерматитов и экзем при воздействии на кожу пыли хромощелочных солей, мышьяка, меди, извести, соды и других химических веществ [20].

На органы пищеварения могут оказывать действие лишь некоторые токсические пыли, которые, попав туда даже в относительно небольшом количестве, всасываются и вызывают интоксикацию (отравление). Нетоксические пыли какого-либо заметного неблагоприятного действия на органы пищеварения не оказывают.

Действие пыли на верхние дыхательные пути сводится к их раздражению, а при длительном воздействии - к воспалению. В начальных стадиях оно проявляется в виде першения в горле, кашля, отхаркивания грязной мокротой. Затем появляется сухость слизистых, сокращение отделения мокроты, сухой кашель, хрипота; в некоторых случаях при воздействии пыли химических веществ могут появиться изъязвления слизистой оболочки носа [7].

Наибольшую опасность представляют токсические пыли при попадании их в более глубокие участки органов дыхания, то есть в легкие, где, задерживаясь на длительный период и имея разветвленную поверхность соприкосновения с тканью легкого (в бронхиолах и альвеолах), они могут быстро всасываться в большом количестве и оказывать раздражающее и обще токсическое действие, вызывая интоксикацию организма.

Нетоксические пыли, задерживаясь в легких длительное время, постепенно вызывают разрастание вокруг каждой пылинки соединительной ткани, которая не способна воспринимать кислород из вдыхаемого воздуха, насыщать им кровь и выделять при выдохе углекислоту, как это делает нормальная легочная ткань. Процесс разрастания соединительной ткани протекает медленно, как правило, годами. Однако при длительном стаже работы в условиях высокой запыленности разросшаяся соединительная ткань постепенно замещает легочную, снижая, таким образом, основную функцию легких - усвоение кислорода и отдачу углекислоты. Длительная недостаточность кислорода приводит к одышке при быстрой ходьбе или работе, ослаблению организма, понижению работоспособности, снижению сопротивляемости организма инфекционным и другим заболеваниям, изменениям функционального состояния других органов и систем [12].

2.2 Меры профилактики пылевых заболеваний

Профилактика профессиональных заболеваний является государственной задачей, регламентируемой общими и специальными постановлениями правительства, приказами и инструкциями отдельных ведомств.

Мероприятия по профилактике заболеваний, возникающих при воздействии пыли, можно разделить на три группы:

1) технологические и технические;

2) санитарно-технические;

3) медико-профилактические.

К техническим и санитарно-техническим относятся мероприятия, в основном направленные на ликвидацию причин заболеваний, т. е. на борьбу с образованием и распространением пыли. Медико-профилактические мероприятия носят главным образом характер личной профилактики. Меры борьбы с пылеобразованием в целях профилактики профессиональных заболеваний в России осуществляются широко и планомерно. В результате упорной работы по оздоровлению условий труда количество пылевых заболеваний легких в нашей стране резко снизилось и в настоящее время встречаются лишь единичные случаи. Эффективная профилактика профессиональных пылевых болезней предполагает гигиеническое нормирование, технологические мероприятия, санитарно-гигиенические мероприятия, индивидуальные средства защиты и лечебно-профилактические мероприятия.

Гигиеническое нормирование. Основой проведения мероприятий по борьбе с производственной пылью является гигиеническое нормирование. Соблюдение установленных ГОСТом предельно допустимых концентраций (ПДК)-- основное требование при проведении предупредительного и текущего санитарного надзора. Ниже приведены значения ПДК пыли от некоторых материалов.

Пыль, образуется при работе с: ПДК, мг/м3

асбестом, алюминием и его сплавами 2

известняком, глиной, карбидом кремния, цементом 6

Пыль растительного и животного происхождения с примесью SiO2:

Менее 2% (мучная, древесная и др.) 6

От 2% до 10% 4

Более 10% (льняная, хлопковая, шерстяная) 2

Пыль от стеклянного и минерального волокон 2

Пыль табака, чая 3

Для обоснования необходимости проведения мероприятий по созданию здоровых и безопасных условий труда и выбора их оптимального варианта на каждом рабочем месте, где образуется пыль, следует периодически контролировать её концентрацию [5].

Систематический контроль за состоянием уровня запыленности осуществляют лаборатории центров, заводские санитарно-химические лаборатории. На администрацию предприятий возложена ответственность за поддержание условий, препятствующих превышению ПДК пыли в воздушной среде.

