Методы борьбы с АСПО в условиях НГДУ "Лениногорскнефть"

Характеристика геологического строения объекта. Коллекторские свойства продуктивных пластов. Физико-химические свойства нефти, газа и пластовой воды. Характеристика фонда скважин. Динамика технологических показателей разработки. Методы борьбы с АСПО.

Рубрика Геология, гидрология и геодезия
Вид дипломная работа
Язык русский
Дата добавления 25.06.2010
Размер файла 349,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования и науки РТ

Лениногорский нефтяной техникум

ДИПЛОМНАЯ РАБОТА

«Методы борьбы с АСПО в условиях НГДУ «Лениногорскнефть»»

2006

СОДЕРЖАНИЕ

Введение

1. Исходные данные

1.1 Характеристика геологического строения объекта эксплуатации

1.2 Коллекторские свойства продуктивных пластов

1.3 Физико-химические свойства нефти, газа и пластовой воды

2. Анализ текущего состояния разработки

2.1 Характеристика фонда скважин

2.2 Динамика технологических показателей разработки

2.3 Анализ выработки пластов

3. Технологический раздел

3.1 Условия образования АСПО в скважине

3.2 Физико-химические свойства АСПО

3.3 Характеристика эксплуатационного фонда скважин НГДУ «ЛН»

3.4 Анализ подземных ремонтов скважин, выполняемых по причине АСПО (по ШСН)

3.5 Методы борьбы с АСПО

3.5.1 Механические методы

3.5.2 Тепловые методы

3.5.3 Химические методы

3.5.4 Применение защитных покрытий

3.6 Оборудование, применяемое для борьбы с АСПО

3.7 Расчёт подбора глубинонасосного оборудования скважины при внедрении скребков

3.8 Анализ эффективности методов борьбы с АСПО применяемых в НГДУ «ЛН»

3.9 Выводы и предложения

4. Охрана труда и противопожарная защита

4.1 Охрана труда и техника безопасности

4.2 Противопожарная защита

5. Охрана недр и окружающей среды

5.1 Мероприятия по охране окружающей среды

6 Организационно-экономический раздел

6.1 Организация труда и рабочего места в ЦПиКРС

6.2 Технико-экономические показатели ЦПиКРС, их анализ

6.3 Расчёт сметы затрат

6.4 Расчет экономической эффективности при борьбе с АСПО

6.5 Выводы и предложения

ВВЕДЕНИЕ

Асфальто-смолистые и парафиновые отложения (АСПО) содержатся в составе нефтей почти во всех нефтедобывающих районах РФ. Химический состав АСПО зависит от свойств добываемой нефти, термо- и гидродинамических условий продуктивных пластов, геологических и физических особенностей, способа разработки и эксплуатации месторождений.

Парафиновые отложения в нефтепромысловом оборудовании формируются в основном вследствие выпадения (кристаллизации) высокомолекулярных углеводородов при снижении температуры потока нефти.

Состав парафиновых отложений зависит от состава нефти и термодинамических условий, при которых формируются отложения. В зависимости от условий кристаллизации состав парафиновых отложений даже в одной скважине весьма разнообразен. Различаются они по содержанию асфальтенов, смол и твердых углеводородов. Нередко парафиновые отложения содержат воду и механические примеси.

На интенсивность парафиновых отложений оказывает влияние обводненность продукции в скважинах.

АСПО снижают производительность скважин, увеличивают износ оборудования, расходы электроэнергии и давление в выкидных линиях. Поэтому борьба с АСПО - актуальная задача при интенсификации добычи нефти.

Методы борьбы с АСПО предусматривают проведение работ по предупреждению выпадения и удалению уже образовавшихся осадков.

Предупреждение образования АСПО достигается нанесением защитных покрытий на поверхности труб и другого оборудования из гидрофильных материалов, а также введением в поток добываемой нефти различных ингибиторов.

Удаление АСПО достигается путем чистки поверхности труб и оборудования механическими скребками, тепловой и химической обработкой продукции скважин.

Многие глубиннонасосные установки эксплуатируемые в условиях НГДУ «Лениногорскнефть» (далее НГДУ «ЛН»), эксплуатируются в высокопарафинящихся скважинах, где в насосе и трубах откладывается парафин. В НГДУ «ЛН» применяются различные методы дапарафинизации скважин, но наиболее эффективным является химический метод предотвращения отложений парафина с применением ингибиторов. Часто химический метод применяют в сочетании с тепловыми и механическими методами

1. ИСХОДНЫЕ ДАННЫЕ

1.1 Характеристика геологического строения объекта эксплуатации

Стратиграфия

Наиболее возвышенная часть купола Ромашкинская вершина, являющаяся крупной структурой блокового строения и оконтуривается изогипсой 1500 м и имеет высоту около 50 м. Восточная часть вершины характеризуется наличием наиболее возвышенных участков.

Сложным строением отличается юго-восточный склон купола. Для западного склона преобладающим является меридиональное простирание структурных форм. Меньшей расчлененностью отличаются северный и северо-восточный склоны.

Анализ структурных поверхностей маркирующих горизонтов палеозоя дал возможность выделить по разрезу до 6 структурно-тектонических комплексов или этажей СТЭ. Первый этаж отложения Эйфельского и Живетского ярусов среднего и нижнефранского подъяруса верхнего девона.

Верхняя граница второго этажа проводится по кровле тульского горизонта. Третий этаж - Верейского горизонта. Четвертый этаж - Верхнего карбона. Пятый этаж - отложения нижнего отдела перми. Шестой этаж - отложения верхнего, с проведением границ соответственно по кровле уфимских и татарских отложений. В тектоническом строении структурных этажей присутствует закономерное изменение и усложнение вверх по разрезу строения отложений и рельефа их структурных поверхностей.

Основным эксплуатационным объектом Западно-Лениногорской площади являются отложения пашийского горизонта франкского яруса верхнего девона. Продуктивные отложения пашийского горизонта Д1 являются основными промышленными объектами Ромашкинского месторождения. Пашийский горизонт является многопластовым объектом. Пашийский горизонт индексируется как Д1. Он сложен в основном мелкозернистыми песчаниками и крупнозернистыми алевролитами с переслаиванием аргиллитами и глинистыми алевролитами. Песчаники кварцевые, алевритистые, светло-серые или буровато-серые до темно-коричневых в зависимости от нефтенасыщения. Алевролиты серые, песчаные, слоистые, что связано с сортировкой обломочного материала по величине зерен. Толщина горизонта достигает 42,5 м, нефтенасыщенная - 8,2 м.

В разрезе горизонта Д1 выделяются (сверху вниз) пласты "а ", б, б, в, г, г+д, Эти пласты распространены по площадям и представлены в разрезах скважин далеко неравномерно. Статистический анализ видов разрезов показывает, с одной стороны многообразие сочетаний пластов, с другой стороны - преобладание в разрезе определенных устойчивых сочетаний на площади преобладают разрезы скважин с 4-мя, 5-ю и 6-ю пластами, которые составляют 67 % их сочетаний.

