Исследование метода создания опорной геодезической сети с помощью спутниковой технологии

История и принцип работы системы GPS. Технические требования, предъявляемые к приемникам, используемым для развития опорной геодезической сети и съемки ситуации и рельефа. Рекомендации по вычислительной обработке результатов наблюдений спутников.

Рубрика Геология, гидрология и геодезия
Вид дипломная работа
Язык русский
Дата добавления 10.01.2016
Размер файла 3,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Дипломная работа

Тема: Исследование метода создания опорной геодезической сети с помощью спутниковой технологии

Содержание

Введение

Аналитический обзор

1. Теоретическая часть

1.1 История развития GPS технологии

1.1.2 Принцип работы системы GPS

1.1.3 Состав системы GPS

1.1.4 Способы наблюдения

1.1.5 Основные принципы работы системы ГЛОНАСС

1.1.6 Состав системы ГЛОНАСС

1.2 Определение координат потребителя

1.2.1 Сущность абсолютных определений

1.2.2 Понятие о методах относительных спутниковых определений

1.2.3 Прогнозирование спутникового созвездия

1.2.4 Источники ошибок

1.3 Основные технические требования, предъявляемые к приёмникам, используемым для развития ОГС и съёмки ситуации и рельефа

1.3.1 Порядок проверки готовности аппаратуры и исполнителей к проведению работ на объекте

1.3.2 Общие указания по выполнению спутниковых определений

1.3.3 Порядок производства полевых работ и общие рекомендации по вычислительной обработке результатов наблюдений спутников

1.4 Опорная геодезическая сеть

1.4.1 Статус и назначение опорной геодезической сети

1.4.2 Классификация опорной геодезической сети и ее точность

1.4.3 Построение опорной геодезической сети

1.4.4 Геодезические системы координат и проекция

1.4.5 Математическая обработка геодезических измерений

1.4.6 Составление каталогов (списков) координат пунктов ОГС в написании технического отчета

1.4.7 Виды знаков опорной геодезической сети (ОГС)

1.4.8 Указания по проектированию опорной геодезической сети

Экспериментальная часть

Заключение

Список библиографических источников

Графические приложения

спутник геодезический опорный сеть

Введение

В геодезии и в земельном законодательстве Российской Федерации произошли большие и коренные изменения. Пришло время говорить в геодезии о новой геодезической науке, о спутниковых геодезических системах, а в земельном законодательстве Российской Федерации, возникла острая необходимость приведения в соответствие землеустроительные и топографогеодезические документы. Выдвигается на первый план качественное и оперативное проведение картографо-геодезических работ с применением новейших геодезических приборов, таких как, GPS-приемник (Topcon HiPer+), программного обеспечения для обработки результатов измерения (Topcon Tools) и современных технологий для определения координат опорных геодезических пунктов.

Однако без создания, а в дальнейшем модернизации опорной геодезической сети (ОГС) это практически неосуществимо в силу различных причин, главной из которых является недостаточная точность координат пунктов. ОГС населенных пунктов строились в местных системах координат (в каждом своя), зачастую без строгого уравнивания. Данную проблему можно решить с помощью GPS-технологий.

Целью данной дипломной работы является исследование метода создания опорной геодезической сети с помощью спутниковой технологии на Новомихайловском месторождении нефти и газа.

Для достижения данной цели необходимо решить следующие задачи:

- изучить виды и назначения опорных геодезических сетей;

- изучить методику создания опорной геодезической сети с помощью спутниковой технологии;

- сделать соответствующий вывод на основе рассмотренного метода.

Аналитический обзор

При написании дипломной работы в качестве теоретической основы были использованы следующие источники: Ширенин А. М. «Сгущение и обновление государственной сети методами спутниковой геодезии», Ефимов Г. Н., Побединский Г. Г. «О необходимости координации работ по созданию государственной и городских геодезических сетей», «GPS. Глобальная система позиционирования» Акционерное общество «ПРИН», Назаров Н. А. «Геодезия», статьи из журнала «Геодезия и картография», Генике А. А., Побединский Г. Г., «Глобальная спутниковая система определения местоположения GPS и ее применение в геодезии», Аланд В.В., Самратов У.Д., Родионов Б.Н., Елесин Г.С. «Применеие новых методов съемок и актуальные задачи землеустройства», «Основные положения о Г осударственной геодезической сети» и другие источники.

В данной работе изложена технология создания и сгущения опорных геодезических сетей, сведения о системе GPS, методах и режимах спутниковых определений, методика создания опорной геодезической сети с помощью спутниковой технологии, новые понятия и актуальные задачи геодезии и картографии.

1. Теоретическая часть

1.1 История развития GPS технологии

Global Positioning System (GPS)

Разработка системы глобального позиционирования GPS началась в декабре 1973 года Военно-Воздушными Силами США. Разрабатываемая система спутниковой навигации была названа NAVSTAR (NAVigation Satellite providing Time And Range), что в переводе означает "навигационная спутниковая система, обеспечивающая измерение времени и местоположения".

Изначально GPS использовалась для высокоточного и независимого от погоды определения местоположения объектов в космосе, на суше и на море в интересах армии США. Непосредственная реализация системы началась в 1978 году с запуском первого спутника.

В то время уже существовали хорошо разработанные навигационные технологии. Попытки введения новой системы навигации подразумевали, помимо всего прочего, широкомасштабную переподготовку в войсках, что наталкивалось на консерватизм военных. Вначале командный состав ВВС просто отказывался применять GPS, ссылаясь на ее чрезмерную дороговизну.

Руководство военно-морского флота США также было против внедрения новой спутниковой навигационной программы, предпочитая довольствоваться существующими испытанными методиками. Благодаря коммерческому интересу гражданских разработчиков система стала стремительно совершенствоваться и развиваться. Здесь можно провести аналогию с Интернетом, который после передачи технологий коммерции довольно быстро завоевал весь мир.

С 1983 года система GPS открыта для использования в гражданских целях, в 1989 году был произведен запуск спутников нового поколения. Первые 11 спутников двигались по другой орбите по сравнению с современными спутниками и были предназначены для того, чтобы апробировать систему и показать реальность выполнения задачи. До 2000 года сигнал GPS, предназначенный для обычных пользователей, намеренно искажался, что вело к снижению точности (так называемый режим селективного доступа). Историческим стало решение президента Клинтона. Он 1 мая 2000 года специальным распоряжение отменил загрубление сигналов. Ситуация изменилась разительно. Специальные режимы работы (дифференциальный, двухчастотный, фазовые измерения) позволяют получать точность намного более высокую.

