Сравнительная характеристика оледенений Северной и Южной Америки

Условия формирования ледников. Типы оледенений и ледниковые районы: причины движения ледников. Экзарационный рельеф, созданный покровными и долинными ледниками. Последствия плейстоценового оледенения. Оледенение Северной и Южной Америки и его особенность.

Рубрика География и экономическая география
Вид курсовая работа
Язык русский
Дата добавления 17.03.2015
Размер файла 13,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

21

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Курсовая работа

Тема: «Сравнительная характеристика оледенений Северной и Южной Америки»

Содержание

1. Оледенение Северной Америки

2. Условия формирования ледников

3. Типы оледенений и ледниковые районы

3.1 Причины движения ледников

3.2 Экзарационный рельеф, созданный покровными ледниками

3.3 Экзарационный рельеф, созданный долинными ледниками

3.4 Последствия плейстоценового оледенения

3.5 Другая гипотеза связана с изменением солнечной радиации

4. Оледенение Южной Америки

4.1 Условия формирования оледенения

4.2 Ледниковые районы

5. Сравнительная характеристика оледенений Северной и Южной Америки

5.1 Черты сходства и различия

Заключение

1. Оледенение Северной Америки

Северную и Южную Америку вместе с прилегающими островами по традиции объединяют в одну чась света, называемую Америкой. Но по природным условиям эти материки представляют собой два совершенно различных мира, что обусловлено различиями в географическом положении и в истории их развития.

Положение во всех широтах севверного полушария и большая амплитуда высот создают разнообразие ландшафтов в Северной Америке.

Продольное простирание гор и равнин предопределяет развитие меридионального воздухообмена, ограничивает влияние океанов, создаёт значительные атмосферные контрасты, обуславливает своеобразное проявление географической зональности.

По географическому положению и особенностям развития Северная Америка имеет много общего с Евразией, но в то же время обладает свойственными только ей неповторимыми географическими особенностями.

ледник экзарационный плейстоценовой америка

2. Условия формирования ледников

У юго - восточных берегов Северной Америки формируется величайшая в мире система тёплых течений. Ветвь Северного Пассатного течения проникает через Карибское море и Юкатанский пролив в Мексиканский залив.

Сточное течение из Мексиканского залива огибает Кубу и выходит через Флоридский пролив под названием Гольфстрим.

Гольфстрим проходит вдоль края материковой отмели примерно до параллели 360 с.ш. У мыса Хаттерас Гольфстрим, отклоняясь под влиянием вращения Земли, поворачивает на восток, огибая восточный край Ньюфаундлендской банки, и уходит к берегам Европы под названием Северо - Атлантического течения. При выходе из Флоридского пролива ширина Гольфстрима достигает 75 км; глубина - 700 м, а скорость течения - от 6 до 10 км в час. Средняя годовая температура воды на поверхности +260С.У мыса Хаттерас ширина течения увеличивается в три раза, а расход составляет 82 млн. м3/с, т. е. в 60 раз превышает расход всех рек Земли.

В районе острова Ньюфаундленд навстречу Гольфстриму движутся холодные воды Лабрадорского течения, оттесняющие от берегов материкатеплые воды. Зимой его воды бывают на 5 - 80 холоднее Гольфстрима, образуя так называемую “холодную стену”. Весь год температура поверхностных вод Лабрадорского течения не превышает +100С. Холодное течение примерно до 430с.ш.приносит с севера Айсберги и морской лёд, что в сочетании с характерными для этой части океана туманами представляет большую опасность для судоходства. С другой стороны, схождение теплых и холодных вод способтвует развитию микроорганизмов в верхнем слое воды и, следовательно, обилию фауны раб.

Проливы между островами и Гудзонов залив большую часть года забиты льдом, даже в летнее время там свирепствуют снежные штормы и бывают густые туманы.

У берегов Северо - Западной Канады и Южной Аляски есть Аляскинское течение. Его скорость 1-2 км/ч, температура воды в феврале от + 2 до + 70С, что препятствует замерзанию прибрежных вод Северной Канады и Аляски.

От 400 с.ш. на юг направляется мощный поток холодного Калифорнийского течения, которое вызываеит в субтропических широтах летом снижение температуры воды на поверхности океаноокеана океана од +120С.

Калифорнийское течение оказывает очень большое влияние на природные условия Тихоокеанского побережья Северной Америки в тропических и субтропических широтах.

Оледенение Северной Америки, начавшееся ещё в неогене в Гренландии, получило большое распостранение с начала плейстоцена. Распостраняясь из двух центров (с Лабрадора и из Кордильер), ледники в периуд максимального оледенения покрывали весь материк до 400 с.ш., т.е. около 65% его площади.

Относительно большее по сравнению с Евразией оледенение Северной Америки связано с большей увлажнённостью внутренних районов. В северной половине материка оставалась непокрытой льдами северная часть Аляски, уже тогда обладавшая континентальным климатом, а также запад Канадского архипелага.

Как и в Евразии, в Северной Америки льды наступали и отступали неоднократно, причём последнее, висконсинское оледенение закончилось примерно 10 - 15 тыс. лет назад. Оледенение Уничтожило почвенно - растительный покров на огромной территории. Во время оледенения сток был направлен на юг. В период последнего оледенения уровень океана был значительно ниже современного, заливы и проливы на севере и юге материка представляли собой сушу. Сухие в товремя участки Берингова и Чукотского морей соединяли Америку и Евразию, по ним на материк проникли не только многие растения и животные, но и, как считалось долгое время, люди - предки коренного населения Америки - индейцев. В настоящее время появились данные, указывающие на более раннее заселение Америки человеком.

Оледенение, как и в Евразии, оказало большое влияние на рельеф. Внутренняя часть области оледенения, совпадающая примерно с границами Канадского щита, была расположена в близи центров оледенений и непосредственно между ними; в настоящее время она характеризуется преобладанием форм ледникового сноса. Периферическая часть области оледенения отличается распространением рзличных типов ледниково - аккумулятивного рельефа. Для внеледниковой области Северной Америки характерны накопления зандровых песков и лёссовых отложений.

Большое влияние на рельеф горных систем оказало горное оледенение. Особенно большой мощности оно достигло в Каскадных горах, Сьерра-Неваде и некоторых частях Скалистых гор, где существовали огромные Альпийские ледники, выходившие местами на соседниеи равнины или обрывавшиеся к морю. На внутренних плато юга Канады и севера США распологались фирновые купола, дававшие начало многочисленным долинным ледникам.

