Особенности циркуляции воды в Мировом океане

Океанические течения - основное планетарное явление природы. Существующие во всех трех океанах субтропические антициклонические круговороты, в которых переносится основная масса воды - оно из главных звеньев в климатообразующей системе планеты Земля.

Рубрика География и экономическая география
Вид статья
Язык русский
Дата добавления 01.05.2017
Размер файла 18,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Циркуляция вод Мирового океана или океанические течения - планетарное явление природы. Огромные массы воды постоянно переносятся на многие тысячи километров. Но здесь не стабильное постоянство речных потоков - морские течения могут расширяться и ослабевать, менять свое «русло» и даже поворачивать вспять. Теплые воды в западных частях океанов направляются к полюсам и, подобно водной отопительной системе, обогревают высокие широты Земли, а на востоке возвращаются к экватору охлажденными. В этом огромном круговороте занято громадное количество воды. Только один Гольфстрим переносит ее в 50-70 раз больше, чем все реки Земли.

При первом знакомстве с картиной течений на поверхности океана выявляются самые характерные черты: несмотря на различие в конфигурации материков и рельефе дна всех трех самых больших океанов - Атлантического, Тихого и Индийского, - картина движения в них почти одинакова.

Существуют замкнутые вращающие системы течений, которые океанологи называют круговоротами. Некоторые из них вытянуты в длинные узкие эллипсы, но вращение остается важнейшим их признаком. Отдельные части круговоротов, имеющие четко выраженное направление (меридиональное - вдоль меридианов или зональное - вдоль параллелей), называются ветвями, хотя по виду они скорее напоминают сегменты. Вращение по часовой стрелке (в северном полушарии) называют антициклоническим, по часовой - циклоническим.

Главное звено в «отопительной системе» Земли - это существующие во всех трех океанах планетарные субтропические антициклонические круговороты, в которых переносится основная масса воды. Круговороты умеренных и высоких широт имеют циклоническое вращение. Они четко выражены в северной части океанов, особенно Атлантического, и намного слабее субтропических.

Сведения о течениях в Северном Ледовитом океане получены, главным образом, благодаря советским полярным экспедициям и основываются на наблюдениях за дрейфом арктических льдов.

Наиболее динамичной в океане является зона экватора и тропиков. Система экваториальных течений во многом определяет движение в толще океана и в атмосфере на других широтах. Это настоящая «кухня погоды».

Со времен Колумба известно, что пассатные ветры в тропиках возбуждают мощные пассатные течения, а между северными и южными пассатами располагается полоса штилей и слабых ветров. В зоне слабых ветров находится Экваториальное или Межпассатное противотечение, идущее навстречу двум своим соседям на севере (Северному пассатному) и на юге (Южному пассатному).

В Индийском океане система экваториальных течений, сдвинутая к югу от экватора, испытывает сильное влияние муссонных ветров. Зимой (ноябрь- март), когда дует северо-восточный муссон, экваториальная система «работает правильно»: как и в других океанах здесь образуются пассатные течения и противотечение. Только Сомалийское течение (аналог Гольфстрима и Куросио) ведет себя необычно, широкой полосой двигаясь на юг. Летом (июнь-сентябрь), когда дует юго-западный муссон, Экваториальное противотечение исчезает, а Сомалийское узкой струей, более быстрой, чем Гольфстрим, устремляется на север, формируя на своей западной периферии мощный подъем на поверхность холодных глубинных вод (апвеллинг).

В экваториальной зоне в 60-у годы обнаружены подповерхностные глубинные противотечения, тесно связанные со всей системой течений у экватора. Это течения Михаила Ломоносова в Атлантическом, Таунсенда Кромвелла в Тихом и Бориса Тареева в Индийском океанах.

Наконец, вся система планетарных круговоротов на юге связывается воедино самым мощным в Мировом океане Антарктическим циркумполярным течением (старое название - течение Западных Ветров).

Таким образом, наиболее существенными элементами циркуляции вод на поверхности Мирового океана являются субтропические круговороты и экваториальные противотечения. Круговороты умеренных широт менее стабильны и значительно меньше по размерам. Системы поверхностных течений удивительно похожи в своих основных чертах и отличаются лишь деталями.

Общая циркуляция Мирового океана формируется различными силами:

§ первичными, которые вызывают и поддерживают циркуляцию и которые, в свою очередь, можно подразделить на внешние и внутренние;

§ вторичными, воздействующими лишь на уже существующее движение.

Источники внешних сил лежат вне океана. К ним относятся: касательное (тангенциальное) напряжение ветра на морскую поверхность, которое играет главную роль в формировании поверхностных течений, воздействие неравномерно распределенного над океаном атмосферного давления и приливообразующие силы. Последние вызывают только периодические движения воды, связанные с приливными колебаниями, и поэтому обычно не рассматриваются. Действие неравномерного распределения атмосферного давления сводится к тому, что повышенное атмосферное давление приводит к понижению уровня океана, а понижение - к повышению, а в целом ведет к интенсификации циркуляции, вызываемой ветром.