Пласт "а" имеет основное развитие в центральной части площади. В интервале пласта "а" прослеживаются 3 прослоя пород-коллекторов, из которых наиболее развиты нижний и средний. По распределению алевролиты занимают 38,9% всей нефтеносной площади. Пласт "а маломощный толщина достигает 5-6 м. Доля коллекторов с толщиной менее 3 м. составляет 67,7%. Пласт "а" содержит 6,7% извлекаемых запасов горизонта Д.

Пласт б- маломощный, средняя толщина прослоев пласта пачкиб в основном равна 2-3 м. Доля толщины менее 3 м. составляет 63,3%. Пласт содержит 11,5% извлекаемых запасов горизонта Д.

Пласт "б"- 71,6% площади занято коллекторами, средняя толщина пласта 2-3 м. Пласт "б3" развит в основном в виде линзообразных зон меридионального направления в центральной части месторождения, а на западе в виде разрозненных участков. Пласты толщиной менее 3 м. составляют 62,15%. Пласт "б" содержит 15,3% извлекаемых запасов горизонта Д.

Пласт "в" средняя толщина пластов 3,3 м. Уверенно выделяется в разрезах большей частью до 3 м. Составляет 51,7%. Пласт почти полностью находится в нефтяной зоне. Пласт содержит 18,3% извлекаемых запасов горизонта Д.

Пласт "г " в основном состоит из песчанников. По своим коллекторским свойствам это лучший из пластов горизонта Д. Средняя толщина пласта 4-6м. Пласт содержит 19,3 % извлекаемых запасов.

Пласт "г+д" представлен песчанно-алевролитовыми породами с хорошими коллекторскими свойствами.

Пласт "д" сливается с пластом "г". На участках слияния пластов толщина коллекторов может достигать 20 м. Пласт содержит 28,9% извлекаемых запасов.

Тектоника

Ромашкинское месторождение, по поверхности кристаллического фундамента представляет собой, ассиметричное поднятие широтного простирания с относительно слабым расчленением на возвышенности и углубления различной амплитуды. Оно структурно приурочено к сводовой части южного купола, представляющего собой крупное платообразное поднятие изометричной формы размером около 100 * 100 км, которое ограничено с запада Алтунино-Шунакским, с востока - Уральским прогибами и структурными уступами: Сакловским на севере и Бугульминским - на юге.

1.2 Коллекторские свойства продуктивных пластов

Благоприятными условиями для накопления и сохранения нефти и газа в горных породах является наличие пустот в породе, которые могут занимать нефть и газ, и залегание пород в виде геологических структур, препятствующих рассеиванию нефти и газа. Если горная порода обладает свойствами, которые обеспечивают, подвижность нефти и газа в ее пустотном пространстве, следовательно возможность их извлечения, то она является коллектором. Все горные породы могут быть коллекторами нефти и газа, но лишь1% запасов нефти и газа приурочен к магматическим и метаморфическим породам. В основном скопления нефти и газа приурочены к осадочным породам . 85-95% осадочного комплекса земной коры представляют терригенные породы, состоящие из обломочного материала (пески, песчаники, известняки, алевриты, глины, аргелиты и др.). Коллекторские свойства горных пород обуславливаются наличием в них пустот (пор, трещин и каверн). Литолого-петрографическая характеристика коллектора представлена в Таблице 1.

Таблица 1 Литолого-петрографическая характеристика коллектора

Наименование

Тип песчанника

Породы алевролиты

1. терригенные коллекторы фракции по отношению ко всей породе, в т.ч.

нерастворимый остаток

растворимых солей (карбонаты),%

99,4

0,69

99,2

0,98

2. процентное содержание фракции в нерастворимом остатке по отношению ко всей породе, в т.ч.

0,25мм.

0,25-0,1мм.

0,1-0,05мм.

0,05-0,01мм.

0,01мм.

3,46

68,47

19,25

4,88

4,03

3,75

25,98

48,35

17,47

4,48

3. Минеральный состав части породы, в т.ч.

Кварц

Полевые шпаты

Мономинерал

Не опред

Кварцевые

-

4. Коэффициент сортировки

2,12

2,04

5. Количество анализов

33

20

6. Размер пор в минералах (мкм)

33

20,9

7. Количество определений

15

27

Среди физических параметров, характеризующих свойства горных пород-коллекторов, главное значение имеют те, которые определяют емкость пустот, способность породы пропускать через себя жидкости и газы, полноту извлечения из них нефти и газа.

Основными физическими параметрами горных пород складывающих нефтяные месторождения являются пористость, проницаемость, нефтенасыщенность. (Таблица 2).

Таблица 2 Характеристика пластов горизонта Д

Пласты

Тип коллектора

Толщи на, м

Порис тость,

%

Проницаемость,

мкмІ

Нач.нефтена сыщенность, доли ед.

А

П

3,4

20,4

0,348

0,824

А

2,1

14,0

0,111

0,684

б

П

3,7

20,4

0,373

0,814

А

1,8

14,1

0,094

0,722

б

П

4,1

20,4

0,340

0,799

А

2,0

14,1

0,100

0,700

в

П

3,6

20,6

0,360

0,824

А

1,9

14,2

0,089

0,719

г

П

3,8

21,6

0,369

0,838

А

2,5

13,7

0,097

0,732

г +д

П

3,3

21,6

0,271

0,826

А

3,2

14,0

-

-

1.3 Физико-химические свойства нефти, газа и пластовой воды

Состав нефти чрезвычайно сложен и разнообразен. Однако все физико-химические свойства нефти и в первую очередь ее товарные качества определяются ее составом.

Основными элементами входящими в состав нефти являются углеводород и водород. В большинстве нефтей углерод колеблется от 83-87 %, количество же водорода редко превышает 12-14 %. Кроме углерода и водорода в нефти и газе содержатся кислород, азот, сера и в ничтожных количествах другие химические элементы, главным образом металлы: ванадий, хром, никель, железо, кобальт, магний, титан, натрий, кальций, фосфор и кремний. Компоненты нефти представляющие смесь высокомолекулярных соединений, в состав которых входят азот, сера, кислород и металлы называют асфальтосмолистыми веществами. Нефть Ромашкинского месторождения относится к сернистым (0,51 - 2 % вес.), парафинистым ( 1,5 - 6 % вес.), высоковязким (30-100 мПа.с ). Среднее арифметрическое содержание парафина по горизонтам девона - 4,4 % весовых. Горючие газы нефтяных месторождений по своей химической природе сходны с нефтью, и являются смесью различных углеводородов: метана, этана, пропана, бутана, пентана. Часто с состав газов входят азот, углекислота, сероводород и редкие газы. (Таблица 3).

Пластовые воды оказывают непосредственное влияние на процессы извлечения нефти и газа. Они представляют собой сложные растворы, в составе которых неорганические соли, газы, растворимые в воде органические вещества.