Самая древняя часть материка - ядро континентальной Североамериканской плиты - Канадский кристаллический щит, которому в рельефе соответствует цокольная Лаврентийская возвышенность с высотами 500 - 700 м. в местах наибольшего поднятия и 100 - 200 м. - на относительно опущенных участках. Для неё характерны такжемногочисленные озёра - результат тектонических процессов и деятельности ледников, а также ледниково - экзарационные и ледниково - аккамулятивные формы.

В Гренландии и на островах Канадского архипелага цокольные равнины щита находятся под толщей материковых льдов и частично опущены ниже уровня океана.

В северной половине поверхность осложнена ледниково - аккамулятивными формами.

В южной половине для морфоструктуры характерно преобладание эрозионных форм с очень большой густой речной и овражной сети.

Северная Америка вместе с принадлежащими ей островами лежит между 83 и 70 с.ш, т.е. пересекает с севера на юг все климатические пояса северного полушария, за исключениемэкваториального. Годовые суммы солнечной радиации изменяются от 180 ккал/см2 на юго - западе до 80 ккал/см2 в северной части Канады. Приэтом зимний радиационный баланс поверхности материка положителен только к югу от 400 с.ш., на большей части Северной Америки он отрицателен.

Большая часть материка относится к областям, где главная роль в питании рек и озёр принадлежит снегам и ледникам.

В умеренных широтах ледники концентрируются обычно целыми группами.

3. Типы оледенения и ледниковые районы

Ледники существуют всюду, где темпы аккумуляции снега значительно превышают темпы абляции (таяния и испарения). Ключ к пониманию механизма формирования ледников дает изучение высокогорных снежников. Свежевыпавший снег состоит из тонких таблитчатых гексагональных кристаллов, многие из которых имеют изящную кружевную или решетчатую форму. Пушистые снежинки, которые падают на многолетние снежники, в результате таяния и вторичного замерзания превращаются в зернистые кристаллы ледяной породы, называемой фирном. Эти зерна в диаметре могут достигать 3 мм и более. Слой фирна имеет сходство со смерзшимся гравием. Со временем по мере накопления снега и фирна нижние слои последнего уплотняются и трансформируются в твердый кристаллический лед. Постепенно мощность льда увеличивается до тех пор, пока лед не приходит в движение и не образуется ледник. Скорость такого преобразования снега в ледник зависит главным образом от того, насколько темпы аккумуляции снега превышают темпы его абляции.

Движение ледников наблюдаемое в природе, заметно отличается от течения жидких или вязких веществ (например, смолы).

В действительности это скорее похоже на текучесть металлов или горных пород по многочисленным крохотным плоскостям скольжения вдоль плоскостей кристаллической решетки или по спайности (плоскостям кливажа), параллельной основанию гексагональных кристаллов льда.

3.1 Причины движения ледников

На этот счет было выдвинуто много теорий, но ни одна из них не принята гляциологами как единственно верная, и, вероятно, существует несколько взаимосвязанных причин. Сила тяжести является важным фактором, но отнюдь не единственным. В противном случае ледники быстрее двигались бы зимой, когда они несут дополнительную нагрузку в виде снега. Однако на самом деле они быстрее движутся летом. Таяние и повторное замерзание кристаллов льда в леднике, возможно, тоже способствуют движению благодаря силам расширения, возникающим в результате этих процессов.

Все крупные ледники испещрены многочисленными трещинами, в том числе открытыми. Их размеры зависят от параметров самого ледника. Встречаются трещины глубиной до 60 м и длиной в десятки метров. Они могут быть как продольными, т.е. параллельными направлению движения, так и поперечными, идущими вкрест этому направлению. Поперечные трещины гораздо более многочисленны.

Реже встречаются радиальные трещины, обнаруженные в распластывающихся предгорных ледниках, и краевые трещины, приуроченные к концам долинных ледников. Продольные, радиальные и краевые трещины, по-видимому, образовались вследствие напряжений, возникающих в результате трения или растекания льда. Поперечные трещины - вероятно, результат движения льда по неровному ложу.

Особый тип трещин - бергшрунд - типичен для каров, приуроченных к верховьям долинных ледников. Это крупные трещины, возникающие при выходе ледника из фирнового бассейна.

Трещины также способствуют таянию и испарению ледникового льда и играют важную роль в формировании камов, котловин и других форм рельефа в краевых зонах крупных ледников.

Талые воды, попадая глубоко в трещины и замерзая там, расширяются, что может ускорить движение ледника летом. Кроме того, талые воды у ложа и бортов ледника уменьшают трение и таким образом способствуют движению. В некоторых случаях движение льда прекращается, и образуется мертвый лед. Многие ледники продвигаются на некоторое расстояние в океаны или крупные озера, а затем образуют фронт от льда, где происходит откол айсбергов.

Независимо от причин, приводящих ледники в движение, его характер и результаты имеют некоторые интересные последствия. Во многих моренах встречаются хорошо отполированные только с одной стороны ледниковые валуны, причем на полированной поверхности иногда видна глубокая штриховка, ориентированная только в одном направлении. Все это свидетельствует о том, что, когда ледник двигался по скальному ложу, валуны были крепко зажаты в одном положении. Случается, что валуны переносятся ледниками вверх по склону. Вдоль восточного уступа Скалистых гор в пров. Альберта (Канада) есть валуны, перенесенные более чем на 1000 км к западу и в настоящее время находящиеся на 1250 м выше места отрыва. Были ли приморожены к ложу придонные слои ледника, двигавшегося к западу и вверх к подножью Скалистых гор, пока не ясно. Более вероятно, что происходило повторное скалывание, осложненное надвигами. По мнению большинства гляциологов, в фронтальной зоне поверхность ледника всегда имеет уклон по направлению движения льда. Если это действительно так, то в приведенном примере мощность ледникового покрова превышала 1250 м на протяжении 1100 км к востоку, когда его край достиг подножья Скалистых гор. Не исключено, что она достигала 3000 м.

Мощность ледников увеличивается благодаря аккумуляции снега и сокращается под влиянием нескольких процессов, которые гляциологи объединяют общим термином "абляция". Сюда входят таяние, испарение, возгонка (сублимация) и дефляция (ветровая эрозия) льда, а также откол айсбергов.

И аккумуляция и абляция требуют весьма определенных климатических условий. Обильные снегопады зимой и холодное облачное лето способствуют разрастанию ледников, тогда как малоснежная зима и теплое лето с обилием солнечных дней оказывают противоположный эффект.

Если не считать откол айсбергов, таяние - наиболее существенный компонент абляции. Отступание конца ледника происходит как в результате его таяния, так и, что более важно, общего уменьшения мощности льда. Таяние прибортовых частей долинных ледников под влиянием прямой солнечной радиации и тепла, излучаемого бортами долины, тоже вносит значительный вклад в деградацию ледника. Как это ни парадоксально, но и во время отступания ледники продолжают двигаться вперед.