С 1991 года сняты ограничения на продажу GPS-оборудования в страны бывшего СССР. В 1993 году система была полностью развернута.

По оценкам некоторых специалистов, объем продаж устройств GPS в 2008 году превысил 3 миллиарда долларов, причем всего 90 миллионов приходились на военный сектор. В настоящее время во всем мире более двухсот фирм (в частности, Magellan Systems, Motorola, Rockwell, Honeywell, и др.) выпускают сотни тысяч устройств различных классов, использующих технологию GPS, в том числе недорогие малогабаритные приборы, которые реализуют возможность применения GPS-навигации во многих областях человеческой деятельности.

1.1.2 Принцип работы системы GPS

Основу системы составляет сеть ИСЗ (искусственные спутники земли) развёрнутых в около земной орбите и равномерно "покрывающих” всю земную поверхность.

Орбиты ИСЗ рассчитаны с очень высокой степенью точности, поэтому в любой момент времени известны координаты каждого спутника. Радиопередатчик каждого из спутников непрерывно излучает сигналы в направлении Земли. Эти сигналы принимаются GPS-приемником, находящегосяся в некоторой точке земной поверхности, координаты которой нужно определить.

В GPS- приемнике измеряется время распространения сигнала от ИСЗ и вычисляется дальность "спутник-приемник”. Для вычисления этого расстояния пользуются тем свойством, что (радиосигнал распространяется со скоростью света). Так как для определения местоположения точки нужно знать три координаты (имеются в виду плоские координаты X, Y и высоту H), то в приемнике вычисляются расстояния до трех различных ИСЗ. Очевидно, при данном методе радионавигации (он называется без запросным) точное определение времени распространения сигнала возможно лишь при наличии синхронизации временных шкал спутника и приемника. Поэтому в состав аппаратуры ИСЗ и приемника входят эталонные часы (стандарты частоты), причем точность спутникового эталона времени исключительно высока. Бортовые часы всех ИСЗ синхронизированы и привязаны к так называемому "системному времени”. Эталон времени GPS- приемника менее точен, чтобы чрезмерно не повышать его стоимость.

На практике в измерениях времени всегда присутствует ошибка, обусловленная несовпадением шкал времени ИСЗ и приемника. По этой причине в приемнике вычисляется искаженное значение дальности до спутника или "псевдодальность”. Измерения расстояний до всех ИСЗ, с которыми в данный момент работает приемник, происходит одновременно. Следовательно, для всех измерений величину временного несоответствия можно считать постоянной. С математической точки зрения это эквивалентно тому, что неизвестными являются не только координаты X,Y и H, но и поправка часов приемника D t. Для их определения необходимо выполнить измерения псевдодальностей не до трех, а до четырех спутников. В результате обработки этих измерений в приемнике вычисляются координаты (X,Y и H) и точное время.

Если приемник установлен на движущемся объекте и наряду с псевдодальностями измеряет доплеровские сдвиги частот радиосигналов, то может быть вычислена и скорость объекта. Таким образом, для выполнения необходимых навигационных расчётов точки необходимо обеспечить постоянную видимость с нее, как минимум, четырех спутников. После полного развертывания созвездия ИСЗ в любой точке Земли могут быть видны от 5 до 12 спутников в произвольный момент времени.

Современные GPS-приемники имеют от 5 до 12 каналов, т.е. они могут одновременно принимать сигналы от 5 до 12 ИСЗ. Приём сигнала более чем от четырех спутников естественно позволяют повысить точность определения координат и обеспечить непрерывность решения навигационной задачи.

1.1.3 Состав системы GPS

В состав системы входят:

* созвездие ИСЗ (космический сегмент);

* сеть наземных станций слежения и управления (сегмент управления);

* собственно GPS- приемники (аппаратура потребителей).

Космический сигмент состоит из 24 спутников (21 основной и 3 запасных), которые вращаются на 6 орбитах. Плоскости орбит наклонены на угол около 55° к плоскости экватора и сдвинуты между собой на 60° по долготе. Радиусы орбит составляют около 26 тыс. километров, а период вращения составляет приблизительно половину звездных суток (примерно 11 ч. 58 мин.). На борту каждого спутника имеется 4 стандарта частоты (два цезиевых и два рубидиевых - в целях резервирования), солнечные батареи, двигатели корректировки орбит, приемо-передающая аппаратура, компьютер. Вес каждого спутника около 900 кг, размер более 5 м, включая солнечные батареи.

На каждом спутнике установлены атомные часы, обеспечивающие высокую точность (10-9 сек.), вычислительно кодирующее устройство и передатчики мощностью 50 Вт и 8 Вт.

В идеале в любой момент времени любая точка Земного шара находится в зоне видимости не менее трех спутников. Спутники можно "увидеть" даже на полюсах, правда они будут находиться низко над горизонтом, что влияет на точность измерений, но несущественно.

Справедливости ради стоит отметить, что есть все же "темные" области в высоких широтах, где одновременно может быть не более 2 спутников, что не позволяет определять координаты и нарушает работу приемника GPS.

Однако такое положение дел длится лишь от 15 до 45 минут, в остальном система навигации GPS действительно глобальна.

Передающая аппаратура спутника излучает синусоидальные сигналы на двух несущих частотах: L1=1575,42 МГц и L2=1227,6 МГц. Перед этим сигналы модулируются так называемыми псевдослучайными цифровыми последовательностями (по-научному, эта процедура называется фазовой манипуляцией). Причем частота L1 модулируется двумя видами кодов:

1). C/A-кодом (код свободного доступа)

2). P-кодом (код санкционированного доступа)

Частота L2- только P-кодом. Кроме того, обе несущие частоты дополнительно кодируются навигационным сообщением, в котором содержатся данные об орбитах ИСЗ, информация о параметрах атмосферы, поправки системного времени.

Кодирование излучаемого спутником радиосигнала преследует несколько целей:

* обеспечение возможности синхронизации сигналов ИСЗ и приемника;

* создание наилучших условий различения сигнала в аппаратуре приемника на фоне шумов (доказано, что псевдослучайные коды обладают такими свойствами);

* реализация режима ограниченного доступа к GPS, когда высокоточные измерения возможны лишь при санкционированном использовании системы.

Рис. 2 Кодирование радиосигнала

Код свободного доступа C/A (Coarse Acquisition) (см. рисунок 2) имеет частоту следования импульсов (иначе называемых "чипами”) 1,023 МГ ц и период повторения 0,001 сек., поэтому его декодирование в приемнике осуществляется достаточно просто. Однако точность автономных измерений расстояний с его помощью невысока.

