Землетрясения и моретрясения
Понятие землетрясений как колебаний Земли, вызванные внезапными изменениями в состоянии недр планеты. Характеристика основных причин возникновения. Главные признаки сейсмических волн, моретрясений и цунами. Географическое распространение землетрясений.
Рубрика | География и экономическая география |
Вид | реферат |
Язык | русский |
Дата добавления | 13.12.2013 |
Размер файла | 42,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Землетрясения
2. Причины землетрясения
3. Сейсмические волны
4. Пути сейсмических волн
5. Регистрация землетрясений
6. Магнитуда землетрясений
7. Интенсивность землетрясений
8. Последствия землетрясений
9. Географическое распространение землетрясений
10. Прогноз землетрясений
11. Моретрясения
12. Цунами
13. Причины образования цунами
14. Признаки появления цунами
15. Система предупреждения цунами
16. Наиболее крупные цунами
Заключение
Используемая литература
Введение
История развития земной цивилизации связана со стихийными бедствиями, авариями и катастрофами.
Чрезвычайные ситуации, в результате воздействия различных факторов и явлений на человека и окружающую среду, приводят к травмам и гибели людей, наносят огромный материальный и моральный ущерб.
Статистика людских и материальных потерь от стихийных бедствий, аварий и катастроф обнаруживает их быстрый рост по всему миру, и особенно во второй половине XX века.
В своей работе я проанализировал основные виды чрезвычайных ситуаций и способы ликвидации их последствий. Я считаю, что большое значение в борьбе с чрезвычайными ситуациями имеют предупредительные работы. Важно знать причины возникновения и характер чрезвычайных ситуаций. Это позволит предотвратить некоторые из них или ослабить силу их разрушительного воздействия. Кроме того заблаговременно принятые меры помогут более действенно осуществить меры по ликвидации последствий.
Я остановил свой выбор на этой теме, поскольку она особенно важна для нашей страны. Размеры и географическое положение России предопределяют большое разнообразие на ее территории чрезвычайных ситуаций.
1. Землетрясения
Землетрясения - колебания Земли, вызванные внезапными изменениями в состоянии недр планеты. Эти колебания представляют собой упругие волны, распространяющиеся с высокой скоростью в толще горных пород. Наиболее сильные землетрясения иногда ощущаются на расстояниях более 1500 км от очага и могут быть зарегистрированы сейсмографами (специальными высокочувствительными приборами) даже в противоположном полушарии. Район, где зарождаются колебания, называется очагом землетрясения, а его проекция на поверхность Земли - эпицентром землетрясения. Очаги большей части землетрясений лежат в земной коре на глубинах не более 16 км, однако в некоторых районах глубины очагов достигают 700 км. Ежедневно происходят тысячи землетрясений, но лишь немногие из них ощущаются человеком.
Упоминания о землетрясениях встречаются в Библии, в трактатах античных ученых - Геродота, Плиния и Ливия, а также в древних китайских и японских письменных источниках. До 19 в. большинство сообщений о землетрясениях содержало описания, обильно приправленные суевериями, и теории, основанные на скудных и недостоверных наблюдениях. Серию систематических описаний (каталогов) землетрясений в 1840 начал А.Перри (Франция). В 1850-х годах Р.Малле (Ирландия) составил большой каталог землетрясений, а его подробный отчет о землетрясении в Неаполе в 1857 стал одним из первых строго научных описаний сильных землетрясений.
2. Причины землетрясений
Хотя уже с давних времен ведутся многочисленные исследования, нельзя сказать, что причины возникновения землетрясений полностью изучены. По характеру процессов в их очагах выделяют несколько типов землетрясений, основными из которых являются тектонические, вулканические и техногенные.
Тектонические землетрясения возникают вследствие внезапного снятия напряжения, например, при подвижках по разлому в земной коре (исследования последних лет показывают, что причиной глубоких землетрясений могут быть и фазовые переходы в мантии Земли, происходящие при определенных температурах и давлениях). Иногда глубинные разломы выходят на поверхность. Во время катастрофического землетрясения в Сан-Франциско 18 апреля 1906 общая протяженность поверхностных разрывов в зоне разлома Сан-Андреас составила более 430 км, максимальное горизонтальное смещение - 6 м. Максимальная зарегистрированная величина сейсмогенных смещений по разлому 15 м.
Вулканические землетрясения происходят вследствие резких перемещений магматического расплава в недрах Земли или в результате возникновения разрывов под влиянием этих перемещений.
Техногенные землетрясения могут быть вызваны подземными ядерными испытаниями, заполнением водохранилищ, добычей нефти и газа методом нагнетания жидкости в скважины, взрывными работами при добыче полезных ископаемых и пр. Менее сильные землетрясения происходят при обвале сводов пещер или горных выработок.
3. Сейсмические волны
Колебания, распространяющиеся из очага землетрясения, представляют собой упругие волны, характер и скорость распространения которых зависят от упругих свойств и плотности пород. К упругим свойствам относятся модуль объемной деформации, характеризующий сопротивление сжатию без изменения формы, и модуль сдвига, определяющий сопротивление усилиям сдвига. Скорость распространения упругих волн увеличивается прямо пропорционально квадратному корню значений параметров упругости и плотности среды.
