Identification of "Fort" pistols and shot distance using stepwise discriminant analysis: an experimental study on human body simulators with consideration of clothing

Creation of reliable discriminant models for identification of "Fort" non-lethal pistols and firing distances from them. The method of experimental research on the distance of a shot on simulators of the human body, taking into account clothing.

Рубрика Государство и право
Вид статья
Язык английский
Дата добавления 04.12.2023
Размер файла 29,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

National Pirogov Memorial Medical University

Identification of «fort» pistols and shot distance using stepwise discriminant analysis: an experimental study on human body simulators with consideration of clothing

Perebetiuk A.M., Fomina L.V., Prokopenko S.V.,

Terehovska О.I., Hel A.P.

Summary

The increase in the use of firearms is a new challenge for various authorities, including the forensic medical service. The creation of new samples of firearms and cartridges for them requires constant updating of the theoretical knowledge of forensic medical experts for the most accurate answer to such key questions as identification of the weapon and the distance of the shot from it. All this requires preliminary ballistic experiments. Considering the ethical and scientific components, it is most appropriate to use a non-biological imitator of the human body.

Aim of the work. Creation of reliable discriminant models for identification of «Fort 9R» or «Fort 17R» non-lethal pistols and their firing ranges.

Materials and methods. An experimental study was carried out on bare and gelatin blocks covered with various types of textile material, followed by a study of damage to the covering material, the blocks themselves, and laboratory analysis using the chromato-mass spectrometric method, infrared microscopy, and X-ray fluorescence spectroscopy.

Results. For the identification of the investigated pistols, the discriminant variables are the relative concentration of zinc, the specific sum of the length of cracks in the body simulator at a depth of 1 cm, the number of clothing tears and the distance of the shot; to identify the distance of the shot, the following indicators were defined as the specific sum of the length of cracks PPM in the body simulator at a depth of 1 cm, the presence or absence of diphenylamine, the presence or absence of soot, the specific sum of the length of cracks TCLM in the body simulator at a depth of 3 cm, the relative concentration of lead and the presence or absence of clothing.

Conclusions. Thus, on the basis of the features of damage formation of non-biological simulators of the human body and the «clothing + non-biological simulator of the human body» complex, as well as trace-forming elements of the structures of the «Fort 9R» and «Fort 17R» pistols when fired from this weapon, reliable discriminative models were built as possibilities identification of «Fort 9R» or «Fort 17R» pistols, as well as distances of shots at close range, from a distance of 25 cm or from a distance of 50 cm.

Keywords: step-by-step discriminant analysis, gunshot injury, gunshot wounds, non-lethal weapons, firearm, damage to clothing.

Ідентифікація пістолетів і відстані пострілу з використанням покрокового дискримінантного аналізу: експериментальне дослідження на імітаторах тіла людини з урахуванням одягу

Перебетюк А.М., Фоміна Л.В., Прокопенко С.В., Тереховська О.І., Гель А.П.

Вінницький національний медичний університет ім. М.І. Пирогова

Резюме

Зростання кількості випадків застосування вогнепальної зброї є новим викликом для різних інстанцій, зокрема судово-медичної служби. Створення нових зразків вогнепальної зброї та набоїв до неї вимагає постійного оновлення теоретичних знань судово-медичних експертів для найбільш точної відповіді на ключові питання, як-от ідентифікація зброї та відстані пострілу з неї. Все це потребує проведення попередніх балістичних експериментів. З огляду на етичний і науковий компоненти, найдоцільнішим є використання небіологічного імітатора тіла людини.

Мета роботи. Створення достовірних дискримінантних моделей для ідентифікації пістолетів нелетальної дії «Fort 9R» або «Fort 17R» і відстаней пострілів з них.

Матеріали та методи. Було проведене експериментальне дослідження на голих і вкритих різними видами текстильного матеріалу желатинових блоках з подальшим вивченням пошкоджень покривного матеріалу, власне блоків і лабораторного аналізу шляхом застосування хромато-мас- спектрометричного методу, інфрачервоної мікроскопії та рентгенфлуоресцентної спектроскопії.