Так, ледник за год может продвинуться на 30 м и отступить на 60 м. В итоге длина ледника уменьшается, хотя он продолжает двигаться вперед. Аккумуляция и абляция почти никогда не находятся в полном равновесии, поэтому постоянно происходят колебания размеров ледников.

После ряда лет с обильными снегопадами в 1937 конец ледника Блэк-Рапидс на Аляске в течение 150 дней двигался со скоростью 32 м в сутки. Однако столь быстрое движение не характерно для ледников. Напротив, ледник Таку на Аляске на протяжении 52 лет продвигался со средней скоростью 106 м/год. Многие небольшие каровые и висячие ледники движутся еще медленнее (например, упоминавшийся выше ледник Арапахо ежегодно продвигается лишь на 6,3 м).

Лед в теле долинного ледника движется неравномерно - быстрее всего на поверхности и в осевой части и гораздо медленнее по бокам и у ложа, по-видимому, из-за увеличения трения и большой насыщенности обломочным материалом в придонных и прибортовых частях ледника.

Откол айсбергов - особый тип абляции. Летом можно наблюдать мелкие айсберги, мирно плавающие по горным озерам, расположенным у концов долинных ледников, и огромные айсберги, отколовшиеся от ледников Гренландии и Аляски, - это зрелище внушает благоговейный страх. Ледник Колумбия на Аляске выходит в Тихий океан фронтом шириной 1,6 км и высотой 110 м.

Он медленно сползает в океан. Под действием подъемной силы воды при наличии крупных трещин обламываются и уплывают огромные глыбы льда, не менее чем на две трети погруженные в воду.

В Гренландии площадь которой 2.23 млн. км2, из них около 1,68 млн. км2 покрыто льдом, выводные ледники продуцируют множество очень крупных айсбергов, которые уносятся холодными течениями в Атлантический океан, где становятся угрозой для судов.

Термин «ледниковая шапка» иногда употребляется для обозначения небольшого покровного ледника, но правильнее так называть относительно небольшую массу льда, покрывающую высокое плато или горный хребет, от которой в разных направлениях отходят долинные ледники. Наглядным примером ледниковой шапки является т.н. Колумбийское фирновое плато, расположенное в Канаде на границе провинций Альберта и Британская Колумбия (52с.ш.). Его площадь превышает 466 км, и от него к востоку, югу и западу отходят крупные долинные ледники. Один из них - ледник Атабаска - легкодоступен, так как его нижний конец удален всего на 15 км от автомагистрали Банф - Джаспер, и летом туристы могут кататься на вездеходе по всему леднику. Ледниковые шапки встречаются на Аляске севернее горы Св. Ильи и восточнее Рассел-фьорда.

Долинные, или альпийские, ледники начинаются от покровных ледников, ледниковых шапок и фирновых полей. Подавляющее большинство современных долинных ледников берет начало в фирновых бассейнах и занимает троговые долины, в формировании которых могла принимать участие и доледниковая эрозия. В определенных климатических условиях долинные ледники широко распространены во многих горных районах земного шара: в Андах, Альпах, на Аляске, в Скалистых и Скандинавских горах, Гималаях и других горах Центральной Азии, в Новой Зеландии. Даже в Африке - в Уганде и Танзании - имеется ряд таких ледников. У многих долинных ледников есть ледники-притоки.

Так, у ледника Барнард на Аляске их по крайней мере восемь.

Лед покровных ледников и ледниковых шапок обычно чистый, крупнокристаллический, голубого цвета. Это справедливо также для крупных долинных ледников, за исключением их концов, обычно содержащих слои, насыщенные обломками пород и чередующиеся с пластами чистого льда. Такая стратификация связана с тем, что зимой, поверх накопившихся летом пыли и обломков, свалившихся на лед с бортов долины, ложится снег.

На бортах многих долинных ледников встречаются боковые морены - вытянутые гряды неправильной формы, сложенные песком, гравием и валунами. Под воздействием эрозионных процессов и склонового смыва летом и лавин зимой на ледник с крутых бортов долины поступает большое количество разного обломочного материала, и из этих камней и мелкозема формируется морена. На крупных долинных ледниках, принимающих ледники-притоки, образуется срединная морена, движущаяся близ осевой части ледника. Эти вытянутые узкие гряды, сложенные обломочным материалом, раньше были боковыми моренами ледников-притоков. На леднике Коронейшн на Баффиновой Земле имеется не менее семи срединных морен.

Зимой поверхность ледников относительно ровная, так как снег нивелирует все неровности, но летом они существенно разнообразят рельеф. Кроме описанных выше трещин и морен, долинные ледники часто бывают глубоко расчленены потоками талых ледниковых вод. Сильные ветры, несущие ледяные кристаллы, разрушают и бороздят поверхность ледяных шапок и покровных ледников. Если крупные валуны защищают нижележащий лед от таяния, в то время как вокруг лед уже растаял, образуются ледяные грибы (или пьедесталы). Такие формы, увенчанные крупными глыбами и камнями, иногда достигают в высоту нескольких метров.

Предгорные ледники отличаются неровным и своеобразным характером поверхности. Их притоки могут откладывать беспорядочную смесь из боковых, срединных и конечных морен, среди которых встречаются глыбы мертвого льда. В местах вытаивания крупных ледяных глыб возникают глубокие западины неправильной формы, многие из которых заняты озерами. На мощной морене ледника Маласпина, перекрывающей глыбу мертвого льда толщиной 300 м, вырос лес. Несколько лет назад в пределах этого массива лед снова пришел в движение, в результате чего начали смещаться участки леса.

В обнажениях по краям ледников часто видны крупные зоны скалывания, где одни блоки льда надвинуты на другие. Эти зоны представляют собой надвиги, причем различают несколько способов их образования. Во-первых, если один из участков придонного слоя ледника перенасыщен обломочным материалом, то его движение прекращается, а вновь поступающий лед надвигается на него. Во-вторых, верхние и внутренние слои долинного ледника надвигаются на придонные и боковые, поскольку движутся быстрее. Помимо того, при слиянии двух ледников один может двигаться быстрее другого, и тогда тоже происходит надвиг. На леднике Бодуэна на севере Гренландии и на многих ледниках Шпицбергена имеются впечатляющие обнажения надвигов.

У концов или краев многих ледников часто наблюдаются туннели, прорезанные подледниковыми и внутриледниковыми потоками талых вод (иногда с участием дождевых вод), которые устремляются по туннелям в сезон абляции. Когда уровень воды спадает, туннели становятся доступными для исследований и представляют уникальную возможность для изучения внутреннего строения ледников.