Защищенный код P (Protected) (см. рисунок 2) характеризуется частотой следования импульсов 10,23 МГц и периодом повторения 7 суток. Кроме того, раз в неделю происходит смена этого кода на всех спутниках. Поэтому до недавнего времени измерения по P-коду могли выполнять только пользователи, получившие разрешение Министерства обороны США. Однако в мае 2000 года к P-коду получил доступ широкий круг специалистов. Американское оборонное ведомство предприняло меры дополнительной защиты P-кода: в любой момент без предупреждения может быть включен режим AS (Anti Spoofing). При этом выполняется дополнительное кодирование P-кода, и он превращается в Y-код. Расшифровка Y-кода возможна только аппаратно, с использованием специальной микросхемы (криптографического ключа), которая устанавливается в GPS- приемнике.

Кроме того, для снижения точности определения координат несанкционированными пользователями предусмотрен так называемый "режим выборочного доступа” SA (Selective Availability). При включении этого режима в навигационное сообщение намеренно вводится ложная информация о поправках к системному времени и орбитах ИСЗ, что приводит к снижению точности навигационных определений примерно в 3 раза.

Поскольку P- код передается на двух частотах (L1 и L2), а C/A-код -на одной (L1), в GPS-приемниках, работающих по P-коду, частично компенсируется ошибка задержки сигнала в ионосфере, которая зависит от частоты сигнала. Точность автономного определения расстояния по P- коду примерно на порядок выше, чем по C/A-коду.

Наземный сегмент:

Состоит из главной станции управления (авиабаза Фалькон в штате Колорадо), пяти станций слежения, расположенных на территории американских военных базах расположенных на Гавайских островах, островах Вознесения, Диего - Гарсия, Кваджелейн и Колорадо- Спрингс, а также трёх станций закладок: острова Вознесения, Диего - Гарсия, Кваджелейн. Кроме того, имеется сеть государственных и частных станций слежения за ИСЗ, которые выполняют наблюдения для уточнения параметров атмосферы и траекторий движения спутников (см. рисунок 3).

Рис. 3 Сигмент оперативного контроля

Станции слежения непрерывно контролируют движение космических аппаратов и передают данные в центр управления. В центре вычисляют уточненные элементы спутниковых орбит и коэффициенты поправок шкал времени. Эти данные поступают по каналам станций связи на спутники не реже, чем один раз в сутки.

Собираемая информация обрабатывается в суперкомпьютерах и периодически передается на спутники для корректировки орбит и обновления навигационного сообщения. В аппаратуре потребителя (GPS-приемнике) принимаемый сигнал декодируется, т.е. из него выделяются кодовые последовательности C/A либо C/A и P, а также служебная информация. Полученный код сравнивается с аналогичным кодом, который генерирует сам GPS-приемник, что позволяет определить задержку распространения сигнала от спутника и таким образом вычислить псевдодальность. После захвата сигнала спутника аппаратура приемника переводится в режим слежения, т.е. в БПС поддерживается синхронизм между принимаемым и опорным сигналами. Процедура синхронизации может выполняться:

* по C/A-коду (одночастотный кодовый приемник),

* по Р - коду (двухчастотный кодовый приемник),

* по C/A-коду и фазе несущего сигнала (одночастотный фазовый приемник),

* по Р - коду и фазе несущего сигнала (двухчастотный фазовый приемник).

Используемый в GPS-приемнике способ синхронизации сигналов является едва ли не важнейшей его характеристикой.

GPS-приемник - третий сегмент системы навигации, который позиционируется и позволяет вычислять географические координаты на основе полученных данных.

Аппаратура для приёма спутниковых радиосигналов (спутниковый приёмник) состоит из следующих функциональных элементов:

1) антенны;

2) блока приёма радиосигналов;

3) микропроцессора;

4) блока управления;

5) блока индикации с дисплеем;

6) запоминающего устройства;

7) устройства связи с внешней ЭВМ;

8) блока питания.

Клавиатура блока управления и дисплей являются органами управления приёмника. В конкретных конструкциях спутниковых приёмников перечисленные элементы могут быть скомпонованы в один или несколько блоков.

Состав комплекта аппаратуры и оборудования, необходимого для выполнения полевых работ, зависит от метода спутниковых определений, способов и технологических приёмов выполнения работ и других обстоятельств.

В общем случае для полевых работ необходимо следующее:

1. Приёмник в составе блоков, содержащих функциональные элементы, и принадлежностей, необходимых для приведения его в рабочее состояние (кабелей и др.).

2. Укладочная тара для хранения и перемещения приёмника (футляр, рюкзак и т. п.).

3. Устройства для установки приёмника на точке (штатив, веха, трегер, адаптеры и т. п.).

По условиям организации работ могут быть необходимы также устройства хранения, передачи и обработки информации - PC- карты, дискеты, полевой компьютер (ноутбук), модем и принадлежности к ним, - а в необжитой местности, кроме того, - зарядное устройство и агрегат для подзарядки аккумуляторов.

1.1.4 Способы наблюдения

Сложная структура сигнала, передаваемого от ИСЗ к приемнику, обусловила многообразие способов его обработки и наблюдений.

Кодовые наблюдения реализуются в самых простых по конструкции GPS-приемниках. Из принятого со спутника сигнала частоты L1 выделяется C/A-код (тогда приемник называется одночастотным) или из частотных сигналов L1 и L2 выделяется P-код (двухчастотный приемник). Производится сравнение соответствующего кода с эталонным кодом, который генерирует сам приемник. Точность определения координат при этом составляет:

* для одночастотного (L1) приемника - 100м;

* для двухчастотного (L1, L2) приемника - 16м.

Значения точностей приведены для неблагоприятного режима измерений, когда включен режим "ограниченного доступа” SA.

Фазовые наблюдения выполняются для повышения точности измерений. В этом случае при сравнении принятого со спутника сигнала и его эталона, генерируемого в приемнике, учитывается не только код, но и фаза несущей частоты (L1 или L2). Поскольку период несущей частоты в сотни (для P-кода) и тысячи (для C/A-кода) раз меньше периодов кодовых последовательностей, точность процедуры сравнения значительно повышается, а, следовательно, возрастает точность измерения координат. Однако в этом случае возникает проблема целочисленной фазовой неоднозначности, поскольку отсутствует информация о количестве целых периодов информационного сигнала, укладывающихся на пути ИСЗ - приемник. Непосредственно можно измерить только дробную часть фазовой задержки сигнала (в пределах одного периода).