Результати. Для ідентифікації досліджуваних пістолетів дискримінантними змінними є відносна концентрація цинку, специфічна сума довжини тріщин в імітаторі тіла на глибині 1 см, кількість розривів одягу та відстань пострілу; для ідентифікації відстані пострілу дискримінантними змінними визначені показники, як-от специфічна сума довжини тріщин в імітаторі тіла PPM на глибині 1 см, наявність або відсутність дифеніламіну, наявність або відсутність кіптяви, специфічна сума довжини тріщин в імітаторі тіла TCLM на глибині 3 см, відносна концентрація свинцю та наявність чи відсутність одягу.

Висновки. Отже, на основі особливостей утворення пошкоджень небіологічних імітаторів тіла людини та комплексу «одяг + небюлогічнии імітатор тіла людини», а також слідоутворюючих елементів конструкцій пістолетів «Форт 9Р» і «Форт 17Р» при пострілах із цієї зброї побудовані достовірні дискримінантні моделі як можливості ідентифікації пістолетів «Форт 9Р» або «Форт 17Р», так і відстаней пострілів впритул з дистанції 25 см або 50 см.

Ключові слова: покроковий дискримінантний аналіз, вогнепальна травма, вогнепальні ушкодження, нелетальна зброя, вогнепальна зброя, пошкодження одягу.

Introduction

Gunshot injury is a widespread problem, which may be both not new for countries where it has been legalized for a long time [9], and new for countries faced with sudden socio-economic and political challenges [12]. In this regard, the relevance of finding new methods of researching material evidence of gunshot injury is still not fading away. There is even the formation of new approaches to classic traceological studies [16].

Gunshot residue (GSR) has consistently been a key piece of evidence in gunshot injury cases for many years. In its essence, it is a mixture of explosive primer particles, gunpowder (both burned and unburned particles) and elements of the barrel of a weapon that can accumulate on a tracking object, such as a person's body, clothing, or other object. It is still debatable the question of how far they can be observed. The data varies from 10 cm to 18 meters, depending on the type of weapon and ammunition used [2]. However, GSR is a key element of pre-wound ballistics, which cannot show the full picture of gunshot damage.

In order to fully understand the process of forming a gunshot injury, it is also necessary to have an idea of wound ballistics, which is based on the principle of the formation of two cavities in the human body - temporary and permanent (in fact, a wound channel). The best idea about the handling of the projectile in the human body allows to form the conduct of experimental shootings with the use of gelatin. Based on special calculations, it becomes possible to calculate the dimensions of the temporary cavity [5, 6, 13, 14].

The main tasks of any forensic investigation in the case of a gunshot injury are to establish the type of firearm, in particular, to identify signs of homemade weapons, to identify the components of a shot, to identify ammunition, to establish the distance of the shot, to locate the shooter, the trajectory of the ammunition, etc. [4].

To answer all these questions, it is necessary to create reliable models that would be based both on the results of a visual examination of the damage and on the data of a laboratory study. The construction of such models is possible only under the conditions of conducting a controlled ballistic experiment.

Aim of the work. Creation of reliable discriminant models for the identification of non-lethal «Fort 9R» or «Fort 17R» pistols and their firing ranges.

Materials and methods

As targets, a non-biological imitator of the human body was used- gelatin blocks, which were made according to the method of Fackler and Malinowski [6]. The 10 % gelatin solution was kept in a 30x15x15 cm mold at a stable temperature of +4 °C for at least 48 hours, with the addition of propionic acid in the amount of 5 ml/l of the gelatin solution as an inhibitor of microbial flora. Food gelatin type A 270 Bloom (TM «Junca Gelatines SL», Spain) was used to make the solution. A total of 120 blocks were produced, 60 of which were later to be fired using the «Fort 9R» non-lethal pistol, and the remaining 60 from the «Fort 17R» non-lethal pistol, which are the most common of the modern models of non-lethal pistols available in Ukraine. Both pistols were equipped with the same 9 mm cartridges (elastic bullets of traumatic effect).

In each group of blocks, 4 subgroups of blocks (15 blocks each) were formed depending on their covering: bare blocks, blocks covered with cotton jersey, denim fabric, and leatherette. Previously, all blocks were covered with a 200™Д m-thick polyethylene film to simulate human skin.