При разработке оздоровительных мероприятий основные гигиенические требования должны предъявляться к технологическим процессам и оборудованию, вентиляции, строительно-планировочным решениям, рациональному медицинскому обслуживанию работающих, использованию средств индивидуальной защиты [10].

2.2.1 Методы и средства защиты от пыли

Основным направлением в комплексе мероприятий по борьбе с пылью является предупреждение ее образования или поступления в воздух рабочих помещений. Важнейшее значение в этом направлении имеют мероприятия технологического характера. Технологические процессы по возможности проводятся таким образом, чтобы образование пыли было полностью исключено или, по крайней мере, сведено до минимума.

К основным относятся:

· внедрение непрерывных технологий с закрытым циклом (использование закрытых конвейеров, трубопроводов, кожухов);

· автоматизация и дистанционное управление технологическими процессами (особенно при погрузоразгрузочных и фасовочных операциях);

· замена порошкообразных продуктов брикетами, пастами, суспензиями, растворами;

· смачивание порошкообразных продуктов при транспортировке (душевание);

· переход с твердого топлива на газообразное или электроподогрев;

· применение общей и местной вытяжной вентиляции помещений и рабочих мест;

· применение индивидуальных средств защиты (очков, противогазов, респираторов, спецодежды, обуви, мазей) [8].


Подобные документы

  • Изучение влияния на организм пыли как одного из вредных факторов производственной среды. Методы определения пыли в воздухе производственных помещений. Мероприятия по снижению пылевого загрязнения воздуха. Меры по профилактике пылевых заболеваний.

    курсовая работа [49,5 K], добавлен 28.05.2014

  • Методы определения загазованности воздуха. Весовой и счётный (кониметрический) методы определения пыли. Химический состав и физические свойства пыли, ее токсическое, фиброгенное действие на организм человека. Расчет содержания пыли в воздухе рабочей зоны.

    лабораторная работа [44,0 K], добавлен 15.04.2015

  • Место производственной пыли в классификации профессиональных вредностей. Анализ с физической и с химической точек зрения, влияние на организм человека. Методы измерения концентрации, ПДК пыли в воздухе рабочих помещений. Методы борьбы с ее накоплением.

    контрольная работа [27,1 K], добавлен 06.01.2015

  • Определение состава пыли с использованием светового микроскопа. Источники пыли, безопасные для здоровья человека. Проведение опыта по накоплению пыли в квартире. Исследование реакции разных людей на бытовую пыль, возможность возникновения аллергии.

    практическая работа [2,0 M], добавлен 29.03.2016

  • Степень воздействия пыли на кожу, дыхательные органы, глаза. Физико-химические свойства пыли, ее токсичность и дисперсность и концентрация. Классификация способов борьбы с пылью. Принцип работы пылеосадительных камер, барботажных и пенных аппаратов.

    реферат [1,4 M], добавлен 25.03.2009

  • Понятие и классификация пыли. Гигиеническое значение физико-химических свойств пыли, характер воздействия на организм. Мероприятия по борьбе с пылью, их эффективность. Защита временем при воздействии аэрозолей преимущественно фиброгенного действия.

    контрольная работа [28,1 K], добавлен 02.04.2011

  • Вредные производственные факторы, воздействующие на работников предприятий. Гигиеническое значение физико-химических свойств пыли, развитие фиброзных изменений в результате длительного ингаляционного воздействия фиброгенных производственных аэрозолей.

    контрольная работа [30,8 K], добавлен 08.12.2014

  • Вредные воздействия пыли на окружающую среду и ее свойства. Классификация пылеуловителей, применяемых для очистки газов. Осаждение под действием сил тяжести и инерционных сил. Мокрая очистка путем промывки. Очистка дымовых газов от пыли электрофильтрами.

    курсовая работа [2,3 M], добавлен 25.09.2013

  • Физико-химические свойства табачной пыли. Требования к воздушной среде табачных фабрик. Определение количества вредных выделений. Организация воздухообмена в производственных помещениях табачных фабрик. Мероприятия по уменьшению вредных выделений.

    курсовая работа [665,6 K], добавлен 21.12.2008

  • Пылеочистные аппараты разделяют по способу распыливания жидкости. Скорость осаждения частиц пыли на каплях воды. Виды фильтров. Ионизирующие аппараты для очистки воздуха от пыли. Способы улавливания пыли в трубопроводах промышленных предприятий.

    реферат [1,2 M], добавлен 25.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.