Таблица 3 Компонентный состав нефтяного газа, разгазированной и пластовой нефти (% -мольные)

Наименование

Газ, выделившийся из нефти при однократном разгазировании в стандартных условиях

Нефть разгазиро ванная однократно в стандартных условиях

Пластовая нефть

У. Сероводород

0,0

0,0

0,0

2. Углекислый газ

0,65

-

0,11

3. Азот + редкие

9,14

-

0,56

4, Метан

32,43

0,0

1,3

5, Этан

22,58

0,13

1,56

6. Пропан

22,27

0,56

2,65

7. Изобутан

2,65

0,22

0,53

8. Н- бутан

6.68

0,84

1,78

9. Изопентан

1.52

0,89

1,0

10. Н -пентан

1.28

1,12

1,16

11. Остаток ( С + выше )

0.8

96,24

89,34

12. Молекулярная масса

32,76

-

-

13. Плотность при стандартных условиях нефти, кг/м

-

857,8

804,8

14. Газа

1,3621

-

-

Соли диссоциируют в воде с образованием соответствующих ионов. Количественные соотношения между содержанием главных ионов: К+ , Nа+, Са 2+ , Мg2+ , СlЇ ,SОІЇ4 , НСОЇ3, СОІЇ3, положены в основу принятой у нас в стране химической квалификации вод по Сулину.

Общее содержание солей в пластовой воде принято называть минерализацией, величина которой колеблется в широких пределах. В зависимости от общей минерализации пластовые воды подразделяются на три класса: пресные воды с содержанием солей менее 0,1%,

Минерализованные от 0,1 до 0,5 %,рассолы более 5 % .Содержание растворенных газов в пластовой воде обычно не превышает 1,5- 2 м. В составе растворенного газа преобладают метан, азот и углекислый газ.

Плотность пластовой воды растет с увеличением минерализации. Вязкость пластовых вод зависит в первую очередь от температуры и минерализации, и в меньшей степени от газосодержания и давления. В большинстве случаев вязкость пластовых вод составляет 0,2 -1,5 мПас .

2. АНАЛИЗ ТЕКУЩЕГО СОСТОЯНИЯ РАЗРАБОТКИ

2.1 Характеристика фонда скважин

Второй блок расположен в центральной части площади. На дату анализа накопленная добыча нефти по работе скважин составила 24,234 млн. т. или 96,2 % от начальных извлекаемых запасов. Текущий коэффициент нефтеизвлечения равен 0,469. Попутно с нефтью отобрано 46,475млн.т. воды. Средняя обводненность добываемой продукции составила 82,9 %. водонефтяной фактор - 1,90. Максимальный уровень добычи был достигнут в 1971 - 1972 гг. в размере 1,4 млн. т. при темпе отбора 6,5 % начальных извлекаемых запасов. В 1991г. отобрано 117 тыс. т. ( темп 0,5 % НИЗ ). Среднегодовая обводненность продукции составила 82,8 %, компенсация отбора жидкости закачкой: текущая - 106,9 %, с начала разработки - 105,8%. По состоянию на 1.01.2003г. пробурено 919 скважин, из них 659- эксплуатационных, 217-нагнетательных, 12-специальных и 31-дублеров .

В отчетном году принято из бурения 4 скважины, в т.ч. 3 скважины пробурены по категории нагнетательных , 1- по категории нефтяных.

На нефть введены 3 скважины (39484, 39485-нагнетательные, 39486 - эксплуатационные) Скважина 39487 освоена под нагнетание.

На площади постоянно идет обновление фонда за счет бурения скважин с целью повышения нефтеизвлечения. Скважины, выполнившие свое назначение, или технически неисправные уходят в пьезометрические, в консервацию и в ликвидацию.

В санитарно - защитных зонах часть скважин остановлены, а для их замены пробурены новые скважины за пределами СЗЗ. Нерентабельные высокообводненные скважины переводятся в категорию " временная консервация" с периодическим пуском в работу.

Таблица 4. Характеристика пробуренного фонда скважин.

Расшифровка фонда

на 1.01.2002г.

на 1.01.2003г.

1. Дающие нефть, всего /в т.ч. нагнетательные

а) фонтан/ в т.ч. нагнетат.

б) ЭЦН/в т.ч. нагнетат.

в) СКН/в т.ч. нагнетат.

2. Бездействующий фонд/в т.ч. нагнетатательные.

3. Осваиваемые и ожид. освоения/ в т.ч. нагнетат.

4. Эксплуатационный фонд/ в т.ч. нагнетат.

5. Дающие техническую воду.

6. Нагнетатательный фонд.

а) под закачкой/ в т.ч. остан. по технич. прич.

б) в бездействии после закачки.

в) в ожидании освоения после бурения.

г) в ожид. освоен. после экспл. на нефть.

7. Контрольные

8. Пьезометрические

347/59

-

57/3

289/56

32/6

2/2

379/65

3

203

180/49

21

1

1

24

328/58

-

50/1

278/57

56/8

384/66

3

208

192/42

15

-

1

25

Действующий фонд составляет 311 скважин, состоит из механических скважин, которые составляют 99,2 % от всего фонда. Под закачкой находятся 145 скважин, из них 57 переведены под закачку добывающих. Среднесуточный дебит одной скважины по нефти 3,4 т/сут. По жидкости 23,8 т/сут. По сравнению с 1982г. дебит нефти снизился на 11 т/сут. Забойное давление добывающих скважин равно 9,8 МПа. За период с 1982 по 2003 гг. оно снизилось на 0,7 МПа. Пластовое давление за этот период осталось на одном уровне и равно 16,7 МПа.

2.2 Динамика технологических показателей разработки

По состоянию на 1.01.02г. из продуктивных пластов горизонта Д1 Западно-Лениногорской площади отобрано 73,599 млн. т. нефти или 89,7% начальных извлекаемых запасов. Текущий коэффициент нефтеизвлечения равен 0,498. Попутно с нефтью отобрано 156,8 млн. т. воды. Средняя обводненность добываемой продукции за период разработки составила 68,9%. Водонефтяной фактор - 1,76.

В 2002г. с площади отобрано 420 тыс. т. нефти. Темп отбора нефти составил 0,6% начальных и 3,48 от текущих извлекаемых запасов. Попутно с нефтью отобрано 3046 тыс. т. воды. Обводненность добываемой продукции равна 86,8%. Фонд действующих добывающих скважин составил 364, из которых 14 скважин бездействующие. Среднесуточный дебит одной скважины по нефти равен 3,6 т/сут., по жидкости 27,3 т/сут. Годовой водо-нефтяной фактор - 6,6. Среднее пластовое давление в зоне отбора и забойное давление добывающих скважин составляет 16,0 и 9,6 Мпа.

В продуктивные пласты закачано сначала разработки 209298 млн. м3 воды, компенсация отбора жидкости в пластовых условиях составила 109,1%. Фонд нагнетательных скважин на 1.01.02г. равен 155, из которых 21 остановлена по технологическим причинам. Максимальная добыча нефти 3,893 млн. т. была достигнута в 1971г. Добыча в 3-3,9 млн. т. удерживалась в течение 10 лет. Начиная 1972г. наблюдается неуклонное снижение добычи нефти и рост обводненности до 1986г. С 1987г. обводненность снижается. В 1997г. добыча нефти в 8,5 раз меньше по-сравнению с достигнутым максимумом. В настоящее время темп снижения добычи нефти уменьшился и площадь вступила в 4-ю стадию разработки. Максимальный уровень добычи жидкости порядка 8,0 млн. т. удерживался в течение 10 лет, в последние годы быстро снижается.