The shots were fired at the base of the Vinnytsia shooting range of the Scientific and Research Expert Forensic Center of the Ministry of Internal Affairs of Ukraine in order to minimize any environmental factors, with prior fixation of the gun in the vices. All shots were fired within no more than 30 minutes from the moment the blocks were removed from the refrigeration plant.

Depending on the distance of the shot in each subgroup of blocks (15 units), another 3 groups of 5 units were formed: a close shot, from a distance of 25 cm and a distance of 50 cm.

After shooting, each block was examined visually and with the help of laboratory research methods. With the help of a visual descriptive method of research, the number of tears in clothes, the shape of the defect, and the location of soot on the clothes were determined. These measurements were made using a measuring ruler. Microscopic examination was carried out using a MBS-10 microscope under magnification from x4.8 to x56.

Among the laboratory methods used: the chromatographic-mass-spectrometric method on the Shimadzu GC-2010 Plus device and infrared microscopy on the Fourier-transform infrared spectroscopy Nicolet iN10 of the company «Thermo Fisher Scientific» in order to identify the components of nitrocellulose (smokeless) gunpowder (nitroglycerin and stabilizers - diphenylamine and centralites); X-ray fluorescence spectroscopy using the ElvaX Plus device to detect the qualitative and quantitative characteristics of the application of elements on clothing and a non-biological human body simulator.

To estimate the size of the temporary cavity formed when a shot was fired into a non-biological simulator of the human body, the calculation methods proposed by Fackler and Malinowski [5], Ragsdale and Josselson [13] and Schyma [14] were used, namely: The total crack length method (TCLM,) The Fackler5s wound profile method (FWPM) and The polygon-procedure method (PPM), respectively.

Statistical processing of the obtained results was carried out in the licensed statistical package «Statistica 6.0» using step-by-step discriminant analysis.

Research results

Taking into account the features of damage formation of non-biological simulators of the human body and the «clothing + non-biological simulator of the human body» complex, as well as trace-forming elements of the designs of the «Fort 9R» and «Fort 17R» pistols when fired at close range and from distances of 25 cm and 50 cm, the discriminant function covers 85,0 % of the indicators characteristic of the «Fort 9R» pistol and 85.0 0/ЃZ of the indicators characteristic of the «Fort 17R» pistol. In general, the discriminant model is correct in 85,0 %ЃZ of cases.

Among the indicators of the formation of damage, trace-forming elements of the constructions of pistols characteristic of «Fort 9R» and «Fort 17R» without and with the presence of clothing at different distances of the shot, the discriminating variables are the relative concentration of zinc (ZN), the specific sum of the length of cracks PPM in the body simulator at a depth of 1 cm (PPM1), number of breaks (KR) and shot distance (VPOS) (table 1). The most important contribution to the discrimination between guns among the above indicators is the relative concentration of zinc. As can be seen from table 1, the totality of all variables has a slight reliable discrimination (Wilks5 Lambda=0,522; p<0,001) between the indicators characteristic of the «Fort 9P» and «Fort 17P» pistols.

For each of the groups («Fort 9R» or «Fort 17R» pistols), a classification indicator (Df) is determined, with the help of which the indicators of the formation of damage and trace-forming elements without and with the presence of clothing at different shooting distances (see table 1) can be attributed to «typical» for «Fort 9R» or «Fort 17R» pistols. In the form of equations, the definition of the classification indicators is given, where assignment to the «Fort 9P» pistol is possible with a Df value close to 55,79; to the «Fort 17R» pistol - with a Df value close to 44,41:

Df (pistol «Fort 9R») = ZNx0,734 + PPM1x10,20 + KRx1,127 + VPOSx24,89-55,79; Df (pistol «Fort 17R») = ZNx0,416 + PPM1x8,923 +KRx1,627 + VPOSx23,28-44,41;

where (here and in the following), the relative concentration of zinc traces is%; the specific sum of the length of the PPM cracks in the body simulator - in mm; the number of gaps - absolute units; the distance of a close shot - 1, from a distance of 25 cm - 2, from a distance of 50 cm - 3.