Значительные по размерам туннели выработаны в ледниках Менденхол на Аляске и Асулкан в Британской Колумбии (Канада).

3.2 Экзарационный рельеф, созданный покровными ледниками

Обладая значительной толщиной и весом, ледники производили мощную экзарационную работу. Во многих местностях они уничтожили весь почвенный покров и частично подстилающие рыхлые отложения и прорезали глубокие ложбины и борозды в коренных породах. В центральном Квебеке эти ложбины заняты многочисленными мелководными озерами вытянутой формы. Ледниковые борозды прослеживаются вдоль Канадской трансконтинентальной автомагистрали и близ города Садбери (пров. Онтарио). Горы штата Нью-Йорк и Новой Англии были выположены и отпрепарированы, а существовавшие там доледниковые долины расширены и углублены потоками льда. Ледники также расширили котловины пяти Великих озер США и Канады, а поверхности скальных пород отполировали и покрыли штриховкой.

Ледниково-аккумулятивный рельеф, созданный покровными ледниками.

Во время деградации оледенения весь эродированный и перемещенный в теле ледника обломочный материал откладывался там, где таял лед. Таким образом, обширные территории оказались усеянными валунами и щебнем и покрыты более мелкозернистыми ледниковыми отложениями. Ледниковые отложения стали подразделять на морену (смотри рис №1) и сортированные осадки. В состав отложенных морен (которые иногда называют тилл) входят валуны, щебень, песок, супесь, суглинок и глина. Возможно преобладание одного из этих компонентов, но чаще всего морена представляет собой несортированную смесь двух или большего числа составляющих, а иногда встречаются все фракции. Сортированные осадки формируются под воздействием талых ледниковых вод и слагают зандровые водно-ледниковые равнины, долинные зандры, камы и озы (см. ниже), а также заполняют котловины озер ледникового происхождения.

Рисунок №1

Основные морены занимают обширные площади в США и Канаде. Для окрестностей Понтиака (шт. Мичиган) и Уотерлу (шт. Висконсин) характерны ландшафты основной морены. Тысячи небольших озер усеивают поверхность основных морен в Манитобе и Онтарио (Канада), Миннесоте (США).

Конечные морены образуют мощные широкие пояса вдоль края покровного ледника. Они представлены грядами или более или менее изолированными холмами мощностью до нескольких десятков метров, шириной до нескольких километров и, в большинстве случаев, длиной во много километров. Часто край покровного ледника не был ровным, а разделялся на довольно четко обособленные лопасти. Положение края ледника реконструируется по конечным моренам. Вероятно, во время отложения этих морен край ледника длительное время находился почти в неподвижном (стационарном) состоянии. При этом формировалась не одна гряда, а целый комплекс гряд, холмов и котловин, который заметно возвышается над поверхностью сопредельных основных морен. В большинстве случаев конечные морены, входящие в состав комплекса, свидетельствуют о неоднократных небольших подвижках края ледника. Талые воды отступавших ледников разрушили эти морены во многих местах, что подтверждается наблюдениями в центральной Альберте и севернее города Реджайна в горах Харт в провинции Саскачеван. На территории США такие примеры представлены вдоль южной границы покровного оледенения.

Друмлины - вытянутые холмы, по форме напоминающие ложку, перевернутую выпуклой стороной кверху.

Эти формы состоят из материала отложенной морены, а в некоторых (но не во всех) случаях имеют ядро из коренных пород. Друмлины обычно встречаются большими группами - по нескольку десятков или даже сотен. Большинство этих форм рельефа имеет размеры 900-2000 м в длину, 180-460 м в ширину и 15-45 м в высоту. Валуны на их поверхности нередко ориентированы длинными осями по направлению движения льда, которое осуществлялось от крутого склона к пологому. По-видимому, друмлины формировались, когда нижние слои льда утрачивали подвижность из-за перегрузки обломочным материалом и перекрывались движущимися верхними слоями, которые перерабатывали материал отложенной морены и создавали характерные формы друмлинов. Такие формы широко распространены в ландшафтах основных морен областей покровного оледенения.

Зандровые равнины сложены материалом, принесенным потоками талых ледниковых вод, и обычно примыкают к внешнему краю конечных морен. Эти грубосортированные отложения состоят из песка, гальки, глины и валунов (максимальный размер которых зависел от транспортирующей способности потоков).

Зандровые поля обычно широко распространены вдоль внешнего края конечных морен, но бывают и исключения. Наглядные примеры зандров встречаются западнее морены альтмонт в центральной Альберте, близ городов Баррингтон (шт. Иллинойс) и Плейнфилд (шт. Нью-Джерси), а также на о.Лонг-Айленд и п-ове Кейп-Код. Зандровые равнины в центральных районах США, особенно вдоль рек Иллинойс и Миссисипи, содержали огромное количество пылеватого материала, который впоследствии был подхвачен и перенесен сильными ветрами и в конце концов переотложен в виде лясса.

Озы - это длинные узкие извилистые гряды, сложенные в основном сортированными осадками, протяженностью от нескольких метров до нескольких километров и высотой до 45 м. Озы формировались в результате деятельности подледниковых потоков талых вод, выработавших во льду туннели и откладывавших там наносы. Озы встречаются всюду, где существовали ледниковые покровы.

Сотни таких форм находятся как восточнее, так и западнее Гудзонова залива.

Камы - это небольшие крутосклонные холмы и короткие гряды неправильной формы, сложенные сортированными осадками. Вероятно, они образовались разными способами. Некоторые были отложены близ конечных морен потоками, вытекавшими из внутриледниковых трещин или подледниковых туннелей. Эти камы часто сливаются в широкие поля слабосортированных наносов, называемые камовыми террасами. Другие, по-видимому, были сформированы в результате таяния крупных глыб мертвого льда у конца ледника. Возникшие при этом котловины заполнялись отложениями потоков талых вод, и после полного таяния льда там формировались камы, слегка возвышающиеся над поверхностью основной морены. Камы встречаются во всех областях покровного оледенения.

Западины часто встречаются на поверхности основной морены. Это результат вытаивания глыб льда. В настоящее время в гумидных районах они могут быть заняты озерами или болотами, а в семиаридных и даже во многих гумидных районах они сухие. Такие западины встречаются в сочетании с небольшими крутосклонными холмами. Западины и холмы - типичные формы рельефа основной морены. Сотни таких форм встречаются в северном Иллинойсе, Висконсине, Миннесоте и Манитобе.