2.3 Анализ выработки пластов

С момента начала разработки блока отобрано 1959 млн. т. нефти. Это 43,0% начальных геологических и 89,9% извлекаемых запасов. Основная добыча нефти осуществляется в результате дренирования запасов высокопродуктивных неглинистых коллекторов, отбор из глинистых составляет 21%, из малопродуктивных - 4%.

Состояние выработки запасов нефтяных пластов на данном блоке в большинстве случаев лучше, чем на остальных, это практически касается всех пластов по всем категориям коллекторов. Здесь следует отметить высокую степень отработки запасов нефти первой группы неглинистых коллекторов по пластам пачки " б " и пласту " в ". Так, например, по пласту " б1" осталось отобрать 0,3% извлекаемых запасов, по пласту " в " - 1,6%.

По пластам " а ", " б2 ", " б3 " в активную разработку вовлечены запасы нефти, связанные с глинистыми высокопродуктивными коллекторами, о чем свидетельствует относительная величина остаточных извлекаемых запасов. По остальным пластам тенденция явного отставания.

Пласт “а” содержит 13,3 % нефти от НИЗ по площади. С начала разработки по пласту отобрано 71,9% от НИЗ нефти .Введены на нефть скважины 39484, 39485, 39486. Под нагнетание воды освоены скважины 6028в, 39477, 39487.В активную разработку за отчетный год вовлечено 22 тыс. тонны извлекаемых запасов нефти .

Пласт “б1” содержит 10,1 % от НИЗ нефти по площади, накопленный отбор нефти составляет 70,7% от НИЗ нефти по пласту. Введены на нефть скважины 39484, 39486. Под нагнетание воды освоены скважины 39477, 39487. В активную разработку вовлечено 4 тыс. тонны извлекаемых запасов нефти.

Пласт “б2” содержит 12,9% от НИЗ нефти по площади. С начала разработки отобрано 77,8% от извлекаемых запасов по пласту. Введены на нефть скважины 39484, 39486.Освоены под нагнетание воды скважины 6076а, 6304а, 39468, 39487.Дострел пласта произведен в нагнетательной скважине 6025б.В активную разработку за год вовлечено 34 тыс. тонны извлекаемых запасов нефти.

Пласт “б3” содержит 24,1% НИЗ нефти по площади. С начала разработки отобрано 97,1% от НИЗ по пласту. Введена на нефть скважина 39485.В отчетном году под закачку освоены скважины 6076а, 6028в, 6304а, 39468, 39487.Произвели отключение пласта в добывающей скважине 6019б. В активную разработку в течении года введено 24 тыс. тонны извлекаемых запасов нефти.

Пласт “в” содержит 20,6% НИЗ нефти по площади. Накопленный отбор нефти составил 89,8% от запасов по пласту. Под нагнетание воды освоена скважина 6076а. Произвели отключение пласта в добывающей скважине 6149а.

Пласт «г1» содержит 14,9% НИЗ нефти по площади. С начала разработки отобрано 95,9% от извлекаемых запасов нефти по пласту. Введена на нефть скважина 39485.Отключение пласта из-за обводнения произведено в скважинах 6149а, 6144б, 6156а.

Пласт «г2+3» содержит 4,0% от НИЗ нефти по площади. Накопленный отбор составляет 99,8% от запасов по пласту. Произвели отключение пласта в добывающей скважине 6144б. В целом по блоку из 3078 тыс. т. текущих извлекаемых запасов около 50% связана с глинистыми высокопродуктивными коллекторами, более 30% с малопродуктивными. Таким образом, структура запасов сместилась в сторону их существенного ухудшения и, естественно, все технологические решения, в основном должны будут акцентированы на выработку этих запасов.

Остаточные запасы нефти высокопродуктивных неглинистых коллекторов, главным образом, связаны с зонами частичного заводнения и могут быть извлечены известными гидродинамическими методами воздействия на пласт.

Мероприятия по контролю за процессом разработки.

Западно-Лениногорская площадь находится в четвертой стадии разработки. Рост добычи наблюдался до 1967г. В период с 1968 по 1974гг. отбор находился на уровне 3,5 - 3,9 млн. т. в год. Обводненность за этот период поднялась с 18 до 44,1 %. Темп отбора извлекаемых запасов снизился с 5,5 до 4,9 %. Падение отбора связано, в основном, с ростом обводненности. С начала разработки отобрано 80,2 % нефти. Текущая нефтеотдача равна 0,404. Средневзвешенное пластовое давление в целом по пласту равно 16,7 МПа. Добыча жидкости по пласту увеличилась со 196 тыс. т. в 1955г. до 7350 тыс. т. в 2002.С начала разработки закачано 46849 тыс. м3.

На площади выделено 3 блока.. Выделение самостоятельных блоков разработки вызвано различием геологического строения пород пластов, а также необходимостью более детального их изучения с целью выявления особенностей разработки каждого блока.

Различная степень выработки и интенсивности разработки объясняется различным геологическим строением пластов, разной коллекторской характеристикой, различной долей запасов.

Анализ разработки показал, что отбор жидкости на скважинах Западно - Лениногорской площади до 1985г. повышался. Очевидно, увеличение отбора жидкости из - за роста добычи попутной воды в условиях разработки неоднородных пластов с применением заводнения одной сеткой скважин явление закономерное. При прогрессирующем обводнении пластов и скважин без увеличения объемов добычи жидкости невозможно удержать высокие текущие отборы нефти по объекту. Эксплуатация скважин до 98 - 99 % обводнения требует отбора значительных объемов воды, что характерно для поздней стадии разработки.

В начале 80 - х гг. перед добывающей организацией Министерством нефтяной промышленности ставился жесткий повышенный план добычи не только нефти, но и жидкости. Часто в ущерб эффективности отбиралась попутная вода, не участвующая в вытеснении нефти и соответственно в больших объемах закачивалась в пласт, не уделялось также достаточного внимания регулированию отборов нефти и воды из добывающих скважин, закачке воды в пласты.

Результаты разработки ряда площадей Ромашкинского нефтяного месторождения за последние 5 - 6 лет показали, что высокие уровни добычи нефти можно достичь на данном этапе без чрезмерного отбора попутной воды из продуктивных пластов, применяя технологию оптимальной выработки нефтяного пласта. Принципы применяемой технологии оптимальной выработки нефтяного пласта сформулированы Н.Н. Непримеровым. Оптимизируя расстояние и плотность сетки скважин на основе прослушивания межскважинного интервала и разукрупления объектов разработки создается возможность регулирования выработки каждого пласта по площади. Поддерживая пластовое давление на уровне начального (оптимального) и не превышая практического значения депрессии при отборе жидкости и репрессии при нагнетании воды, обеспечивается равномерная отработка пластов по толщине с минимальным обводнением.

На Западно - Лениногорской площади эффективно применяются традиционные способы снижения отбора попутной воды, такие как:

1) Остановка обводненных скважин, достигших минимально рентабельного дебита нефти и высокой обводненности продукции.