Table 1

The results of the discriminant analysis of the identification of «Fort 9R» or «Fort 17R» pistols, depending on the characteristics of the indicators of damage formation, trace-forming elements and the distance of shots

Discriminant Function Analysis Summary

Step 4, N of vars in model: 4; Grouping: PIS (2 grps)

Wilks' Lambda: 0,522 approx. F (4,12)=26,30 p<0,0000

WilksЃC

Lambda

Partial

Lambda

F-remove

-1,115

p-level

Toler.

1-Toler.

(R-Sqr.)

ZN

0,823

0,634

66,32

0,0000

0,569

0,431

PPM1

0,667

0,783

31,84

0,0000

0,182

0,818

KR

0,561

0,931

8,530

0,0042

0,888

0,112

VPOS

0,549

0,951

5,966

0,0161

0,200

0,800

Here and in subsequent similar tables, Wilks5 Lambda - Wilks5 Lambda statistic; Partial Lambda - the Wilks lambda statistic of the single contribution of a variable to the discrimination between populations; F(4,12)=26,30 - critical (4,12) and obtained (26,30) values of the Fisher test; p - the p-level is related to the overall value of Wilks' Lambda; F-remove - the standard F-criterion associated with the corresponding Partial Lambda; p-level - p-level is associated with the corresponding F-remove; Toler. - tolerance value for each variable; R-Sqr. - coefficient of multiple correlation of a specific feature with other features.

The statistical significance of all discriminant functions was determined using the x2 criterion (table 2). As can be seen from table 2, taking into account the indicators of the formation of damage and trace-forming elements without and with the presence of clothing at different distances of the shot, a reliable interpretation of the obtained indicators of classification between the «Fort 9R» and «Fort 17R» pistols is possible.

Table 2

Results of step-by-step with the inclusion of the /2 criterion for all canonical roots of «Fort 9R^> and «Fort 17R^> pistols, taking into account indicators of damage formation, traceforming elements and shot distance

Chi-Square Tests with Successive Roots Removed

Eigen

value

Canonicl

R

WilksЃC

Lambda

Chi-Sqr.

df

p-level

0

0,915

0,691

0,522

75,36

4

0,0000

discriminant model identification pistol

Here and in subsequent similar tables, Eigenvalue is the value of the roots for each discriminant function; Canonical R - canonical value of R for different roots; Chi-Sqr. - standard criterion x2 of successive roots; Df - number of degrees of freedom; p-level - p-level of the corresponding x2.

Taking into account the features of damage formation of non-biological simulators of the human body and the «clothing + non-biological simulator of the human body» complex, as well as the traceforming elements of the structures of the «Fort 9R» and «Fort 17R» pistols when fired, the discriminant function covers 95,6 % of the characteristic indicators when fired at close range, 97,1 % of indicators from distances of 25 cm and 100 % of indicators from distances of 50 cm. In general, the discriminant model is correct in 97,5 % of cases.

Among the set parameters characteristic of shots at close range, from a distance of 25 cm or from a distance of 50 cm, the discriminant variables are the specific sum of the length of cracks PPM in the body simulator at a depth of 1 cm (PPM1), the presence or absence of diphenylamine (ND), the presence or absence of soot (K), the specific sum of the length of cracks TCLM in the body simulator at a depth of 3 cm (TCLM3), the relative concentration of lead (PB) and the non-biological human body simulator without or with the presence of appropriate (cotton, denim or leather) clothing (TKAN) (table 3). The presence or absence of soot and the presence or absence of diphenylamine are the most significant contributors to discriminating between guns among the listed indicators. As can be seen from table 3, the set of all variables has a pronounced reliable discrimination (Wilks5 Lambda=0,061; p<0,001) between indicators for different shot distances.

Table 3

The results of the discriminant analysis of the identification of the distance of the shots depending on the characteristics of the indicators of the formation of damage and trace-forming elements from the «Fort 9R» or «Fort 17R» pistols

Discriminant Function Analysis Summary

Step 6, N of vars in model: 6; Grouping: VPOS (3 grps)

Wilks' Lambda: 0,061 approx. F (12,22)=57,17 p<0,0000

WilksЃC

Lambda

Partial

Lambda

F-remove

-2,112

p-level

Toler.