Озерно-ледниковые равнины занимают днища бывших озер. В плейстоцене возникли многочисленные озера ледникового происхождения, которые затем были спущены. Потоки талых ледниковых вод приносили в эти озера обломочный материал, который там подвергался сортировке. Древнее приледниковое оз.Агассиз площадью 285 тыс. кв. км, располагавшееся в Саскачеване и Манитобе, Северной Дакоте и Миннесоте, питалось за счет многочисленных потоков, начинавшихся от края ледникового покрова. В настоящее время обширное дно озера, занимающее площадь в несколько тысяч квадратных километров, представляет собой сухую поверхность, сложенную переслаивающимися песками и глинами.

3.3 Экзарационный рельеф, созданный долинными ледниками

В отличие от ледниковых покровов, которые вырабатывают обтекаемые формы и сглаживают поверхности, через которые они движутся, горные ледники, напротив, преобразуют рельеф гор и плато таким образом, что делают его более контрастным и создают характерные рассмотренные ниже формы рельефа (смотри рисунок №2).

Рисунок №2

Цирки - это чашеобразные углубления или амфитеатры, которые располагаются в верхних частях трогов во всех горах, где когда-либо существовали крупные долинные ледники. Они сформировались в результате расширяющего действия замерзшей в трещинах горных пород воды и выноса образовавшегося крупного обломочного материала движущимися под влиянием силы тяжести ледниками. Цирки возникают ниже фирновой линии, особенно у бергшрундов, при выходе ледника из фирнового поля.

В ходе процессов расширения трещин при замерзании воды и экзарации эти формы растут в глубину и ширину. Их верховья врезаются в склон горы, на котором они расположены. Многие цирки имеют крутые борта высотой в несколько десятков метров. Для днищ цирков также типичны озерные ванны, выработанные ледниками.

В тех случаях, когда подобные формы не имеют прямой связи с нижележащими трогами, они называются карами. Внешне создается впечатление, что кары подвешены на склонах гор.

Каровые лестницы расположенные в одной долине не менее двух каров называются каровой лестницей. Обычно кары разделяются крутыми уступами, которые сочленяясь с уплощенными днищами каров, как ступени, формируют циклопические (вложенные) лестницы. На склонах Передового хребта в штате Колорадо представлено много отчетливых каровых лестниц.

Карлинги - островершинные формы, образующиеся в ходе развития трех или более каров по разные стороны от одной горы. Часто карлинги имеют правильную пирамидальную форму. Классический пример - гора Маттерхорн на границе Швейцарии и Италии. Однако живописные карлинги встречаются почти во всех высоких горах, где существовали долинные ледники.

Ареты - это зубчатые гребни, имеющие сходство с полотном пилы или лезвием ножа. Они формируются там, где два кара, растущие на противоположных склонах хребта, близко подходят один к другому. Ареты возникают и там, где два параллельных ледника разрушили разделяющую горную перемычку до такой степени, что от нее остался лишь узкий гребень.

Перевалы - это перемычки в гребнях горных хребтов, образующиеся при отступании задних стенок двух каров, которые развивались на противоположных склонах.

Нунатаки - это скальные останцы, окруженные ледниковым льдом. Они разделяют долинные ледники и лопасти ледниковых шапок или покровов. Четко выраженные нунатаки имеются в периферических частях Гренландского ледникового покрова (смотри рисунок №3).

Рисунок №3

Экзарационные ванны(ванны выпахивания) выработаны долинными ледниками в коренных породах у основания крутых склонов в местах, где днища долин сложены сильнотрещиноватыми породами. Обычно площадь этих ванн ок. 2,5 кв. км, а глубина - ок. 15 м, хотя многих из них имеют меньшие размеры. Часто экзарационные ванны приурочены к днищам каров.

Бараньи лбы - это небольшие округлые холмы и возвышенности, сложенные плотными коренными породами, которые были хорошо отполированы ледниками. Их склоны асимметричны: склон, обращенный вниз по движению ледника, - немного круче. Часто на поверхности этих форм имеется ледниковая штриховка, причем штрихи ориентированы по направлению движения льда. Аккумулятивный рельеф, созданный долинными ледниками

Конечные и боковые морены - самые характерные ледниково-аккумулятивные формы. Как правило, они расположены в устьях трогов, но могут также встречаться в любом месте, которое занимал ледник, как в пределах долины, так и вне ее. Оба типа морен формировались в результате таяния льда с последующим сгружением обломочного материала, переносимого как на поверхности ледника, так и внутри него. Боковые морены обычно представляют длинные узкие гряды. Конечные морены также могут иметь форму гряд, часто это мощные скопления крупных обломков коренных пород, щебня, песка и глины, отложенные у конца ледника в течение длительного времени, когда темпы его наступания и таяния были примерно сбалансированы. Высота морены свидетельствует о мощности образовавшего ее ледника. Часто две боковые морены соединяются в одну конечную морену подковообразной формы, стороны которой простираются вверх по долине. Там, где ледник занимал не все днище долины, боковая морена могла формироваться на некотором расстоянии от ее бортов, но примерно параллельно им, оставляя вторую длинную и узкую долину между моренной грядой и коренным склоном долины. Как боковая, так и конечная морены имеют включения огромных валунов (или глыб) весом до нескольких тонн, выломанных из бортов долины в результате замерзания воды в трещинах горных пород.

Рецессионные морены формировались, когда темпы таяния ледника превышали темпы его наступания. Они образуют мелкобугристый рельеф со множеством небольших западин неправильной формы.

Долинные зандры - это аккумулятивные образования, сложенные грубосортированным обломочным материалом из коренных пород. Они имеют сходство с зандровыми равнинами областей покровного оледенения, так как созданы потоками талых ледниковых вод, однако располагаются в пределах долин ниже конечной или рецессионной морены. Долинные зандры можно наблюдать близ концов ледников Норрис на Аляске и Атабаска в Альберте (смотри рисунок №4).

Рисунок №4

Озера ледникового происхождения иногда занимают экзарационные ванны (например каровые озера, расположенные в карах), но гораздо чаще такие озера находятся позади моренных гряд. Подобными озерами изобилуют все районы горно-долинного оледенения; многие из них придают особую прелесть окружающим их сильнопересеченным горным ландшафтам. Они используются для строительства ГЭС, орошения и городского водоснабжения. Однако они ценятся также за свою живописность и благодаря рекреационной значимости. Многие самые красивые озера мира относятся именно к этому типу.

Я думаю рассмотрение современных ледниковых районов неотделимо связано с их историей развития.