Внутренние силы связаны с неравномерным распределением массы или плотности в самом океане. Неравномерное распределение плотности обусловлено неодинаковыми по интенсивности процессами нагревания и охлаждения, осадков и испарения на акватории океана. Таким образом, поддержание этих сил зависит, прежде всего, от процессов, происходящих на поверхности моря. Эти силы еще называют термохалинными, -"термо" указывает на связь с температурой воды, а "халина" - на связь с соленостью. Неравномерное распределение плотности приводит к возникновению горизонтальных градиентов давления в толще океана, под действием которых вода приходит в движение.

Взаимодействие первичных и вторичных сил в возникновении и поддержании океанской циркуляции изучено еще не достаточно и остается одной из важных задач океанологии.

Вместе с движением возникают вторичные силы, которые отсутствуют в неподвижной воде. Это отклоняющая сила вращения Земли, силы трения и центробежные силы.

Ускорение, которое испытывает масса в своем движении относительно вращающейся Земли, соответствует силе Кориолиса, названной по имени французского физика Кориолиса, нашедшего для нее в 1835 году математическое выражение. Обычно учитывается лишь горизонтальная составляющая силы Кориолиса. Она всегда направлена перпендикулярно движению, причем если смотреть по направлению течения, то в северном полушарии вправо, в южном полушарии влево.

Отклоняющая сила вращения Земли или сила Кориолиса, определяется формулой:

К=2щсvsin ц,

океанический круговорот субтропический антициклонический

где:

щ - угловая скорость вращения Земли,

v - скорость течения,

ц - широта места,

с - плотность морской воды.

Поскольку угловая скорость вращения Земли всюду одинакова, то горизонтальная составляющая силы Кориолиса зависит только от скорости течения и широты. При одинаковой скорости течения в полярных областях эта сила достигает наибольшего значения, а на экваторе обращается в нуль. В том случае, когда горизонтальные градиенты давления, обусловленные ветровыми наклонами поверхности и неоднородностью поля плотности, т.е. действием первичных сил, уравновешены силой Кориолиса, движение называют геострофическим. Особенностью геострофических течений является то, что вода в них движется не вниз по уклону уровня (направлению градиента давления), а перпендикулярно к нему, поскольку сила Кориолиса отклоняет течения на 90 от направления действующей силы. Поэтому геострофические течения текут не от области высокого к области низкого давления, а параллельно линиям постоянного давления - изобарам. Поскольку крупные океанические течения являются геострофическими, то центры крупномасштабных круговоротов воды представляют собой области высокого и низкого давления, а течения обтекают их. Используя терминологию метеорологов, в области высокого давления формируется антициклоническая циркуляция, а в области низкого - циклоническая. Антициклоническая циркуляция в северном полушарии направлена по часовой стрелке, а в южном полушарии - против.

В настоящее время сложилось представление, что в главных чертах движение основной толщи океана находится в геострофическом равновесии. Исключение составляют сравнительно тонкие поверхностные и придонные слои, - так называемые слои трения, для которых необходимо учитывать силы трения. Силы трения возникают как между движущимися с различной скоростью слоями воды (внутренняя турбулентная вязкость), так и в поверхностном и придонном слоях. Силы трения приводят к замедлению движения, т.е. они всегда направлены против движения.

Рассмотрим, как действует сила трения в поверхностном слое. Под действием тангенциального (касательного) напряжения ветра вода в поверхностном слое приходит в движение, но сила Кориолиса отклоняет движение вправо от направления ветра (в северном полушарии). Благодаря трению поверхностный слой действует на слой, лежащий ниже, который приходит в движение, еще более отклоняясь вправо. По мере увеличения глубины сила трения несколько уменьшается, при этом изменяется не только направление движения, но и его скорость. В конечном итоге вектор скорости с глубиной будет описывать спираль, названную именем шведского океанографа В.Экмана, впервые описавшим это явление. На некоторой глубине и течение, и силы трения, связанные с ним, становятся пренебрежительно малыми. Весь слой воды над этой глубиной, т.е. слой, в котором трение играет существенную роль, называется экмановскими слоем. В этом слое направление поверхностного потока отклоняется от направления ветра на угол 450, а на некоторой глубине становится противоположным вектору на поверхности. Подсчитано, что на этой глубине величина скорости составляет 1/23 поверхностной. Средняя толщина экмановского слоя в океане составляет около 100 м.

При криволинейных движениях с малыми радиусами кривизны появляются центробежные силы. Поскольку радиусы кривизны течений в океане и морях велики, эти силы, как правило, не учитываются.