1-Toler.

(R-Sqr.)

PPM1

0,112

0,539

47,90

0,0000

0,488

0,512

ND

0,101

0,602

37,04

0,0000

0,727

0,273

K

0,104

0,581

40,43

0,0000

0,556

0,444

TCLM3

0,097

0,626

33,43

0,0000

0,384

0,616

PB

0,068

0,887

7,140

0,0012

0,861

0,139

TKAN

0,068

0,896

6,517

0,0021

0,847

0,153

The classification indicators (Df) determined for each of the groups are related to «typical» shots at close rangeЈ¬from a distance of 25 cm or from a distance of 50 cm from «Fort 9R» or «Fort 17R» pistols. In the form of equations, the definition of the classification indicators is given, where classification as close range shots are possible with a Df value close to 79,65; for shots from a distance of 25 cm - with a Df value close to 64,39; to shots from a distance of 50 cm - with a Df value close to 33,78:

Df (contact shot) = PPM1x8,913 + NDx5,681 + Кх26,05 - TCLM3x3,300 + PBx0,316 + TKANx6,324-79,65; Df (25 cm shot) = PPM1x5,936 + NDx14,85 + Кх26,33 - TCLM3x3,616 + PBx0,205 + TKANx5,732-64,39; Df (50 cm shot) = PPM1x3,617 + NDx9,478 + Kx16,36 - TCLM3x2,260 + PBx0,246 + TKANx4,513-33,78;

whereЃCpresence - 2 or absence - 1 of diphenylamine; presence - 2 or absence - 1 of soot; the specific sum of the length of TCLM cracks in the body simulator - in mm; relative concentration of traces of lead -%; bare block without fabric - 1ЃCwith cotton - 2, with denim - 3, with leatherette - 4.

With the help of the x2 criterionЈ¬it was established that taking into account the indicators of the formation of damage and trace-forming elements by «Fort 9R» and «Fort 17R» pistols without and with the presence of clothing, given in table 3, a reliable interpretation of the obtained classification indicators between different distances of shots is possible (table 4).

Table 4

The results of the step-by-step test with the inclusion of the /2 criterion for all canonical roots of the distance of shots, taking into account the indicators of the formation of damage and trace-forming elements from the «Fort 9R» and «Fort 17R» pistols

Chi-Square Tests with Successive Roots Removed

Eigen

value

Canonicl

R

WilksЃC

Lambda

Chi-Sqr.

df

p-level

0

5,922

0,925

0,061

321,0

12

0,0000

1

1,384

0,762

0,419

99,49

5

0,0000

Indeed, at the current stage of development, GSR analysis data obtained through various types of research (in particular, spectroscopies, chemographic and spectroscopic analysis, etc.) are key material evidence that help establish the distance and the weapon from which the shot was fired [1].

K. L. Miranda [11] with co-authors used multivariate analysis of data obtained when using X-ray diffraction during experimental shooting of cotton fabric. In the distance range of 5 cm - 3 meters, the models gave determination coefficients of 0,99 with prediction errors of about 14 %.

Bosnian researchers conducted an experimental study with the shooting of samples of pig skin from different types of weapons from different distances, followed by analysis of the content of inorganic substances using atomic absorption spectrophotometry. As a result of statistical data processing, the authors created a formula that allowed to correctly classify 78,6 % of the original grouped cases [7].

However, limiting the analysis to GSR alone may limit the potential of forensic inference, as our study results clearly show. It is a proven fact that different types of ammunition contribute to the formation of a temporary cavity specific in size and shape [8] and damage to clothing [3]. The last factor can be considered one of the most underestimated in forensic medicine and criminology in general. The data obtained even during the study of the inner layers of human clothing can be of decisive importance [10].

Thus, V. V. Shcherbak [15] and others proved the possibility of identification of combat pistols of the «Fort» company based on the features of soot deposition and damage to clothing.

Conclusions

Taking into account the data of visual and laboratory studies for the «Fort 9R» and «Fort 17R» pistols when firing shots at close rangeЈ¬from a distance of 25 cm or from a distance of 50 cm in naked non-biological imitators of the human body, or imitators covered with various types of clothingЈ¬reliable discriminative models were builtЈ¬correct in 85 % of cases when identifying the model of the gun and 97,5 % of cases when identifying the distance of the shot.