В истории Земли неоднократно происходили крупные оледенения. В докембрийское время (свыше 570 млн. лет назад) - вероятно, в протерозое (наиболее молодом из двух подразделений докембрия), - часть Юты, север Мичигана и Массачусетс, а также часть Китая подверглись оледенению. Не известно, развивалось ли оледенение всех этих территорий одновременно, хотя в протерозойских породах сохранились явные свидетельства того, что в Юте и Мичигане оледенение было синхронным. В позднепротерозойских породах Мичигана и в породах серии коттонвуд Юты обнаружены горизонты тиллитов (уплотненной или литифицированной морены). В позднепенсильванское и пермское время - возможно, в интервале от 290 млн. до 225 млн. лет назад - обширные районы Бразилии, Африки, Индии и Австралии были покрыты ледниковыми шапками или ледниковыми покровами. Как ни странно, все эти районы расположены в низких широтах - от 40 с.ш. до 40 ю.ш. Синхронное оледенение происходило также в Мексике. Менее достоверны доказательства оледенения Северной Америки в девонское и миссисипское время (примерно от 395 млн. до 305 млн. лет назад). Свидетельства оледенения в эоцене (от 65 млн. до 38 млн. лет назад) обнаружены в горах Сан-Хуан (шт. Колорадо). Если добавить к этому перечню плейстоценовую ледниковую эпоху и современное оледенение, занимающее почти 10% суши, станет очевидно, что оледенения в истории Земли были нормальными явлениями.

Плейстоценовая эпоха четвертичного периода кайнозойской эры началась примерно 1 млн. лет назад.

В начале этой эпохи начали разрастаться крупные ледники на Лабрадоре и в Квебеке (Лаврентийский ледниковый покров), в Гренландии. По мнению некоторых гляциологов, большой центр оледенения находился также к западу от Гудзонова залива. Третий очаг оледенения, называемый Кордильерским, располагался в центре

Британской Колумбии. Многочисленные долинные ледники формировались в горах Аляски, Каскадных горах (штаты Вашингтон и Орегон), в Сьерра-Неваде (шт. Калифорния) и в Скалистых горах Канады и США. Аналогичное горно-долинное оледенение распространялось в Андах. Покровный ледник, который начал формироваться на Лабрадоре, продвинулся затем на юг вплоть до штата Нью-Джерси - более чем на 2400 км от места своего зарождения, полностью перекрыв горы Новой Англии и штат Нью-Йорк.

Неизвестна продолжительность первого плейстоценового оледенения. Вероятно, она составляла по крайней мере 50 тыс. лет, а может быть, и вдвое больше. Затем наступил длительный период, во время которого больльшая часть покрывавшейся ледниками суши освободилась от льдов.

В плейстоцене в Северной Америке было еще три аналогичных оледенения. Самое последнее из них в Северной Америке происходило в течение последних 30 тыс. лет, где лед окончательно растаял ок. 10 тыс. лет назад. В общих чертах установлена синхронность четырех плейстоценовых оледенений Северной Америки.

В Северной Америке покровные ледники во время максимального оледенения занимали площадь свыше 12,5 млн. кв. км, т.е. более половины всей поверхности материка.В плейстоцене ледниковые покровы Гренландии и Антарктиды, вероятно, имели значительно бльшую площадь и мощность (главным образом в Антарктиде), чем современные. Помимо этих крупных центров оледенения, существовало множество мелких местных очагов, например, в Пиренеях и Вогезах, Апеннинах, горах Корсики, Патагонии (восточнее южных Анд).

Во время максимального развития плейстоценового оледенения свыше половины площади Северной Америки было покрыто льдом. На территории США южная граница покровного оледенения следует примерно от о.Лонг-Айленд (шт. Нью-Йорк) на север центральной части штата Нью-Джерси и северо-восток Пенсильвании почти до юго-западной границы шт. Нью-Йорк. Отсюда она направляется до юго-западной границы штата Огайо, затем по р.Огайо в южную Индиану, далее поворачивает на север в южную часть центральной Индианы, а затем на юго-запад к р.Миссисипи, при этом южная часть штата Иллинойс остается за пределами области оледенения. Граница оледенения проходит вблизи рек Миссисипи и Миссури до города Канзас-Сити, далее через восточную часть штата Канзас, восточную часть штата Небраска, центральную часть Южной Дакоты, юго-западную часть Северной

Дакоты до Монтаны немного южнее р.Миссури. Отсюда южная граница покровного оледенения поворачивает на запад до подножья Скалистых гор в северной Монтане.

Территория площадью в 26 тыс. км, охватывающая северо-западный Иллинойс, северо-восточную Айову и юго-западный Висконсин, давно выделялась как "безвалунная". Предполагалось, что она никогда не покрывалась плейстоценовыми ледниками. На самом деле туда не распространялся ледниковый покров в висконсине. Возможно, во время более ранних оледенений льды туда заходили, но следы их пребывания были стерты под влиянием эрозионных процессов.

К северу от США ледниковый покров распространялся на территорию Канады до Северного Ледовитого океана. На северо-востоке льдом были покрыты Гренландия, Ньюфаундленд и п-ов Новая Шотландия.

В Кордильерах ледниковые шапки занимали южную Аляску, плато и береговые хребты Британской Колумбии и северную треть штата Вашингтон. Короче говоря, кроме западных районов центральной Аляски и ее крайнего севера, вся Северная Америка к северу от описанной выше линии в плейстоцене была занята льдом.

3.4 Последствия плейстоценового оледенения

Под влиянием огромной ледниковой нагрузки земная кора оказалась прогнутой. После деградации последнего оледенения территория, которая покрывалась наиболее мощным слоем льда к западу от Гудзонова залива и на северо-востоке Квебека, поднималась быстрее, чем расположенная у южного края ледникового покрова. По оценкам, район северного побережья оз.Верхнего в настоящее время поднимается со скоростью 49,8 см в столетие, а район, расположенный к западу от Гудзонова залива, до завершения компенсационной изостазии поднимется еще на 240 м. Сходное поднятие происходит и в Балтийском регионе в Европе.

Плейстоценовый лед образовался за счет океанической воды, и поэтому во время максимального развития оледенения происходило и наибольшее понижение уровня Мирового океана. Величина этого понижения - вопрос спорный, однако геологи и океанологи единодушно признают, что уровень Мирового океана понижался более чем на 90 м. Это доказывается распространением абразионных террас во многих областях и положением днищ лагун и отмелей коралловых рифов Тихого океана на глубинах ок. 90 м.

Колебания уровня Мирового океана оказывали влияние на развитие впадающих в него рек. В обычных условиях реки не могут углублять свои долины намного ниже уровня моря, но при его понижении происходит удлинение и углубление речных долин. Вероятно, затопленная долина р.Гудзон, протягивающаяся на шельфе более чем на 130 км и заканчивающаяся на глубинах ок. 70 м, сформировалась во время одного или нескольких крупных оледенений.