Для решения этой проблемы используют несколько способов:

* классический двухэтапный метод измерений, который предполагает на первом этапе выполнение большого количества избыточных измерений, а на втором - статистический анализ полученных данных и определение наиболее вероятного значения фазовой неоднозначности;

* модификация классического метода, которая отличается тем, что при обработке результатов измерений производится многоэтапная калма-новская фильтрация и выбирается группа фильтров Калмана с оптимальными свойствами;

* метод замены антенн, когда наблюдения выполняются двумя различными приемниками на двух пунктах в две различные эпохи. При измерениях во вторую эпоху производится замена антенн приемников;

* метод определения неоднозначности "в пути”, когда для определения целого числа периодов используют линейные комбинации сигналов L1 и L2 (суммы и разности)

1.1.5 Основные принципы работы системы ГЛОНАСС

Спутники системы ГЛОНАСС непрерывно излучают навигационные сигналы двух типов: навигационный сигнал стандартной точности (СТ) в диапазоне L1 (1,6 ГГц) и навигационный сигнал высокой точности (ВТ) в диапазонах L1 и L2 (1,2 ГГц). Информация, предоставляемая навигационным сигналом СТ, доступна всем потребителям на постоянной и глобальной основе и обеспечивает, при использовании приемников ГЛОНАСС возможность определения:

* горизонтальных координат с точностью 50-70 м (вероятность 99,7%);

* вертикальных координат с точностью 70 м (вероятность 99,7%);

* составляющих вектора скорости с точностью 15 см/с (вероятность 99,7%)

* точного времени с точностью 0,7 мкс (вероятность 99,7 %).

Эти точности можно значительно улучшить, если использовать дифференциальный метод навигации или дополнительные специальные методы измерений.

Сигнал ВТ предназначен, в основном, для потребителей МО РФ, и его несанкционированное использование не рекомендуется. Вопрос о предоставлении сигнала ВТ гражданским потребителям находится в стадии рассмотрения.

Для определения пространственных координат и точного времени требуется принять и обработать навигационные сигналы не менее чем от 4-х спутников ГЛОНАСС. При приеме навигационных радиосигналов ГЛОНАСС приемник, используя известные радиотехнические методы, измеряет дальности до видимых спутников и измеряет скорости их движения.

Одновременно с проведением измерений в приемнике выполняется автоматическая обработка содержащихся в каждом навигационном радиосигнале меток времени и цифровой информации. Цифровая информация описывает положение данного спутника в пространстве и времени (эфемериды) относительно единой для системы шкалы времени и в геоцентрической связанной декартовой системе координат. Кроме того, цифровая информация описывает положение других спутников системы (альманах) в виде кепле-ровских элементов их орбит и содержит некоторые другие параметры. Результаты измерений и принятая цифровая информация являются исходными данными для решения навигационной задачи по определению координат и параметров движения.

Навигационная задача решается автоматически в вычислительном устройстве приемника, при этом используется известный метод наименьших квадратов. В результате решения определяются три координаты местоположения потребителя, скорость его движения и осуществляется привязка шкалы времени потребителя к высокоточной шкале Координированного всемирного времени (UTC).

Радионавигационное поле

Навигационные радиосигналы, излучаемые штатными НКА, образуют радионавигационное поле в околоземном пространстве.

В СРНС ГЛОНАСС каждый штатный НКА излучает навигационные радиосигналы 1600 МГц и 1250 МГц в сторону Земли с помощью передающих антенн, рабочая часть диаграммы направленности (ДН) которых имеет ширину 2ф 0 =38° и "освещает” диск Земли с избытком до высоты ho над поверхностью.

Рабочую часть ДН можно представить в виде конусного радиолуча с углом 2ф 0 при вершине. Очевидно, что

БШф o=(ho+r)/(H+r),

где r = 6400 километров -- радиус Земли; H = 19100 километров -- высота орбиты НКА.

Подставив ф 0=19°, получим h0 = 2000 километров.

При полной ОГ (24 штатных НКА) радионавигационное поле на высотах h < h0 = 2000 километров. непрерывно в пространстве, т.е. потребитель в любой точке этого пространства "освещается” радиолучами не менее чем от четырех НКА, образующих по отношению к нему удовлетворительное по геометрическому фактору созвездие для оперативного автономного определения координат и вектора скорости.

На высотах h > h0 радионавигационное поле становится дискретным в пространстве. Космические объекты на высотах h0 < h < H "освещены” радиолучами от необходимого для оперативной навигации созвездия (не менее четырех НКА, включая НКА ниже местного горизонта) не везде, а только при нахождении в определенных областях пространства.

Космические объекты на высотах h > H (например, на геостационарной орбите) будут "освещены” на некоторых участках своей орбиты радиолучом от одного или двух НКА (при полной ОГ), и НАП может не оперативно определить орбиту космического объекта на основе обработки результатов приема навигационных радиосигналов на "освещенных” участках орбиты.

Ограничимся рассмотрением непрерывного радионавигационного поля (h < h0). Основной характеристикой радионавигационного поля для наземного потребителя являются мощности навигационного радиосигнала от око-лозенитного и пригоризонтного НКА на выходе "стандартной” приемной антенны (без учета отражений от поверхности Земли):

P0 = P„ <3(ф ) G0(P ) X 2/(4л: R)2,

где Pn _ мощность излучения передатчика; G^ ) -- коэффициент направленности передающей антенны (с учетом потерь в АФУ) в направлении ф на приемную антенну; G0(P ) -- коэффициент направленности "стандартной” приемной антенны в направлении Р на передающую антенну; X -- длина волны несущего колебания радиосигнала; R -- дальность от приемной антенны до передающей антенны.

В системе ГЛОНАСС передающие антенны для навигационных радиосигналов на НКА имеют круговую правую поляризацию излучения.

Коэффициент направленности G^ ) передающих антенн в рабочем секторе направлений ф < 19° относительно оси антенны составляет:

Таблица №1

ф, угл.град.

15°

19°

Gfa ),дБ (1600 МГц)

10

12

8

Gfa ),дБ (1250 МГц)

9

11

9

В качестве "стандартной” приемной антенны удобно рассматривать изотропную приемную антенну с круговой поляризацией, G0(P ) = 1.

Дальность R от приемной антенны, размещенной на поверхности Земли, до околозенитного (Р = 90°) НКА составит

R = H = 19100 километров, до пригоризонтного (Р =5° ) НКА составит R = 24000 километров.