Indicators such as the specific sum of the crack lengths PPM in the body simulator at a depth of 1 cmЈ¬the presence or absence of diphenylamineЈ¬the presence or absence of sootЈ¬the specific sum of the crack lengths TCLM in the body simulator at a depth of 3 cmЈ¬the relative concentration of lead and the newness or absence of clothing on the block are discriminant variables to identify the shot distance.

Indicators: relative zinc concentrationЈ¬specific sum of crack length PPM in body simulator at 1 cm depthЈ¬number of clothing tears and shot distance are discriminant variables for gun model identification.

Literature

1. Abedi MЈ¬Bonsu DO, Badu IKЈ¬Afoakwah RЈ¬Ahuja P. Spectroscopic (analytical) approach to gunshot residue analysis for shooting distance estimation: a systematic review. Egypt J Forensic Sci [Internet]. 2021 Nov [cited 2023 Feb 12];11(1):1-8. Available from: https://ejfs.springeropen. com/articles/10.1186/s41935-021-00253-3 doi: 10.1186/s41935-021-00253-3

2. Blakey LSЈ¬Sharples GP, Chana KЈ¬Birkett JW. Fate and Behavior of Gunshot Residue - A Review. J Forensic Sci. 2018;63(1):9-19. doi: 10.1111/1556-4029.13555

3. Бобков ПЮЈ¬Лебедь МФЈ¬Перебетюк АМЈ¬Гунас ВІ. Судово-медична характеристика вогнепальних пошкоджень шкірозамінника при пострілах із пістолета «Форт-17Р». Буковинський медичний вісник. 2019;23(2):51-6. doi: 10.24061/2413-0737.XXIII.2.90.2019.33

4. Bolton-King RS. Preventing miscarriages of justice: A review of forensic firearm identification. Sci Justice. 2016;56(2):129-42. doi: 10.1016/j.scijus.2015.11.002

5. Fackler MLЈ¬Malinowski JA. The wound profile: a visual method for quantifying gunshot wound components. J Trauma. 1985;25(6):522-9.

6. Fackler MLЈ¬Malinowski JA. Ordnance gelatin for ballistic studies. Detrimental effect of excess heat used in gelatin preparation. American J Forensic Med Pathol. 1988;9(3):218-9.

7. Gradascevic AЃCResic EЃCSarajlic NЃCFranjic BЃCSalkic AЃCDzuzdanovic-Pasalic A. Is it possible to determine firearm calibre and shooting range from the examination of gunshot residue in close range gunshot wounds? An experimental study. J Health Sci. 2013;3(3):232-7. doi: 10.17532/ jhsci.2013.113

8. Гунас ВІЈ¬Неприлюк РГЈ¬Хомук НМЈ¬Товбух ЛПЈ¬Рижак ЮВ. Особливості формування тимчасово+ї пульсуючо+ї порожнини при пострілі впритул з пістолета «Форт-12РМ» в одягнутий імітатор людського торса. Судово-медична експертиза. 2020;2:45-52. doi: 10.24061/2707-8728.2.2020.7

9. Kalesan BЈ¬Mobily MEЈ¬Keiser O, Fagan JAЈ¬Galea S. Firearm legislation and firearm mortality in the USA: a cross-sectionalЃCstate-level study. Lancet. 2016;387(10030):1847-55. doi: 10.1016/ S0140-6736(15)01026-0

10. Levy O, Weiss RЈ¬Silchenko AЈ¬Levi A. How may analysis of an inner layer of clothing affect the scene reconstruction in a shooting incident? J Forensic Sci. 2022;67(5):2089-96. doi: 10.1111/1556-4029.15104

11. Miranda KL, Ortega-Ojeda FE, Garcia-Ruiz C, Martinez PS. Shooting distance estimation based on gunshot residues analyzed by XRD and multivariate analysis. Chemom Intell Lab Syst. 2019;193:103831. doi: 10.1016/j.chemolab.2019.103831