2) Отключение из разработки обводненных пластов в скважинах.

3) Проведение работ по изоляции законтурных вод.

4) Применение нестационарного заводнения и изменение направления потоков жидкости в пласте.

Кроме того, переход к применяемому сегодня режиму разработки сопровождается выполнением ряда ГТМ:

1. Увеличение количества ежегодно осваиваемых под закачку воды скважин за счет чего достигнуто уменьшение соотношения действующих добывающих и нагнетательных скважин с 4,0 до 3,0.

2. Разукрупнение эксплуатационных объектов за счет вскрытия в новых скважинах лишь 1 -2 пластов и оптимизации плотности сетки.

3. Широкое внедрение нестационарного заводнения с консервацией КНС в зимнее время и создание более гибкой системы ППД.

В результате всех этих мероприятий были сокращены добыча попутной воды и соответственно закачка воды в пласт почти вдвое, что привело к сокращению энергетических затрат на добычу жидкости и закачку воды в пласты.

Проведенные расчеты показали, что за счет сокращения добычи попутной воды эксплуатационные затраты по площади уменьшились на 2,5 млн. в год. Из вышесказанного можно сделать вывод, что при тщательном регулировании разработки объекта можно избежать большого отбора воды, которая не участвует в вытеснении нефти из пласта.

В связи с достижением поздней стадии разработки большинства месторождений Татарстана в последние годы все большее применение находит форсированный отбор жидкости из высокообводненных скважин. Этот метод является одним из способов уменьшения темпов падения добычи нефти и увеличение выработки запасов нефти из пластов с целью повышения коэффициента нефтеизвлечения.

С целью определения эффективности форсированного отбора жидкости на Западно - Лениногорской площади был проведен анализ форсирования 32 скважин, в которых проводилась поэтапная смена насосов на более производительные, т. е. Происходило последовательное наращивание темпов отбора жидкости. Определенного участка форсированного отбора жидкости по площади нет. Для этих целей использовались высокообводненные скважины. Из рассмотрения были исключены скважины, которые в условиях форсированного отбора работали меньше года.

3. ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

3.1 Условия образования АСПО в скважине

На поздней стадии разработки нефтяных месторождений изменились геолого-технические условия добычи нефти, и расширилась область возможного формирования отложений.

Асфальто-смолопарафиновые отложения (АСПО) в условиях высокой обводненности скважин при низких забойных давлениях образуются в соответствии со следующей теоретической моделью.

Единственным источником возникновения асфальто-смолопарафиновых отложений являются молекулы парафина растворенные в нефти и выстраивающие кристаллическую решетку твердой фазы.

Кристаллы парафина, образующие плотные отложения на поверхности при снижении температуры на ней ниже температуры кристаллизации.

На поздней стадии разработки увеличивается глубина формирования АСПО, что обусловлено интенсивным снижением пластовой температуры за счет большого количества холодной воды, а, следовательно, общем снижении теплового потока.

Например: пластовая температура в начале разработки Ромашкинского месторождения составляла 410С, а максимальное её значение, зафиксированное в 1997 году, равно 330С.

Появление газовой фазы в потоке, с одной стороны увеличивает удельный объём контактирующего со стенками нефтепромыслового оборудования носителя парафина (нефти), улучшая условия для формирования отложений парафина за счет более интенсивной подпитки материалом растущих кристаллов, с другой, повышает турбулизацию потока. Теплоотдача потока при этом резко возрастает, что уменьшает температуру поднимающейся нефти.

В процессе разработки залежей при заводнении состав пластовой нефти значительно изменяется. При контактировании с водой такие компоненты растворенного в нефти газа, как азот и метан, переходят в вытесняющую воду. В результате снижается давление насыщения нефти газом, повышаются плотность и вязкость, а так же относительное содержание высокомолекулярных компонентов в нефти. Наличие асфальто-смолистых веществ в нефти значительно влияет на процесс кристаллизации. В присутствии смол и асфальтенов происходит глубокое изменение формы и структуры кристаллов. Адсорбция асфальто-смолистых веществ на поверхности кристалла приводит к возникновению дендритных структур большого объёма и низкой плотности, свободные полости которых заполнены нефтью. Таким образом, увеличение содержания смолистых веществ в составе нефти изменяет форму и структуру образующихся АСПО. Присутствие воды в добываемой продукции обуславливает проявление факторов, влияющих на формирование данных отложений.

В АСПО содержатся значительные количества механических примесей и воды. Так, по данным ТатНИПИнефти, в 2000-2002 гг. массовое содержание связанной воды в отложениях составило 4-49%, механических примесей до 15 %. Это свидетельствует о значительной несплошности растущих отложений и их замуровывании надстраивающими друзами парафина.

Таким образом, на поздней стадии разработки нефтяных месторождений, характеризуемой высокой обводненностью скважин, значительно изменяются условия и механизм доставки носителя парафина (нефти) в область формирования отложений, а механизм формирования самих отложений не меняется.

3.2 Физико-химические свойства АСПО

АСПО и парафинистые отложения в составе нефтей почти всех НГДУ. В пластовых условиях парафин находится в растворенном состоянии. При снижении температуры, давления и разгазировании нефти парафин выпадает в виде кристаллов на НКТ, глубинном оборудовании и трубопроводах.

Смолисто-асфальтеновые вещества - сложная смесь высокомолекулярных соединений. В нефтях и АСПО эти соединения находятся в коллоидном состоянии.

Иногда содержание смолисто-асфальтеновых веществ достигает до 50 %. Механизм образования АСПО объясняется следующим образом. Вначале зарождаются центры кристаллизации. Затем мельчайшие кристаллы осаждаются на шероховатой поверхности труб, которые контактируют с нефтью.

На последней стадии на парафиновую поверхность осаждаются более крупные кристаллы. Асфальтены выпадают в осадок, обеспечивают высокую прочность и плотность АСПО, а смолы усиливают действие асфальтенов.

АСПО снижают производительность скважин, увеличивают износ оборудования, расход электроэнергии и давление на выкидных линиях.

АСПО и ПО содержатся в составе нефтей почти всех НГДУ. Химический состав АСПО зависит от свойств добываемой нефти, термо- и гидродинамических условий продуктивного пласта, геологических и физических особенностей, способа разработки и эксплуатации залежи. По химическому составу АСПО состоит из парафина, асфальтенов, кислорода, азота, металлов, минеральных веществ в виде растворов солей органических кислот, воды с растворенными в ней солями (хлориды, сульфаты, карбонаты и другие). Парафины - твердые углеводороды метанового ряда (атомов углерода более 18). Температура плавления парафина 52-62 °С.