Бюджет мощности Р0 узкополосных навигационных радиосигналов на выходе "стандартной” приемной антенны:

Таблица №2

Длина волны

1600 МГц

1250 МГц

1

2

3

Р, угл. град.

9

0

о

90°

Рп, дБ Вт

+ 1 5 ± 1

+ 9 ± 1

G(9 ), дБ

+10

+12

+9

+11

(X/ 4 п R)2, дБ

- 182

- 184

- 180

- 182

G0(P ), дБ

0

0

Б

д

,0

Р0

- 157± 1

- 157± 1

- 162± 1

- 162± 1

Отметим, что мощность навигационного радиосигнала, принимаемого наземным потребителем с помощью изотропной антенны, одинакова для околозенитного и пригоризонтного НКА.

Рис. 4 Структура сигнала ГЛОНАСС

Сигнал в диапазоне L1 (аналогичен C/A-коду в GPS) доступен для всех потребителей в зоне видимости КА. Сигнал в диапазоне L2 предназначен для военных нужд, и его структура не раскрывается.

Для навигационных радиосигналов ЦИ формируется на борту НКА на основе данных, передаваемых от НКУ системы на борт НКА с помощью радиотехнических средств. Передаваемая в навигационных радиосигналах ЦИ структурирована в виде строк, кадров и суперкадров.

В узкополосном навигационном радиосигнале 1600 МГц строка ЦИ имеет длительность 2 с. (вместе с МВ) и содержит 85 двоичных символов длительностью по 20 мс., передаваемых в относительном коде. Первый символ каждой строки является начальным ("холостым”) для относительного кода. Последние восемь символов в каждой строке являются проверочными символами кода Хемминга, позволяющие исправлять одиночный ошибочный символ и обнаруживать два ошибочных символа в строке. Кадр содержит 15 строк (30 с.), суперкадр 5 кадров (2,5 мин.).

В составе каждого кадра передается полный объем оперативной ЦИ и часть альманаха системы. Полный альманах передается в пределах суперкадра.

Оперативная ЦИ в кадре относится к НКА, излучающему навигационный радиосигнал, и содержит:

* признаки достоверности ЦИ в кадре;

* время начала кадра tk;

* эфемеридную информацию -- координаты и производные координат НКА в прямоугольной геоцентрической системе координат на момент времени t0;

* частотно-временные поправки (ЧВП) на момент времени t0 в виде относительной поправки к несущей частоте навигационного радиосигнала и поправки к БШВ НКА;

* время to.

Время t0, к которому "привязаны” ЭИ и ЧВП, кратны 30 мин от начала суток. Альманах системы содержит:

* время, к которому относится альманах;

* параметры орбиты, номер пары несущих частот и поправку к БШВ для каждого штатного НКА в ОГ (24 НКА);

* поправку к ШВ системы относительно ШВ страны, погрешность поправки не более 1 мкс.

Альманах системы необходим в НАП для планирования сеанса навигации (выбор оптимального созвездия НКА) и для приема навигационных радиосигналов в системе (прогноз доплеровского сдвига несущей частоты). Оперативная ЦИ необходима в НАП в сеансе навигации, так как ЧВП вносятся в результаты измерений, а ЭИ используется при определении координат и вектора скорости потребителя.

В системе НАВСТАР ЦИ в узкополосных навигационных радиосигналах структурирована следующим образом: строка имеет длительность 6 с, кадр содержит 5 строк (30 с), суперкадр -- 25 кадров (12,5 мин).

Узкополосные навигационные радиосигналы в системе ГЛОНАСС обеспечивают более оперативный прием (обновление) альманаха за счет более короткой длительности суперкадров (2,5 мин) по сравнению с системой НАВСТАР (12,5 мин)

1.1.6 Состав системы ГЛОНАСС

Спутник ГЛОНАСС (см. рисунок 5) конструктивно состоит из цилиндрического гермоконтейнера с приборным блоком, рамы антенно-фидерных устройств, приборов системы ориентации, панелей солнечных батарей с приводами, блока двигательной установки и жалюзи системы терморегулирования с приводами. На спутнике также установлены оптические уголковые отражатели, предназначенные для калибровки радиосигналов измерительной системы с помощью измерений дальности до спутника в оптическом диапазоне, а также для уточнения геодинамических параметров модели движения спутника. Конструктивно уголковые отражатели формируются в виде блока, постоянно отслеживающего направление на центр Земли. Площадь уголковых отражателей -0,25м2.

Рис. 5 Спутник ГЛОНАСС

В состав бортовой аппаратуры входят:

* навигационный комплекс;

* комплекс управления;

* система ориентации и стабилизации;

* система коррекции;

* система терморегулирования;

* система электроснабжения.

Навигационный комплекс обеспечивает функционирование спутника как элемента системы ГЛОНАСС. В состав комплекса входят: синхронизатор, формирователь навигационных радиосигналов, бортовой компьютер, приемник навигационной информации и передатчик навигационных радиосигналов.

Синхронизатор обеспечивает выдачу высокостабильных синхрочастот на бортовую аппаратуру, формирование, хранение, коррекцию и выдачу бортовой шкалы времени. Формирователь навигационных радиосигналов обеспечивает формирование псевдослучайных фазоманипулированных навигационных радиосигналов содержащих дальномерный код и навигационное сообщение.

Комплекс управления обеспечивает управление системами спутника и контролирует правильность их функционирования. В состав комплекса входят: командно-измерительная система, блок управления бортовой аппаратурой и система телеметрического контроля.

Командно-измерительная система обеспечивает измерение дальности в запросном режиме, контроль бортовой шкалы времени, управление системой по разовым командам и временным программам, запись навигационной информации в бортовой навигационный комплекс и передачу телеметрии.

Блок управления обеспечивает распределение питания на системы и приборы спутника, логическую обработку, размножение и усиление разовых команд.

Система ориентации и стабилизации обеспечивает успокоение спутника после отделения от ракеты-носителя, начальную ориентацию солнечных батарей на Солнце и продольной оси спутника на Землю, затем ориентацию продольной оси спутника на центр Земли и нацеливание солнечных батарей на Солнце, а также стабилизацию спутника в процессе коррекции орбиты. В системе используются прибор на основе инфракрасного построения местной вертикали (для ориентации на центр Земли) и прибор для ориентации на Солнце. Погрешность ориентации на центр Земли не хуже Зград., а отклонение нормали к поверхности солнечной батареи от направления на Солнце -не более 5град.