12. Mishalov VD, Petroshak OYu, Hoholyeva TV, Gurina OO, Gunas VI. Forensic assessment of gunshot injuries in Maidan Nezalezhnosti protesters. Світ медицини та біології. 2019;3(69):118-22. doi: 10.26724/2079-8334-2019-3-69-118-122

13. Ragsdale BD, Josselson A. Predicting temporary cavity size from radial fissure measurements in ordnance gelatin. J Trauma. 1988;28(1 Suppl): S5-9. doi: 10.1097/00005373-198801001-00003

14. Schyma C. Die polygonale Modellierung des Schusswundkanals: eine experimentelle Untersuchung der traumatischen Schusswirkung in Gelatine [dissertation]. 1998

15. Щербак ВВ, Толмачов ОО, Кундиус ОВ, Абдурасулов АА. Можливості встановлення моделі вогнепальної зброї при пострілах з пістолетів «Форт» калібру 9x18 мм. Криміналістичний вісник. 2014;2(22):128-33.

16. Song J, Chu W, Vorburger TV, Thompson R, Renegar TB, Zheng A, et al. Development of ballistics identification - from image comparison to topography measurement in surface metrology. Meas Sci Technol [Internet]. 2012 May [cited 2023 Feb 12];23(5):054010. Available from: https://iopscience. iop.org/article/10.1088/0957-0233/23/5/054010/meta doi: 10.1088/0957-0233/23/5/054010

References

1. Abedi M, Bonsu DO, Badu IK, Afoakwah R, Ahuja P. Spectroscopic (analytical) approach to gunshot residue analysis for shooting distance estimation: a systematic review. Egypt J Forensic Sci [Internet]. 2021 Nov [cited 2023 Feb 12];11(1):1-8. Available from: https://ejfs.springeropen. com/articles/10.1186/s41935-021-00253-3 doi: 10.1186/s41935-021-00253-3

2. Blakey LS, Sharples GP, Chana K, Birkett JW. Fate and Behavior of Gunshot Residue - A Review. J Forensic Sci. 2018;63(1):9-19. doi: 10.1111/1556-4029.13555

3. Bobkov PIu, Lebed' MF, Perebetiuk AM, Hunas VI. Sudovo-medychna kharakterystyka vohnepal'nykh poshkodzhen' shkirozaminnyka pry postrilakh iz pistoleta «Fort-17R» [Forensic characteristics of damages to artificial leather caused by gunshots from a» Fort-17 R» pistol]. Bukovyns'kyi medychnyi visnyk. 2019;23(2):51-6. doi: 10.24061/2413-0737.XXIII.2.90.2019.33 (in Ukrainian)

4. Bolton-King RS. Preventing miscarriages of justice: A review of forensic firearm identification. Sci Justice. 2016;56(2):129-42. doi: 10.1016/j.scijus.2015.11.002

5. Fackler ML, Malinowski JA. The wound profile: a visual method for quantifying gunshot wound components. J Trauma. 1985;25(6):522-9.

6. Fackler ML, Malinowski JA. Ordnance gelatin for ballistic studies. Detrimental effect of excess heat used in gelatin preparation. American J Forensic Med Pathol. 1988;9(3):218-9.

7. Gradascevic A, Resic E, Sarajlic N, Franjic B, Salkic A, Dzuzdanovic-Pasalic A. Is it possible to determine firearm calibre and shooting range from the examination of gunshot residue in close range gunshot wounds? An experimental study. J Health Sci. 2013;3(3):232-7. doi: 10.17532/ jhsci.2013.113

8. Hunas VI, Nepryliuk RH, Khomuk NM, Tovbukh LP, Ryzhak Yu V. Osoblyvosti formuvannia tymchasovoi pul'suiuchoi porozhnyny pry postrili vprytul z pistoleta «Fort-12RM» v odiahnutyi imitator liuds'koho torsa [Features of formation of a temporary pulsating cavity at a contact shot from the «FORT-12RM» pistol in the dressed simulator of a human torso]. Sudovo-medychna ekspertyza. 2020;2:45-52. doi: 10.24061/2707-8728.2.2020.7 (in Ukrainian)