Покровное оледенение повлияло на изменение направления течения многих рек. В доледниковое время р.Миссури текла из восточной Монтаны на север, в Канаду. Река Норт-Саскачеван некогда несла свои воды на восток, пересекая территорию Альберты, но впоследствии резко повернула на север.

В результате плейстоценового оледенения образовались внутренние моря и озера, а площадь уже существовавших увеличилась. Благодаря притоку талых ледниковых вод и обильным осадкам возникло оз. Бонневилл в штате Юта, реликтом которого является Большое Соленое озеро.

Максимальная площадь оз. Бонневилл превышала 50 тыс. км, а глубина достигала 300 м.

По-видимому, в вюрме (висконсине) уровень воды в Мертвом море более чем на 430 м превышал современный.

Долинные ледники в плейстоцене были гораздо многочисленнее и больших размеров по сравнению с существующими сейчас. В Колорадо насчитывались сотни ледников (сейчас 15). Самый крупный современный ледник в штате Колорадо - Арапахо - имеет длину 1,2 км, а в плейстоцене длина ледника Дуранго в горах Сан-Хуан на юго-западе Колорадо достигала 64 км. В Альпах, Андах, Гималаях, Сьерра-Неваде и других крупных горных системах земного шара также развивалось оледенение.

Наряду с долинными ледниками там существовало и множество ледниковых шапок. Это, в частности, доказано для береговых хребтов Британской Колумбии и США. На юге штата Монтана в горах Бэртус имелась крупная ледниковая шапка. Кроме того, в плейстоцене ледники существовали на Алеутских о-вах и о.Гавайи (г.Мауна-Кеа), в горах Хидака (Япония), на Южном острове Новой Зеландии, на о.Тасмания, в Марокко и горных районах Уганды и Кении, в Турции, Иране, на Шпицбергене и Земле Франца-Иосифа. В некоторых из этих районов ледники распространены и в настоящее время, но, как и на западе США, в плейстоцене они были гораздо крупнее.

В 70-х годах большинство гляциологов полагало, что в период максимума последней ледниковой эпохи наступление льдов с вершин Гренландии было довольно ограниченным. Считалось, что языки льда не достигали пролива Нэрс (Nares Strait; на русскоязычных картах северная его часть именуется проливом Робсон, а южная -- проливом Кеннеди), который отделяет Гренландию от входящего в Канадский Арктический архипелаг о.Элсмир; как и сегодня, этот пролив оставался открытым. Позже стала превалировать точка зрения, допускающая полное перекрытие этого водного прохода Гренландским ледником. Но геологические свидетельства оказались малоубедительными, и вопрос оставался нерешенным.

Новую методику исследований предложили М.Зреда (M.Zreda; факультет гидрологии Университета штата Аризона, Тусон, США), Дж.Ингланд (J.England; Университет провинции Альберта, Эдмонтон, Канада) и Ф.Филлипс (F.Phillips; Технологический университет штата Нью-Мексико, Сокорро) и др.

Они обратились к данным о концентрации в местных породах радиоактивных веществ космического происхождения, что позволяет определять возраст тех или иных форм арктического рельефа.

Следует иметь в виду, что пролив Нэрс -- крупный бассейн, протянувшийся на 500 км с северо-востока на юго-запад и местами достигающий в ширину 100 км. Он соединяет открытый Северный Ледовитый океан с Баффиновым заливом, а тем самым -- с Атлантикой. Через него и соседние сравнительно узкие проливы в настоящее время проходит около 30% всего потока из Арктики в высокие широты Атлантического океана.

Геохимическое датирование по изотопу хлора космического происхождения 36Cl и земному изотопу углерода 14C было проведено в ряде пунктов на восточном побережье о.Элсмир. Были найдены свидетельства наступания и отступания ледника, “полировавшего” обнаженные породы на двух мелких островах в проливе Нэрс. Все это позволило установить время, когда породы открылись для атмосферных и космических воздействий, и определить период, в который произошла последняя дегляциация пролива. Выяснено, что в последнюю эпоху оледенения пролив Нэрс был полностью перекрыт льдами и контакта между океанами здесь не было. Ледяной поток двигался отсюда параллельно проливу: к северу от района о.Ханс -- в сторону полюса, а от о.Пим -- в южном направлении, что говорит о значительной мощности общего покрова Гренландии и о.Элсмир.

Ледораздел проходил поверх бассейна Кейна. Лишь совсем недавно, около 10 тыс. лет назад, ледник отступил и пролив Нэрс, вскрывшись, обрел свое нынешнее состояние.

Такие выводы имеют далеко не локальное значение. Они свидетельствуют о длительности оледенения в северной части Западного полушария, о величине составляющих его масс льда как на суше, так и на море, о постепенном характере воздействия на них общих климатических изменений, наконец, о непостоянстве крупномасштабных гидрологических связей между Атлантикой и Северным

Ледовитым океаном. Подтверждается также гипотеза, согласно которой Иннуитский ледяной покров в то время представлял собой подобие моста между Лаврентьевским оледенением Северной Америки, которое охватывало территорию почти всей Канады, за исключением ее западной горной части, и Гренландским ледниковым щитом. Гипотеза диоксида углерода

Содержащийся в атмосфере диоксид углерода CO2 действует подобно теплому одеялу, удерживающему излучаемое Землей тепло близ ее поверхности, и любое существенное сокращение содержания СО2 в воздухе приведет к понижению температуры на Земле. Это сокращение может быть вызвано, например, необычно активным выветриванием пород. CO2 соединяется с водой в атмосфере и почве, образуя углекислоту, которая является очень активным химическим соединением. Она легко вступает в реакцию с такими наиболее распространенными в горных породах элементами, как натрий, калий, кальций, магний и железо. Если происходит значительное поднятие суши, свежие поверхности горных пород подвергаются эрозии и денудации. В процессе выветривания этих пород из атмосферы будет извлечено большое количество углекислоты. В результате температура суши понизится, и начнется ледниковая эпоха. Когда спустя продолжительное время в атмосферу возвратится углекислота, поглощенная океанами, ледниковая эпоха подойдет к концу. Гипотеза диоксида углерода применима, в частности, для объяснения развития позднепалеозойского и плейстоценового оледенений, которым предшествовали поднятие суши и горообразование. Эта гипотеза вызывала возражения на том основании, что в воздухе содержится гораздо больше СО2, чем требуется для формирования теплоизолирующего покрова. Кроме того, она не объясняла повторяемость оледенений в плейстоцене.