Для минимизации возмущений на движение центра масс спутника разгрузка двигателей маховиков производится с помощью магнитопровода. В качестве исполнительного органа при осуществлении успокоения и стабилизации спутника во время выдачи импульса коррекции используется двигательная установка.

Режим успокоения, в результате которого происходит гашение угловых скоростей, включается в зоне радиовидимости. В режиме начальной ориентации на Солнце осуществляется разворот спутника относительно продольной оси с помощью управляющих двигателей-маховиков до появления Солнца в поле зрения прибора ориентации на Солнце, который установлен на панели солнечных батарей.

Режим ориентации на Землю начинается из положения ориентации на Солнце путем разворота спутника с помощью двигателей-маховиков вдоль оси, ориентированной на Солнце, до появления Земли в поле зрения прибора ориентации на центр Земли. В штатном режиме обеспечивается ориентация оси спутника вместе с антеннами на центр Земли с помощью управляющих двигателей-маховиков по сигналам с приборов ориентации на центр Земли. Ориентация солнечных батарей на Солнце путем разворота спутника вместе с солнечными батареями с помощью управляющего двигателя-маховика по одному каналу и разворотов панелей батарей относительно корпуса спутника с помощью привода вращения солнечных батарей по другому каналу по сигналам приборов ориентации на Солнце. В режиме ориентации перед проведением коррекции и стабилизации спутника во время выдачи импульса коррекции отслеживание ориентации на Солнце не производится.

Система терморегулирования обеспечивает необходимый тепловой режим спутника. Регулирование тепла, отводимого из гермоконтейнера, осуществляется жалюзи, которые открывают или закрывают радиационную поверхность в зависимости от температуры газа. Отвод тепла от приборов осуществляется циркулирующим газом с помощью вентилятора.

Система электроснабжения включает солнечные батареи, аккумуляторные батареи, блок автоматики и стабилизации напряжения. Начальная мощность солнечных батарей-1600Вт, площадь-17,5м2. При прохождении спутником теневых участков Земли и Луны питание бортовых систем осуществляется за счет аккумуляторных батарей. Их разрядная емкость составляет 70 ампер-часов. Для обеспечения надежности на спутнике устанавливаются по два или по три комплекта основных бортовых систем. Таким образом, на спутник ГЛОНАСС возложено выполнение следующих функций:

* излучение высокостабильных радионавигационных сигналов;

* прием, хранение и передача цифровой навигационной информации;

* формирование, оцифровка и передача сигналов точного времени;

* ретрансляция или излучение сигналов для проведения траекторных измерений для контроля орбиты и определения поправок к бортовой шкале времени;

* прием и обработка разовых команд;

* прием, запоминание и выполнение временных программ управления режимами функционирования спутника на орбите;

* формирование телеметрической информации о состоянии бортовой аппаратуры и передача ее для обработки и анализа наземному комплексу управления;

* прием и выполнение кодов/команд коррекции и фазирования бортовой шкалы времени;

* формирование и передача "признака неисправности" при выходе важных контролируемых параметров за пределы нормы.

Рис. 6 Космический сегмент систем ГЛОНАСС и GPS

Рис. 7 Комплекс управления спутниками

1.2 Определение координат потребителя

Для определения координат потребителя необходимо знать координаты спутников (не менее 4) и дальность от потребителя до каждого видимого спутника. Для того, чтобы потребитель мог определить координаты спутников, излучаемые ими навигационные сигналы моделируются сообщениями о параметрах их движения. В аппаратуре потребителя происходит выделение этих сообщений, и определение координат спутников на нужный момент времени.

Координаты и составляющие вектора скорости меняются очень быстро, поэтому сообщения о параметрах движения спутников содержат сведения не об их координатах и составляющих вектора скорости, а информацию о параметрах некоторой модели, аппроксимирующей траекторию движения КА на достаточно большом интервале времени (около 30 минут). Параметры аппроксимирующей модели меняются достаточно медленно, и их можно считать постоянными на интервале аппроксимации.

Параметры аппроксимирующей модели входят в состав навигационных сообщений спутников. В системе GPS используется Кеплеровская модель движения с оскулирующими элементами. В этом случае траектория полёта КА разбивается на участки аппроксимации длительностью в один час. В центре каждого участка задаётся узловой момент времени, значение которого сообщается потребителю навигационной информации. Помимо этого, потребителю сообщают параметры модели оскулирующих элементов на узловой момент времени, а также параметры функций, аппроксимирующих изменения параметров модели оскулирующих элементов во времени как предшествующем узловому элементу, так и следующем за ним. В аппаратуре потребителя выделяется интервал времени между моментом времени, на который нужно определить положение спутника, и узловым моментом. Затем с помощью аппроксимирующих функций и их параметров, выделенных из навигационного сообщения, вычисляются значения параметров модели оскули-рующих элементов на нужный момент времени. На последнем этапе с помощью обычных формул кеплеровской модели определяют координаты и составляющие вектора скорости спутника.

В системе ГЛОНАСС для определения точного положения спутника используются дифференциальные модели движения. В этих моделях координаты и составляющие вектора скорости спутника определяются численным интегрированием дифференциальных уравнений движения КА, учитывающих конечное число сил, действующих на КА. Начальные условия интегрирования задаются на узловой момент времени, располагающийся посередине интервала аппроксимации.

Как было сказано выше, для определения координат потребителя необходимо знать координаты спутников (не менее 4) и дальность от потребителя до каждого видимого спутника, которая определяется в навигационном приёмнике с точностью около 1 м. Для удобства рассмотрим простейший "плоский” случай, представленный на рисунке 8.

Рис. 8 Определение координат потребителя

Каждый спутник можно представить в виде точечного излучателя. В этом случае фронт электромагнитной волны будет сферическим. Точкой пересечения двух сфер будет та, в которой находится потребитель.

Высота орбит спутников составляет порядок 20000 километров. Следовательно, вторую точку пересечения окружностей можно отбросить из-за априорных сведений, так как она находится далеко в космосе.

1.2.1 Сущность абсолютных определений

Сущность спутниковой технологии развития ОГС и съёмки ситуации и рельефа состоит в использовании глобальной навигационной спутниковой системы и системы вычислительной обработки (ЭВМ и программного обеспечения) для получения координат и высот точек местности (пунктов ОГС и съёмочных пикетов).

Местоположение точки может быть получено с использованием глобальных навигационных спутниковых систем как из абсолютных, так и из относительных определений.