Таким образом, общую циркуляцию вод Мирового океана вызывают климатические факторы. Касательное напряжение ветра и неравномерно распределенное над океаном атмосферное давление не воздействуют на изменение свойств морской воды, но вызывают движение. Термохалинные силы, действуя на поверхности, формируют основные свойства главнейших водных масс, которые из-за различий в своей плотности вовлекаются в циркуляцию.

Следует отметить еще два фактора, влияющие на форму элементов общей циркуляции Мирового океана - очертания отдельных океанов и рельеф дна. Эффект географического положения океана сводится к тому, что оно либо благоприятствует движению того или иного масштаба, либо препятствует. Наиболее ярким примером влияния очертания береговой линии могут служить океанические круговороты, - почти замкнутые циркуляции водных масс от материка до материка. Рельеф дна в значительной степени влияет на глубинную и придонную циркуляцию.

Вертикальные движения масс воды при исследовании морских течений обычно не учитываются.

Течения характеризуются тремя параметрами: направлением, скоростью и расходом.

Направление течения измеряется в градусах и указывает, куда перемещается поток воды. Скорость течения измеряется в м/с или в узлах (1 узел = 0.5144 м/с или 1 морская миля (1852 м) в час). Расход - в кубических метрах в секунду или свердрупах (1 св = 1 млн. м3 сек -1).

По физической природе общую циркуляцию океанских вод можно разделить на ветровую и термохалинную.

Действие ветра на поверхность океана представляет собой важнейший механический фактор циркуляции вод. Благодаря этому фактору океан получает количество движения непосредственно от атмосферы. Течения, вызываемые действием напряжением ветра, подразделяются на дрейфовые и градиентные.

Дрейфовые течения развиваются в верхнем тонком слое океана под непосредственным влекущим действием ветра.

Градиентные течения обусловлены горизонтальными градиентами давления, возникающими в результате формирования ветрового рельефа поверхности океана.

Результирующие движения, включающие дрейфовые и градиентные течения, представляют собой ветровую циркуляцию.

Термохалинная циркуляция обусловлена неравномерным полем плотности, а, следовательно, и давления в океане. Наибольший вклад в формирование термохалинной циркуляции вносят термические процессы - нагревание и охлаждение вод океана.

По пространственным и временным масштабам все многообразие движения вод в Мировом океане подразделяется на микро,- мезо - и макромасштабные движения.

К группе микромасштабных движений относится океанская турбулентность с временным периодом от менее секунды и до десятков секунд и размерами от миллиметров до сотен метров.

К мезомасштабным - океанские вихри с периодом от минут до месяцев и размерами от сотен метров до сотен километров.

Наконец, макромасштабные движения имеют период до сотен лет и размеры тысячи километров. Движения меньших масштабов выступают в океане в качестве внутреннего механизма движений больших масштабов. С макромасштабными системами в океане связаны макроциркуляционные круговороты, которые отличаются устойчивостью и своим постоянством, т.е. качественные особенности остаются неизменными во времени и пространстве.

Отдельные звенья макромасштабных циркуляционных систем круговоротов Мирового океана представляют течения. Течениями в Мировом океане называются поступательные движения масс воды. Они характеризуются направлением, скоростью и расходом. Выделяют зональные течения, направление которых близко к восточному или западному. Характерным зональным течением является Антарктическое циркумполярное (АЦТ). Меридиональные течения, направление которых близко к северному, либо южному, связывают зональные в единую систему и, в свою очередь, подразделяются на западные пограничные и восточные пограничные. Отдельные течения в горизонтальной плоскости называют противотечениями, направление которых противоположно соседним течениям, а в вертикальной плоскости - подповерхностными или глубинными противотечениями. В особый тип выделяются экваториальные течения, приуроченные к узкой экваториальной полосе.

По временным изменениям направления выделяют постоянные течения, изменение направления у которых не выходит за пределы 90, и переменные течения, направление у которых изменяется на противоположное. В системе макромасштабных круговоротов большинство течении можно отнести к постоянным. Муссонные течения северной части Индийского океана являются примерами переменных течений.

Течения, которые не изменяются во времени, называют установившимися, а течения, которые изменяются во времени - неустановившимися.

По характеру переносимых океанологических характеристик различают теплые и холодные течения. Под холодными течениями понимают потоки, переносящие холодную воду в более теплую окружающую среду (течения, направленные от полюсов к экватору). Под теплыми течениями понимают потоки, переносящие теплую воду в более холодную окружающую среду (течения, направленные от экватора к полюсам).

По характеру движения выделяют меандрирующие, прямолинейные, циклонические и антициклонические течения. Меандрирующие - это течения, в которых существуют непрерывные волнообразные изгибы основного потока (например, меандры Гольфстрима). 0ни связаны, как правило, с гидродинамической неустойчивостью самого течения и влиянием рельефа дна. К прямолинейным течениям можно отнести пассатные течения. Циклонические течения - это круговые потоки, направленные в северном полушарии против часовой стрелки, а в южном полушарии - по часовой. Если круговые потоки в северном полушарии направлены по часовой стрелке, а в южном - против, то такие течения называются антициклоническими.