9. Kalesan B, Mobily ME, Keiser O, Fagan JA, Galea S. Firearm legislation and firearm mortality in the USA: a cross-sectional, state-level study. Lancet. 2016;387(10030):1847-55. doi: 10.1016/ S0140-6736(15)01026-0

10. Levy O, Weiss R, Silchenko A, Levi A. How may analysis of an inner layer of clothing affect the scene reconstruction in a shooting incident? J Forensic Sci. 2022;67(5):2089-96. doi: 10.1111/1556-4029.15104

11. Miranda KL, Ortega-Ojeda FE, Garda-Ruiz C, Martinez PS. Shooting distance estimation based on gunshot residues analyzed by XRD and multivariate analysis. Chemom Intell Lab Syst. 2019;193:103831. doi: 10.1016/j.chemolab.2019.103831

12. Mishalov VD, Petroshak OYu, Hoholyeva TV, Gurina OO, Gunas VI. Forensic assessment of gunshot injuries in Maidan Nezalezhnosti protesters. Svit medytsyny ta biolohii. 2019;3(69):118-22. doi: 10.26724/2079-8334-2019-3-69-118-122

13. Ragsdale BD, Josselson A. Predicting temporary cavity size from radial fissure measurements in ordnance gelatin. J Trauma. 1988;28(1 Suppl): S5-9. doi: 10.1097/00005373-198801001-00003

14. Schyma C. Die polygonale Modellierung des Schusswundkanals: eine experimentelle Untersuchung der traumatischen Schusswirkung in Gelatine [dissertation]. 1998

15. Scherbak VV, Tolmachov OO, Kundyus OV, Abdurasulov AA. Mozhlyvosti vstanovlennia modeli vohnepal'noi zbroi pry postrilakh z pistoletiv «Fort» kalibru 9kh18 mm [Possibilities of setting the model of a firearm when firing from «Fort» pistols of 9x18 mm caliber]. Kryminalistychnyi visnyk. 2014;2(22):128-33. (in Ukrainian)

16. Song J, Chu W, Vorburger TV, Thompson R, Renegar TB, Zheng A, et al. Development of ballistics identification - from image comparison to topography measurement in surface metrology. Meas Sci Technol [Internet]. 2012 May [cited 2023 Feb 12];23(5):054010. Available from: https://iopscience. iop.org/article/10.1088/0957-0233/23/5/054010/meta doi: 10.1088/0957-0233/23/5/054010

Відомості про авторів

Перебетюк А. М. - асистент кафедри судової медицини та права Вінницького національного медичного університету ім. М. І. Пирогова, м. Вінниця,

Фоміна Л. В. - доктор медичних наук, професор, професор закладу вищої освіти кафедри анатомії людини Вінницького національного медичного університету ім. М. І. Пирогова, м. Вінниця,

Прокопенко С. В. - кандидат медичних наук, старший науковий співробітник Науково- дослідної лабораторії функціональної морфології та генетики розвитку Вінницького національного медичного університету ім. М. І. Пирогова, м. Вінниця

Тереховська О. І. - кандидат медичних наук, доцент, доцент закладу вищої освіти кафедри гістології Вінницького національного медичного університету ім. М. І. Пирогова, м. Вінниця,

Гель А. П. - кандидат юридичних наук, доцент, доцент закладу вищої освіти кафедри судової медицини та права Вінницького національного медичного університету ім. М. І. Пирогова, м. Вінниця

Information about authors

Perebetiuk A. M. - assistant of the Department of Forensic Medicine and Law, National Pirogov Memorial Medical University, Vinnytsya

Fomina L. V. - Doctor of Medical Science, Professor of the Department of Human Anatomy National Pirogov Memorial Medical University, Vinnytsya

Prokopenko S. V. - Candidate of Medical Science, Senior Scientific Associate of Research Laboratory of Functional Morphology and Developmental Genetics National Pirogov Memorial Medical University, Vinnytsya,

Terehovska O. І. - Candidate of Medical Science, Associate Professor of the Department of Histology National Pirogov Memorial Medical University, Vinnytsya

Hel A. P. - Candidate of the Science of Law, Associate Professor of the Department Forensic Medicine and Law, National Pirogov Memorial Medical University, Vinnytsya,

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.