Смолисто-асфальтеновые вещества - сложная смесь высокомолекулярных соединений. В нефтях и АСПО эти соединения находятся в коллоидном состоянии. Иногда содержание смолисто-асфальтеновых веществ достигает до 50 %. Они имеют большую молекулярную массу и не перегоняются даже с помощью вакуумных установок. Нейтрально химически и термически не устойчивы. При нагревании на воздухе до 100-150°С смолы переходят в асфальтены. Смолисто-асфальтеновые вещества в основном состоят из смол, доля асфальтенов небольшая. Смолы- жидкие или твердые вещества, обладающие высокой пластичностью и вязкостью, имеют бурый или черный цвет, содержат 3-12 % кислорода, серы, азота, 9-11 % водорода. Хорошо растворяются в некоторых органических растворителях. Асфальтены нерастворимые, порошкообразные вещества бурого или черного цвета, плотность больше 1 г/см3. Содержание асфальтенов в нефтях до 20 %, они растворимы в ароматических углеводородах нефти. В асфальтенах содержится 80-86 % углерода, 7-9 % водорода, 9 % серы, 9 % кислорода и 1,5 % азота. При Т>3000, асфальтены превращаются в кокс с выделением газа.

3.3 Характеристика эксплуатационного фонда скважин НГДУ «ЛН»

Рисунок 1. Динамика фонда нефтяных скважин.

Проведенный анализ динамики фонда скважин за последние 4 года показывает (см. гистограмму), что эксплуатационный фонд скважин по НГДУ «ЛН»с 2001 года по 2004 год вырос с 2387 скважин до 2530. При этом происходит уменьшение ввода скважин, оборудованных УЭЦН. Это связано с тем, что по НГДУ ежегодно проводятся геолого-технические мероприятия, направленные на снижение обводненности добываемой продукции. К эти методам относятся закачка в пласты различных изоляционных материалов, таких как НБП, СНПХ9633 и др.

Наряду с снижением обводненности скважин после закачки вышеуказанных реагентов, происходит уменьшение пропускной способности пород. По этой причине производился перевод скважин с ЭЦН на добычу штанговыми насосами. Это и является причиной увеличения фонда скважин, оборудованных УШСН.

Рост бездействующего фонда связано с тем, что до проведения различных мероприятий, не рентабельный фонд скважин останавливается, добыча нефти по этим скважинам временно прекращена.

Таблица 5 Динамика парафинящегося фонда

Наименование

2002г.

2003г.

2004г.

Парафинистый фонд скважин, в том числе ШГН, ЭЦН

657

621

36

682

651

31

250

250

-

Кол-во ремонтов по причине АСПО, в т.ч. ШГН ЭЦН

ЭЦН

145

141

4

140

137

. 3

56

53

. 3

По ЦДНиГ-1 часторемонтируемый фонд скважин в 2004г. составил 7 скв., а в 2003г. их было 19 скв., т.е. количество скважин часторемонтируемого фонда уменьшилось в 2,7 раза, что связано с 96% охватом осложненного фонда средствами борьбы с АСПО.

3.4 Анализ подземных ремонтов скважин, выполняемых по причине АСПО (по ШСН)

Анализ причин ремонтов скважин оборудованных УСШН

Многообразие условий эксплуатации обуславливает различные причины отказов оборудования. Большинство отказов связано с действием эксплуатационных факторов. Их можно разделить на три основные группы: Коррозионное и коррозионно-усталостное разрушение; износ; образование на поверхности оборудования значительных отложений парафинов и солей.

Коррозионное разрушение - одна из распространенных причин отказов оборудования скважин. Они представляют собой самопроизвольный процесс разрушения металла при контакте с пластовой водой. Наиболее интенсивному разрушению подвержены колонны НКТ.

98 % всех обрывов насосных штанг и НКТ происходит в результате коррозионно-усталостного разрушения. Значительному износу подвержены уплотнительные поверхности задвижек, используемые в обвязке устья скважин.

Одна из распространенных причин отказов оборудования скважин эксплуатируемых насосным способом - значительные отложения парафина и солей. Причины подземных ремонтов скважин оборудованных ШСН представлены в таблице 6.

При добыче парафинистой нефти происходит отложение парафина в НКТ. В результате этого сужается поперечное сечение труб, возрастает сопротивление движению жидкости и перемещению колонны штанг, что приводит к обрыву штанг или их заклиниванию. Увеличивается также и нагрузка на головку балансира, нарушается его уравновешенность. В связи с уменьшением проходного сечения уменьшается коэффициент подачи, вплоть до полного прекращения подачи вследствие образования пробок.

Таблица 6 Причины подземных ремонтов скважин оборудованных ШСН по НГДУ "Лениногорскнефть"

Причины ремонта

2000

2001

2002

2003

1

2

3

4

5

6

1

Оптимизация работы скважины

293

324

100

139

2

ППР. Снижение подачи

92

102

146

227

3

Неисправность насоса

12

12

10

8

4

Износ (повреждение) корпуса насоса

4

8

-

20

5

Заклинивание плунжера ШСН

42

29

34

57

6

Износ клапанных узлов ШСН

16

6

9

28

7

Износ колонны НКТ

24

22

23

20

8

Трещина в теле НКТ

57

36

38

25

9

Трещина в муфте НКТ

14

8

7

4

10

Износ резьбы НКТ

12

10

10

13

11

Износ НКТ истиранием

9

6

4

1

12

Отворот штанги

26

17

14

10

13

Обрыв штанги по телу

80

92

75

95

14

Заклинивание зависание штанг

2

39

39

40

15

Износ центраторов

-

9

4

4

16

Наличие водонефтяной эмульсии

12

6

4

8

17

Отложение парафина в насосе

9

25

15

14

18

Отложение парафина на НКТ

118

87

87

83

19

Отлож.солей гипса в насосе, НКТ

26

19

14

52

20

Осыпание стекла

16

22

1

13

21

Отложение прод-в корр. в насосе

9

10

2

8

22

Прочие отлож.на приеме насоса

27

14

14

29

23

Падение на забой оборудования

9

10

-

-

24

Причина не установлена

25

35

17

18

25

Извлечение штанг

63

12

-

15

26

Износ, обрыв полированного штока

37

37

31

20

27

Негерметичность устьевой армат.

77

64

76

62

28

Прочие расхаж и др.б/п

25

39

38

40

29

Итого по ШГН ПРС

1069

837

790

1085

КРС

48

268

219

227

Преждевременные ремонты

303

259

205

293

Кол-во часто ремонтир. скв.

103

118

111

130

Кол-во ремонтов 2 и более

221

267

244

310

Фонд ШГН

1710

1742

1935

1942

МРП

681

715

687

650

Отдельные комки АСПО, попадая под клапаны насоса, могут нарушить их герметичность, что также является одной из причин подземного ремонта.

При подъеме штанг во время ремонта, плунжер или вставной насос срезает парафин со стенок НКТ и образует над собой сплошную парафиновую пробку, которая выталкивает нефть из труб, тем самым загрязняет территорию возле скважины.

Таблица 7. Подземный ремонт, связанный с отложением парафина на ШГН

Наименование

Ед. изм.

2003 г

2004 г

Количество подземных ремонтов по причине отложения парафина в НКТ

шт

68

42

Количество подземных ремонтов по причине отложения парафина в насосе

шт

15

14

Всего:

141

137

Из таблицы 7 видно, что количество подземных ремонтов по причине отложения парафина сократилось незначительно и составило 137 ремонтов.

С целью увеличения МРП - межремонтного периода на промысле проводятся следующие мероприятия.