Абсолютные определения выполняются по принципу пространственной обратной линейной засечки, образованной измеренными псевдодальностями до 4-х и более спутников с одной точки, на которой размещён спутниковый приёмник. Точность абсолютных определений местоположения ограничена рядом факторов, среди которых основным является влияние погрешностей эфемерид спутников. Стандартная точность определения местоположения абсолютным методом не превышает 5 м, что не позволяет использовать этот метод при развитии ОГС и съёмке ситуации и рельефа, поэтому в дипломе абсолютные определения не рассматриваются.

Методы относительных определений основаны на принципе компенсации сильно коррелированных погрешностей (к которым относятся и эфе-меридные погрешности) при одновременном определении кодовых и фазовых псевдодальностей до спутников одного и того же созвездия с двух точек.

Спутниковые определения относительными методами обеспечивают определение плановых координат и высот в системе координат и высот пунктов геодезической основы.

1.2.2 Понятие о методах относительных спутниковых определений

Для реализации относительных спутниковых определений используют два или более приёмников, один из которых является базовой станцией, а другие - подвижными.

Наблюдения спутников базовой и подвижными станциями осуществляют приёмами, объединёнными в сеансы.

Различают следующие методы относительных спутниковых определений:

Дифференциальный режим

В настоящее время ведутся работы по реализации общеевропейского радионавигационного плана. Разработан специальный стандарт пересылки поправок DGPS, который называется RTCM SC - 104. Все производители GPS - приемников используют его для реализации дифференциального режима работы своей аппаратуры.

В геодезических приложениях нашли применение исключительно дифференциальные методы GPS - измерений, поскольку только с их использованием возможно определение координат точек местности с требуемой точностью.

Имеется несколько методов выполнения наблюдений. Выбор конкретного метода зависит от следующих факторов:

* требуемый уровень точности;

* технические возможности приемника и наличие соответствующего программного обеспечения;

* характер окружающей местности и метеоусловия (радиопомехи, рельеф, гроза);

* наличие ограничений на переезд между наблюдаемыми пунктами и расстояние между ними;

* конфигурация спутниковой системы и количество наблюдаемых спутников, наличие средств связи.

Для решения различных задач:

* определения точных координат отдельных точек,

* последовательных измерений местоположения множества точек,

* непрерывных координатных определений в процессе движения автомобиля и др.

- в рамках DGPS- режима разработан ряд методов выполнения измерений. Эти методы отличаются технологией выполнения работ и получаемой точностью вычисления вектора базы.

Статический метод (Static Positioning)

Название метода означает, что приемники не перемещаются в течение всего наблюдательного интервала. Базовый приемник и приемник с неизвестными координатами одновременно выполняют наблюдения и записывают данные в течение 15 минут - 3 часов. Такая длительность сессии вызвана необходимостью определения целочисленной неоднозначности фаз в начале сессии. Этому способствует и заметное изменение со временем конфигурации спутниковой системы. Одночастотные приемники используются для измерения баз длиной до 10-15 километров, а двухчастотные - для баз длиннее 15 километров (преимущества двухчастотных приемников заключаются в возможности адекватного моделирования эффекта воздействия ионосферы, а также меньшей продолжительности наблюдений для достижения заданной точности). После завершения сеансов наблюдений данные, полученные каждым приемником, собираются вместе, вводятся в компьютер и обрабатываются с помощью специальных программ с целью определения неизвестных координат пунктов. Точность метода при использовании фазовых наблюдений:

1. Для двухчастотных приемников:

о в плане: 5 мм + 1 мм/км * D;

о по высоте: 10 мм + 1 мм/км * D;

2. Для одночастотных приемников:

о в плане: 5 мм + 1 мм/км * D - (при D < 10 км); 5 мм + 2 мм/км * D

- (при D > 10 км);

о по высоте: 10 мм + 2 мм/км * D).

Данный метод используют для решения задач контроля национальных и континентальных геодезических сетей, мониторинга тектонических движений земной поверхности, наблюдения за состоянием дамб, фундаментов атомных электростанций и др. сооружений.

Псевдостатический метод (Pseudo-Static Positioning)

Отличается от статического тем, что обеспечивает более высокую производительность съемки за счет выполнения наблюдений в течение нескольких коротких сессий вместо одной длинной. Один приемник непрерывно наблюдает на базовом пункте. Перевозимый приемник после наблюдений в течение 5 - 10 минут на определяемом пункте выключается и перевозится на следующий определяемый пункт, где вновь включается на 5 -10 минут. Затем вновь выключается и перевозится на следующий пункт и т.д. Каждый определяемый пункт необходимо посетить еще раз на 5 минут через 1 час после первого посещения. Этот метод практически эквивалентен статическому, но вместо того, чтобы ожидать в течение 1 часа изменения конфигурации спутников, наблюдения проводятся в течение 5 минут, а следующие 5 минут наблюдаются одним часом позже, когда конфигурация существенно изменилась. Остающиеся 55 минут можно использовать для посещения дополнительных неизвестных пунктов. Точность получаемых результатов будет на уровне статического метода. Для наблюдений могут использоваться как одночастотные, так и двухчастотные приемники. Метод удобен, когда необходимо в течение короткого времени произвести точное измерение координат большого количества точек. Недостатком метода является необходимость точного планирования графика посещения пунктов.

Быстростатический метод (Rapid Static Positioning)

Этот метод был разработан в последние годы. Он позволил значительно увеличить производительность GPS съемки. Метод отличается от псевдостатического тем, что достаточно лишь одного посещения определяемых пунктов (в течение 5-10 минут - в зависимости от расстояния между опорным и определяемым пунктами). Поначалу, на этапе появления данного метода, для наблюдений подходили лишь двухчастотные Р- кодовые приемники. В настоящее время некоторые одночастотные приемники можно также использовать в быстростатическом режиме.

Кинематический метод "стой-иди” (Stop-and-Go Kinematic Positioning)

Метод позволяет получить положения пунктов так же быстро, как и в случае использования электронного тахеометра при решении топографических задач. Метод требует выполнения короткой процедуры инициализации с целью определения целочисленных неоднозначностей фаз. После этого опорный приемник продолжает непрерывно наблюдать на пункте с известными координатами, второй приемник перевозится (во включенном состоянии) на первый определяемый пункт, где вновь наблюдает 1 минуту. Затем он посещает все остальные определяемые пункты (лишь по одному разу).