3.5 Другая гипотеза связана с изменением солнечной радиации

В результате продолжительного изучения солнечных пятен, представляющих собой сильные выбросы плазмы в атмосфере Солнца, обнаружено, что существуют весьма значительные годовые и более продолжительные циклы изменения солнечной радиации. Пики солнечной активности наблюдаются примерно каждые 11, 33 и 99 лет, когда Солнце излучает больше тепла, что приводит к более мощной циркуляции земной атмосферы, сопровождающейся большей облачностью и более обильными осадками. Из-за высокой облачности, блокирующей солнечные лучи, поверхность суши получает тепла меньше, чем обычно. Эти короткие циклы не могли бы стимулировать развитие оледенения, но на основе анализа их последствий было высказано предположение, что могут быть и весьма продолжительные циклы, возможно, порядка тысяч лет, когда радиация была выше или ниже обычной. На основе этих представлений английский метеоролог Дж.Симпсон выдвинул гипотезу, объясняющую многократность плейстоценового оледенения. Он проиллюстрировал кривыми развитие двух полных циклов солнечной радиации выше нормы. Как только радиация достигала середины своего первого цикла (как и в коротких циклах активности солнечных пятен), увеличение тепла способствовало активизации атмосферных процессов, включая усиление испарения, повышение количества твердых осадков и зарождение первого оледенения. Во время радиационного пика Земля нагревалась до такой степени, что ледники таяли и начиналось межледниковье. Как только радиация понижалась, возникали условия, подобные условиям первого оледенения. Так начиналось второе оледенение. Оно завершалось с наступлением такой фазы радиационного цикла, во время которой происходило ослабление атмосферной циркуляции. При этом испарение и количество твердых осадков сокращались, а ледники отступали из-за уменьшения аккумуляции снега. Таким образом наступало второе межледниковье. Повторение радиационного цикла позволило выделить еще два оледенения и разделявшее их межледниковье.

Следует иметь в виду, что два последовательных солнечных радиационных цикла могли продолжаться 500 тыс. лет и более. Режим межледниковья отнюдь не означает полного отсутствия ледников на Земле, хотя с ним сопряжено значительное сокращание их числа. Если гипотеза Симпсона верна, то она прекрасно объясняет историю плейстоценовых оледенений, однако нет доказательств подобной периодичности для доплейстоценовых оледенений. Следовательно, либо следует допустить, что режим солнечной активности менялся на протяжении геологической истории Земли, либо необходимо продолжить поиск причин возникновения ледниковых эпох. Вполне вероятно, что это происходит при совместном действии нескольких факторов.

Одна из попыток объяснить причины возникновения плейстоценовой ледниковой эпохи принадлежит М.Юингу и У.Донну - геофизикам, внесшим значительный вклад в изучение рельефа дна океанов. Они полагают, что в доплейстоценовое время Тихий океан занимал северные полярные регионы и поэтому там было гораздо теплее, чем теперь. Арктические области суши тогда располагались в северной части Тихого океана. Затем в результате дрейфа материков Северная Америка, Сибирь и Северный Ледовитый океан заняли свое современное положение. Благодаря Гольфстриму, заходившему из Атлантики, воды Северного Ледовитого океана в то время были теплыми и интенсивно испарялись, что способствовало обильным снегопадам в Северной Америке, Европе и Сибири. Таким образом в этих районах началось плейстоценовое оледенение. Оно прекратилось из-за того, что в результате разрастания ледников уровень Мирового океана понизился примерно на 90 м, и Гольфстрим в конце концов не смог преодолевать высокие подводные хребты, разделяющие бассейны Северного Ледовитого и Атлантического океанов. Лишенный притока теплых атлантических вод, Северный Ледовитый океан замерз, и иссяк источник влаги, питающий ледники. Согласно гипотезе Юинга и Донна, нас ожидает новое оледенение. Действительно, в период между 1850 и 1950 большинство ледников мира отступало.


Подобные документы

  • Особенности географического положения Северной Америки. Рельеф и полезные ископаемые. Факторы, которые оказывают влияние на климат Северной Америки. Внутренние воды Северной Америки. Расположение природных зон на материке. Население Северной Америки.

    реферат [17,7 K], добавлен 21.09.2009

  • Физико-географическая характеристика рек, озер, подземных вод, болот, ледников Северной Америки и Евразии. Черты сходства и различия объектов гидрологической сети обоих континентов. Влияние деятельности человека на гидрологическую сеть и их использование.

    курсовая работа [711,5 K], добавлен 09.12.2016

  • Открытие Америки как части света, ее освоение, колонизация и исследование. История английской, французской, испанской, португальской и голландской колонизации Америки. Русская Америка как совокупность владений Российской империи в Северной Америке.

    реферат [45,1 K], добавлен 19.01.2015

  • Общие характеристики ледников: классификация и разновидности, сравнительная характеристика, формы и направления образования, значение в природе. Причины и обоснование движения ледников, этапы и особенности современного оледенения на территории России.

    реферат [1,0 M], добавлен 02.01.2012

  • Представители различных рас, которые входят в современный состав населения Южной Америки. Инки как крупнейшее по площади и численности населения индейское государство в Южной Америке в XI—XVI вв. Религиозный и языковой состав населения Южной Америки.

    презентация [3,6 M], добавлен 19.03.2015

  • Физико-географические положение и природные условия Евразии и Северной Америки. Условия почвообразования степных почв, их сходства и различия в этих странах. Обоснование необходимости рационального использования почв, их охрана и восстановление.

    курсовая работа [2,1 M], добавлен 11.04.2014

  • Разведанные запасы, сконцентрированные в станах Южной Америки. Разработанные и функционирующие нефтегазоносные бассейны. Динамика добычи природного газа по региону, объем потребления газа по странам региона. Место Южной Америки в мировом потреблении газа.

    презентация [594,7 K], добавлен 26.09.2012

  • Физико-географические положение и природные условия Евразии и Северной Америки. Основные общие черты и различия, особенности формирования почвенного покрова степной зоны континентов. Экологические проблемы реализации потенциального плодородия почв.

    курсовая работа [3,8 M], добавлен 17.04.2014

  • Географическое положение Южной Америки. Очертания материка и полезные ископаемые. Внутренние воды, природные зоны. Высокогорный климат Анд. Животный мир сельвы и саванн Южного полушария. Состав населения материка. Проблема охраны природы Южной Америки.

    реферат [24,2 K], добавлен 19.01.2012

  • Физико-географическое положение, а также условия формирования климата материка. Особенности климата Южной Америки: атмосферная циркуляция, количество, интенсивность осадков, преобладающие воздушные массы. Характеристика и сравнение климатических поясов.

    курсовая работа [304,2 K], добавлен 26.01.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.