1. Необходимо проводить анализ часто ремонтируемого фонда скважин и составлять мероприятия с целью его уменьшения.

2. Проводить анализ использования различных методов борьбы с АСПО, для определения наиболее эффективного и экономически выгодного метода.

3. Внедрять скребки, трубы Бугульминского механического завода (БМЗ), штанги с покрытием и т.д., в зависимости от их эффективности.

4. Согласно графика, проводить пропарку устьевой арматуры скважин.

5. В скважинах, с низким Рпл., освоение производит с использованием шкивов.

6. Постоянно производить выводы, после ПРС, о его причине.

3.5 Методы борьбы с АСПО

Наиболее часто АСПО образуются в скважинах имеющих дебиты менее 20 м3/сут. Причем среди осложненных преобладают скважины, имеющие дебит по жидкости до 5 м 3/сут.

К мерам по предотвращению образования АСПО в скважинном оборудовании относятся:

-подбор и установление режима откачки, обеспечивающего оптимальную степень дисперстности водонефтяного потока;

применение скважинных насосов с увеличенным проходным сечением клапанов;

применение НКТ с покрытием;

установка скребков на штангах;

увеличение производительности глубинных насосов, т.е. увеличение скорости подъема жидкости.

Подбор режима откачки предусматривает такие условия, чтобы предотвратить отложения парафина, В ряде случаев эффективно увеличение глубины погружения насоса (увеличение глубины погружения насоса на 100м., увеличивает температуру на приеме насоса на 3-4є С ), однако при этом несколько увеличивается нагрузка на головку балансира , за счет дополнительного веса штанг.

При выборе способа удаления АСПО необходимо иметь ввиду следующее - универсального способа, пригодного для всех условий, до настоящего времени не найдено. Инженерно-технологическая служба НГДУ «ЛН» планирует и осуществляет мероприятия направленные на предотвращение и ликвидацию АСПО с учетом конкретных геолого-физических условий, свойств продукции скважины, состава АСПО, особенностей данной разработки месторождения, наличие тех или иных технических средств, химических реагентов и т.д. Интегральными критериями при выборе метода борьбы с АСПО являются экономические критерии, в частности годовые затраты при использовании данного метода в расчете на одну скважину. Несмотря на отмеченную необходимость индивидуального подхода к конкретным скважинам, все же некоторые обобщенные рекомендации, исходя из накопленного опыта, могут быть сделаны.

Все применяемые методы борьбы с АСПО могут быть сведены в следующие группы методов: механические, химические, физические, применение защитных покрытий

3.5.1 Механические методы

Для категорий скважин, в которых зона отложений начинается выше насоса и состав АСПО преимущественно парафинового типа, наиболее дешевым и технологически эффективным является применение механического метода борьбы с АСПО:

1. Центраторы-депарафинизаторы производства НГДУ «ЛН».

2. Скребки - центраторы производства НГДУ «Иркеннефть».

3. Скребки - центраторы производства НГДУ « Лениногорскнефть».

4. Плавающие скребки производства завода « Радиоприбор»

Центраторы - депарафинизаторы. Предлагаемый способ борьбы с отложениями парафина основан на создании критических скоростей движения нефтяных эмульсий в НКТ. Критические скорости потока создаются за счет заданного кольцевого сечения между стенками НКТ и центратором цилиндрической формы, неподвижно наплавленного на тело штанги. При критической скорости отложения парафина на стенках НКТ и теле штанг не происходит. Центраторы применяются в комплекте с НКТ покрытыми гранулированным стеклом.

Центратор-депарафинизатор выполнен в виде двух соосных конусов с обращенными друг к другу основаниями и цилиндрической вставкой между ними, с расчетными геометрическими размерами. Глубина спуска остеклованных НКТ составляет от устья до 1000 метров, центраторов от устья до 900 метров. Критическая скорость составляет 6 м/сек, при этом сила сцепления парафина с поверхностью труб преодолевается скоростью потока. В настоящее время центраторы-депарафинизаторы в НГДУ «Лениногорскнефть» заменяются на скребки-центраторы, как экономически более выгодные.

Скребки-центраторы.

Обеспечивают очистку насосно - компрессорных труб и штанг от парафина. Скребки различных конструкций изготовляются из полимерных материалов Скребки - центраторы жестко фиксируются на теле штанги,а между ними располагаются подвижные скребки. Подвижные скребки обеспечивают удаление АСПО с тела штанги, а неподвижные - с внутренней поверхности НКТ.

Скребок - центратор имеет двойное назначение. Он выполняет функции скребка и предохраняет от износа систему «труба-штанга-муфта».

При применении скребков - центраторов вместе со штанговращателем достигается предотвращение парафинизации и защита от износа насосных штанг, муфт, НКТ. Косые пазы, выполненные по периметру рабочей поверхности скребка, обеспечивают достаточный проток жидкости.

В НГДУ «Лениногорскнефть» скребки-центраторы испытываются с 1999 года и за это время накоплен значительный опыт их применения. Очистка поверхностей НКТ происходит при возвратно-поступательном и вращательном движении скребка. При этом происходит соскабливание парафина со стенок труб в процессе работы скважины.

В зависимости от типа размеров труб и штанг скребки предлагаются нескольких типов размеров (таблица 8). На одну насосную штангу устанавливают 5-6 скребков, т.е. интервал между двумя соседними скребками-центраторами составляет от 1,4 до 1,6м.

Таблица 8 Зависимость размера скребка от размера трубы и штанги.

Труба

Штанга

Скребок

Усл. диаметр

Наруж диаметр

Внутр диаметр

Толщина стенки.

Диаметр

Наруж Диаметр

Маркировка

мм ,

мм ,

мм ,

мм ,

мм ,

мм ,

73

73

73

73

59

59

7,0

7,0

19

22

56

56

3/4// х2,5// 7/8//x2,5//

В НГДУ «Лениногорскнефть» применяют 6 скребков на одной штанге. Интервал установки должен быть меньше длины хода устьевого штока. Длина колонны штанг, оборудованной скребками -центраторами, колеблется до 1000 м, в зависимости от интервала отложений парафина на стенках НКТ и участков искривления ствола скважины.

Срок службы скребка по паспорту 5-7 лет. Результаты показывают, что применение скребков-центраторов весьма эффективно. Об этом свидетельствуют увеличение дебита, увеличение коэффициента эксплуатации оборудования, увеличение МРП.

Штанги с наплавленными скребками применяют в сочетании со штанговращателем ШВЛ-10 механического действия, выпускаемого ООО Татнефть -РБО по ТУ02-200-003-98.

Штанговращатели ШВЛ-10 обеспечивают медленное поворачивание колонны, штанг и плунжера (на заворот) при возвратно-поступательном движении штока. Штанговращатели применяют при эксплуатации искривленных скважин для предотвращения одностороннего истирания штанг, муфт и плунжера насоса, для предотвращения отворотов штанговых колонн, а также в случаях применения на колонне штанг скребков для очистки колонны НКТ от отложений парафина.