Наиболее распространенными являются следующие процедуры инициализации:

* обмен антеннами, когда второй приемник находится на "пункте обмена” (знание его координат не обязательно), выбранном на расстоянии не более 10 метров от опорного, выполняется наблюдение 4 - 8 эпох, затем приемники переставляются (без выключения), меняясь антеннами и наблюдают 4-8 эпох (до нескольких минут), а после происходит обратная процедура обмена антеннами и выполнение наблюдений для 4-8 эпох;

* стояние второго приемника в течение 1 минуты на втором пункте с известными координатами, причем этот второй пункт может быть на расстоянии не более 10 километров от опорного пункта;

* статический метод, когда определяемый пункт выбирается на расстоянии не более 10 километров от опорного пункта, а сеанс наблюдений имеет продолжительность не менее 30 минут.

* Недостаток метода состоит в необходимости непрерывного (и даже во время движения) наблюдения не менее 4 спутников одновременно. Если число наблюдаемых спутников падает до трех хотя бы на миг, необходимо вернуться на последний успешно посещенный определяемый пункт или вновь провести процедуру инициализации. Во избежание этого лучше всего обеспечить возможность наблюдения одновременно пяти или более спутников.

Точность метода при использовании фазовых наблюдений:

1. Для двухчастотных приемников (5 спутников и две эпохи (2 сек ) наблюдений):

о в плане: 20 мм + 1 мм/км * D; о по высоте: 20 мм + 2 мм/км * D;

2. Для одночастотных приемников: о в плане: 20 мм + 2 мм/км * D;

о по высоте: 20 мм + 2 мм/км * D.

Метод эффективен при выполнении топографической съемки, когда за короткое время необходимо определить координаты большого числа точек, при построении цифровых моделей рельефа, определении местоположения объектов местности, имеющих форму ломаной линии (трубопроводы, дороги и пр.).

Кинематический метод со статической инициализацией (Kinematic with Static Initialization)

Метод очень похож на предыдущий. Точно так же на базовом пункте с известными координатами производится процедура инициализации, затем подвижный приемник перемещается в начальную точку маршрута движения и производит там наблюдения в течение нескольких минут. Далее подвижная платформа с приемником начинает движение по маршруту. GPS - измерения выполняются непрерывно во время движения с интервалом 1 сек. Точностные параметры метода те же, что и у "Stop-and-Go” Чаще всего применяется для получения координат линейных объектов типа дорог, рек и т.д.

Кинематический метод с инициализацией "на ходу” (Kinematic with On - the Fly Initialization)

Данный метод не требует для инициализации размещения подвижного приемника на базовой станции - эта процедура выполняется непосредственно при движении транспортного средства по маршруту. Кроме того, если по какой- либо причине произошел срыв наблюдений (например, из-за проезда под железнодорожным мостом), процесс инициализации производится вновь без остановки движения. Точностные параметры и сферы использования метода не отличаются от других кинематических методов.

1.2.3 Прогнозирование спутникового созвездия

Одним из этапов подготовки к проведению спутниковых определений является прогнозирование спутникового созвездия. Цель его - определение дат, моментов и интервалов времени, в которые параметры конфигурации спутникового созвездия оптимальны для спутниковых определений.

Исходными данными для прогнозирования спутникового созвездия являются координаты объекта работ и эфемеридная информация о спутниках. В случае, если в районе расположения пунктов геодезической основы, ОГС или топографических съёмок имеются предметы или сооружения, препятствующие прохождению радиосигналов от спутников, то в качестве исходной информации при прогнозировании необходимо использовать также значения высот и азимутов границ нахождения препятствий.

В качестве исходных координат объекта работ используют географические координаты, взятые с точностью до 1°.


Подобные документы

  • Топографо-геодезические работы с применением спутниковой геодезической аппаратуры. Проектирование топографической съёмки, выполняемой посредством спутниковых определений. Сметный расчет на создание геодезической опорной сети для строительства газопровода.

    дипломная работа [5,7 M], добавлен 08.06.2013

  • Сущность теодолитной съемки, особенности полевых работ при ее совершении. Проложение теодолитных ходов и привязка их к пунктам опорной геодезической сети. Этапы камеральных работ при теодолитной съемке. Вычисление координат вершин теодолитного хода.

    курсовая работа [1,4 M], добавлен 07.10.2013

  • Рекогносцировка местности и закрепление точек теодолитных ходов. Камеральные работы при теодолитной съёмке. Привязка теодолитных ходов к пунктам геодезической опорной сети. Особенности обработки результатов измерений разомкнутого теодолитного хода.

    курсовая работа [1,7 M], добавлен 14.01.2015

  • Охрана труда при проведении геодезической практики. Правила обращения с геодезическими инструментами. Работы по созданию плановой опорной сети простейшего вида. Поверка теодолита и нивелира, полевые работы при проложении ходов, разбивка пикетажа.

    курсовая работа [919,9 K], добавлен 28.06.2013

  • Приведение пунктов съемочного обоснования строительной площадки к пунктам государственной геодезической сети. Методика подготовки геодезических данных для восстановления утраченных межевых знаков. Перевычисление координат межевых знаков в единую систему.

    курсовая работа [160,0 K], добавлен 06.11.2014

  • Сущность инженерной геодезии и ее основные задачи. Понятие деформации применительно к железнодорожному полотну. Изучение вопросов проектирования рабочей реперной сети от пунктов опорной геодезической сети. Создание системы контроля железнодорожного пути.

    дипломная работа [446,6 K], добавлен 18.02.2012

  • Проектирование геодезической сети сгущения. Источники для составления физико-географического описания района работ. Основные типы почв в Ленинградской области. Проектирование пунктов полигонометрии. Проектирование хода технического нивелирования.

    курсовая работа [143,7 K], добавлен 10.07.2012

  • Создание опорной маркшейдерской сети и оценка точности опорной высотной сети. Анализ точности угловых и линейных измерений при подземных маркшейдерских съемках. Предрасчет ожидаемой ошибки смыкания забоев горных выработок, проводимых встречными забоями.

    курсовая работа [1,5 M], добавлен 09.02.2013

  • Выбор методов съемки и создания геодезической основы. Планово-высотная подготовка аэроснимков и их дешифрирование. Составление плана повышения эффективности работ. Определение плановых показателей полевого подразделения. Подсчет объемов работ по объекту.

    курсовая работа [40,7 K], добавлен 06.03.2009

  • Сети и съемки, геодезические сети Российской Федерации. Получение контурного плана местности с помощью теодолита и мерной ленты. Работы по прокладке теодолитных ходов. Камеральная обработка результатов съемки. Вычисление дирекционных углов и координат.

    лекция [397,2 K], добавлен 09.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.