Важнейшие характеристики течений представляют скорость и расход. В зависимости от этих параметров в океане различают узкие быстрые струйные течения (западные пограничные, экваториальные) и широкие медленные (восточные пограничные). Так, например, Куросио - узкое быстрое струйное течение, относящееся к западным пограничным, и переносящее теплую воду от экватора к северному полюсу.

Основной классификацией в теории течений является генетическая классификация, т.е. классификация по факторам или силам, вызывающим морские течения. В соответствии с ними различают:

1. Градиентные течения, обусловленные горизонтальным градиентом гидростатического давления, возникающим при наклоне поверхности моря относительно изопотенциальной поверхности, то есть поверхности, где сила тяжести везде перпендикулярна.

В зависимости от причин, создающих наклон поверхности моря, в группе градиентных течений выделяют:

а) Сгонно-нагонные течения, обусловленные сгоном и нагоном вод под действием ветра;

б) Бароградиентные, связанные с изменениями атмосферного давления;

в) Стоковые, вызванные повышениями уровня у берегов и в устьевых участках рек береговым стоком;

г) Плотностные (конвекционные), обусловленные горизонтальным градиентом плотности воды.

2. Ветровые, обусловленные совместным воздействием влекущего действия ветра и наклона уровня, вызванного непосредственным действием ветра и перераспределением плотности, и дрейфовые, обусловленные только влекущим действием ветра.

3. Приливные, вызванные приливными волнами.

Размещено на Allbest.ru


Подобные документы

  • Круговорот воды в природе. Географическое распределение осадков. Временные циклы доступности воды. Основные подземные и поверхностные источники. Потребление воды, ее качество. Использование воды в сельском хозяйстве. Дефицит воды и его преодоление.

    реферат [28,2 K], добавлен 13.04.2010

  • Географическое положение и история исследования материка. Рельеф и полезные ископаемые. Климат и внутренние воды. Природные зоны Северной Америки. Крайние точки материка. Нефтегазоносный бассейн Мексиканского залива. Океанические течения и температура.

    презентация [415,4 K], добавлен 01.03.2013

  • Происхождение и эволюция атмосферы Земли. Состав газов атмосферы на ранних этапах развития планеты. Присутствие воды на поверхности Земли. Образование подводного рельефа. Адиабатические температурные изменения. Свойства жидкости: атмосфера и вода.

    реферат [26,4 K], добавлен 11.05.2010

  • Влияние притяжения Луны и Солнца на периодические поднятия, опускания поверхности морей, океанов – приливы, отливы. Приливо-отливные течения в морях, океанах. Экологическая характеристика, социальное значение приливных электростанций, приливная энергия.

    реферат [415,3 K], добавлен 30.11.2010

  • Ежегодный возобновляемый речной сток России. Главная причина дефицита воды на Урале. Значение рек в развитии хозяйства и природы. Основные факторы, от которых зависит густота речной сети. Падение, уклон и режим питания реки. Сущность понятия "наводнение".

    презентация [942,8 K], добавлен 12.12.2011

  • Суммарные запасы всех видов пресных вод суши на земном шаре. Антарктида – самая большая "копилка" пресной воды. Средняя мощность льда Антарктиды. Перспективы использования ледников в качестве резерва пресной воды. Самый крупный океанский айсберг.

    презентация [1,3 M], добавлен 23.02.2015

  • Течения Мирового океана. Механизм возникновения системы течений Гольфстрим. Схема циркуляции и движение течения. Скорость и температура течения, их изменение. Влияние системы на географическую оболочку. Возможное развитие изменений в системе течений.

    курсовая работа [1,4 M], добавлен 05.03.2012

  • Современная гидрологическая сеть материка, объем годового стока. Воды бассейна Индийского океана, крупнейшие озера. Бассейны рек Атлантического океана. Источники и режим питания рек. Характеристика озер Африки, их основное хозяйственное значение.

    презентация [1,5 M], добавлен 27.11.2013

  • Процесс образования осадочных пород в мировом океане. Роль климата, рельефа, морских животных и растительных организмов в формировании осадков. Характер жизнедеятельности организмов и их распределение в водах Мирового океана. Развитие биосферы Земли.

    контрольная работа [632,9 K], добавлен 07.02.2011

  • Роль Мирового океана в жизни Земли. Влияние океана на климат, почву, растительный и животный мир суши. Характерные свойства воды — соленость и температура. Процесс образования льда. Особенности энергии волн, приливно-отливных движений воды, течений.

    презентация [2,5 M], добавлен 25.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.