Действие штанговращателя осуществляется за счет возвратно-поступательного движения канатной подвески при соединении рычага штанговращателя канатом (диаметром 6-8 мм) с рамой станка- качалки. Для надежной работы ШВЛ-10 необходимо при монтаже обеспечить такое натяжение каната, соединяющего рычаг штанговращателя с рамой станка-качалки, при котором за один ход устьевого штока соединенный с концом рычага, натягивается и перемещает вверх храповое колесо штанговращателя на один зуб. При движении вниз он ослабляется, а канат натягивается и возвращается в первоначальное положение. Рычаг соединяется канатом диаметром 6-9 мм с рамой станка-качалки.

В процессе эксплуатации храповик, червячную пару и упорный подшипник необходимо периодически смазать (раз в 10 дней) рекомендуемой смазкой (в зимний период - жидкой, а в летний - густой). Наряду с ШВЛ-10 применяют ШВ-2 производства Октябрьского опытно-экспериментального завода геофизической аппаратуры «Альтернатива». Угол поворота колонны штанг за одно качание составляет от 10 до 30 С в зависимости от регулирования. Достоинством конструкции ШВ-2 является то, что все трущиеся узлы расположены внутри заполненного маслом корпуса. Тем самым они защищены от внешних атмосферных воздействий и работают в благоприятных условиях масляной ванны.

При применении механического метода борьбы с АСПО необходимо учитывать возможность проявления в определенных условиях некоторых негативных последствий, обусловленных увеличением напряжений в штангах, в частности возможность роста частоты обрывов и отворотов штанг при длительной работе скважин оборудованных скребками.

Увеличение максимальной и уменьшение минимальной нагрузки приводит к увеличению приведенного напряжения цикла и в ряде случаев запас усталостной прочности может оказаться недостаточным, что приведет к увеличению количества обрывов штанг. Возникновение ощутимого поршневого эффекта обусловлено формированием водонефтяных эмульсий при движении обводненной продукции. Поэтому использование скребков в обводненных скважинах может приводить к росту обрывности штанг. При выборе материала штанг для использования со скребками необходимо ориентироваться на штанги из легированной стали. Для защиты глубинно-насосного оборудования от АСПО малодебитных скважинах, были опробованны сочетание лифтов, остеклованных НКТ по технологии "ТатНИПИнефть" и НГДУ "ЛН", и полуавтоматической установки ПАДУ-3 обеспечивающей очистку лифта скребками.

Очистка лифтовых труб от парафина производится скребком, закрепленным на проволоке. Движение скребка вниз осуществляется под действием силы тяжести скребка и груза. Для облегчения движения скребка при спуске сальник ослабляется, а скребок, двигаясь, уменьшается в поперечном сечении. Подъем скребка, осуществляется за счет тягового усилия лебедки.

Установка ПАДУ-3 работает в полуавтоматическом режиме, для чего предусмотрено тормозное устройство. Подъем скребка производится автоматически с помощью электродвигателя. Результаты СПО скребка заносятся в вахтовый журнал и передаются диспетчеру промысла.

3.5.2 Тепловые методы

Тепловые методы борьбы с АСПО - это периодическая обработка скважин:

1. Промывка горячей нефтью с применением специального агрегата АДП.

2. Прогрев продукции скважины перегретым паром от ППУ

3. Промывка лифта скважины горячей водой с добавлением ПАВ

Главным недостатком 1 и 2 методов является малая зона прогрева, в следствии потерь тепла в окружающую среду, что делает эти методы не эффективными как самостоятельные на поздней стадии разработки месторождения. Таковой и является Западно-Лениногорская площадь. В тоже время эти методы имеют ограниченное применение в комбинации с механическими или химическими методами.

Экспериментальные исследования и расчеты распределения температуры по стволу скважины при проведении горячей промывки при помощи АДП показывают, что при глубине спуска насоса, равной 1200 метров, температура, необходимая для расплавления парафина (30-400С) достигает глубины 400-450 метров. Особенно затруднена промывка через насосы малого диаметра (28-32 мм) из-за малого проходного сечения в клапанных узлах.


Подобные документы

  • Общая характеристика Западно–Лениногорской площади, коллекторские свойства тектонических пластов. Физико-химические свойства нефти, газа и пластовой воды. Конструкция скважин и методика ее разработки. Состав и условия образования АСПО на оборудовании.

    дипломная работа [566,8 K], добавлен 28.06.2010

  • Орогидрография Самотлорского нефтяного месторождения. Тектоника и стратиграфия. Коллекторские свойства продуктивных пластов. Свойства нефти, газа и воды в пластовых условиях. Технология добычи нефти. Методы борьбы с осложнениями, применяемые в ОАО "СНГ".

    курсовая работа [1,2 M], добавлен 25.09.2013

  • Характеристика геологического строения нефтяного месторождения. Коллекторские свойства продуктивных пластов и их неоднородность. Физико-химические свойства пластовых флюидов, нефти, газа и воды. Основы разработки низкопродуктивных глинистых коллекторов.

    отчет по практике [293,0 K], добавлен 30.09.2014

  • Характеристика Ромашкинского месторождения: орогидрография, стратиграфия, тектоника. Коллекторские свойства продуктивных горизонтов. Физико-химические свойства нефти, газа и пластовой воды. Причины низкой продуктивности скважин и пути их разрешения.

    дипломная работа [76,5 K], добавлен 25.06.2010

  • Коллекторские свойства продуктивных горизонтов. Физико-химические свойства пластовых флюидов. Краткая технико-эксплуатационная характеристика фонда скважин. Классификация современных методов повышения нефтеотдачи пластов. Расчет промывки забоя скважины.

    курсовая работа [1,4 M], добавлен 19.05.2011

  • Характеристика геологического строения эксплуатационного объекта. Коллекторские свойства пластов. Физико-химические свойства пластовых флюидов. Природный режим залежи. Методы, улучшающие условия фильтрации за счёт первичного и вторичного вскрытия пласта.

    курсовая работа [59,4 K], добавлен 25.06.2010

  • Геолого-физическая характеристика Ромашкинского месторождения НГДУ "ЛН". Коллекторские свойства продуктивных пластов, пластовых флюидов. Анализ фонда скважин, текущих дебитов и обводненности. Применяемые горизонтальные технологии на объекте разработки.

    дипломная работа [1,3 M], добавлен 02.06.2010

  • Рассмотрение основ разработки нефтегазовых месторождений. Характеристика продуктивных пластов и строения залежей; состав и свойства нефти, газа и воды. Утверждение технологических решений разработки; сравнение проектных и фактических показателей.

    курсовая работа [4,4 M], добавлен 03.10.2014

  • Сведения о Западно-Коммунарском месторождении. Коллекторские свойства пласта. Физико-химические свойства нефти, газа и воды. Подсчет запасов нефти и газа. Характеристика системы воздействия на пласт. Определение эффективности разработки нефтяных залежей.

    курсовая работа [273,2 K], добавлен 23.10.2013

  • Коллекторские свойства продуктивных горизонтов. Особенности конструкции скважины. Физико-химические свойства нефти, газа и пластовой воды. Определение места притока вод в скважину. Требования, предъявляемые к подготовке скважины перед закачкой СНПХ-9633.

    дипломная работа [287,2 K], добавлен 25.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.