Продольные и поперечные волны
На сейсмограммах эти волны появляются первыми. Раньше всего регистрируются продольные волны, при прохождении которых каждая частица среды подвергается сначала сжатию, а затем снова расширяется, испытывая при этом возвратно-поступательное движение в продольном направлении (т.е. в направлении распространения волны). Эти волны называются также Р-волнами, или первичными волнами. Их скорость зависит от модуля упругости и жесткости породы. Вблизи земной поверхности скорость Р-волн составляет 6 км/с, а на очень большой глубине ? ок. 13 км/с. Следующими регистрируются поперечные сейсмические волны, называемые также S-волнами, или вторичными волнами. При их прохождении каждая частица породы колеблется перпендикулярно направлению распространения волны. Их скорость зависит от сопротивления породы сдвигу и составляет примерно 7/12 от скорости распространения Р-волн.
Поверхностные волны распространяются вдоль земной поверхности или параллельно ей и не проникают глубже 80-160 км. В этой группе выделяются волны Рэлея и волны Лява (названные по именам ученых, разработавших математическую теорию распространения таких волн). При прохождении волн Рэлея частицы породы описывают вертикальные эллипсы, лежащие в очаговой плоскости. В волнах Лява частицы породы колеблются перпендикулярно направлению распространения волн. Поверхностные волны часто обозначаются сокращенно как L-волны. Скорость их распространения составляет 3,2-4,4 км/с. При глубокофокусных землетрясениях поверхностные волны очень слабые.
Амплитуда и период характеризуют колебательные движения сейсмических волн. Амплитудой называется величина, на которую изменяется положение частицы грунта при прохождении волны по сравнению с предшествовавшим состоянием покоя. Период колебаний- промежуток времени, за который совершается одно полное колебание частицы. Вблизи очага землетрясения наблюдаются колебания с различными периодами - от долей секунды до нескольких секунд. Однако на больших расстояниях от центра (сотни километров) короткопериодные колебания выражены слабее: для Р-волн характерны периоды от 1 до 10 с, а для S-волн - немного больше. Периоды поверхностных волн составляют от нескольких секунд до нескольких сотен секунд. Амплитуды колебаний могут быть значительными вблизи очага, однако на расстояниях 1500 км и более они очень малы менее нескольких микрон для волн Р и S и менее 1 см - для поверхностных волн.
Отражение и преломление. Встречая на своем пути слои пород с отличающимися свойствами, сейсмические волны отражаются или преломляются подобно тому, как луч света отражается от зеркальной поверхности или преломляется, переходя из воздуха в воду. Любые изменения упругих характеристик или плотности материала на пути распространения сейсмических волн заставляют их преломляться, а при резких изменениях свойств среды часть энергии волн отражается.
4. Пути сейсмических волн
Продольные и поперечные волны распространяются в толще Земли, при этом непрерывно увеличивается объем среды, вовлекаемой в колебательный процесс. Поверхность, соответствующая максимальному продвижению волн определенного типа в данный момент, называется фронтом этих волн. Поскольку модуль упругости среды возрастает с глубиной быстрее, чем ее плотность (до глубины 2900 км), скорость распространения волн на глубине выше, чем вблизи поверхности, и фронт волны оказывается более продвинутым вглубь, чем в латеральном (боковом) направлении. Траекторией волны называется линия, соединяющая точку, находящуюся на фронте волны, с источником волны. Направления распространения волн Р и S представляют собой кривые, обращенные выпуклостью вниз (из-за того, что скорость движения волн больше на глубине). Траектории волн Р и S совпадают, хотя первые распространяются быстрее.
Сейсмические станции, находящиеся вдали от эпицентра землетрясения, регистрируют не только прямые волны Р и S, но также волны этих типов, уже отраженные один раз от поверхности Земли- РР и SS (или РR1 и SR1), а иногда- отраженные дважды- РРР и SSS (или РR2 и SR2). Существуют также отраженные волны, которые проходят один отрезок пути как Р-волна, а второй, после отражения, как S-волна. Образующиеся обменные волны обозначаются как РS или SР. На сейсмограммах глубокофокусных землетрясений наблюдаются также и другие типы отраженных волн, например, волны, которые прежде, чем достичь регистрирующей станции, отразились от поверхности Земли. Их принято обозначать маленькой буквой, за которой следует заглавная (например, рR). Эти волны очень удобно использовать для определения глубины очага землетрясения.
На глубине 2900 км скорость P-волн резко снижается от >13 км/с до ?8 км/с; а S-волны не распространяются ниже этого уровня, соответствующего границе земного ядра и мантии. Оба типа волн частично отражаются от этой поверхности, и некоторое количество их энергии возвращается к поверхности в виде волн, обозначаемых как РсР и SсS. Р-волны проходят сквозь ядро, но их траектория при этом резко отклоняется и на поверхности Земли возникает теневая зона, в пределах которой регистрируются только очень слабые Р-волны. Эта зона начинается на расстоянии ок. 11 тыс. км от сейсмического источника, а уже на расстоянии 16 тыс. км Р-волны снова появляются, причем их амплитуда значительно возрастает из-за фокусирующего влияния ядра, где скорости волн низкие. Р-волны, прошедшие сквозь земное ядро, обозначаются РКР или P. На сейсмограммах хорошо выделяются также волны, которые по пути от источника к ядру идут как волны S, затем проходят сквозь ядро как волны Р, а при выходе волны снова преобразуются в тип S. В самом центре Земли, на глубине более 5100 км, существует внутреннее ядро, находящееся предположительно в твердом состоянии, но природа его пока не вполне ясна. Волны, проникающие сквозь это внутреннее ядро, обозначаются как РКIКР или SКIКS.
5. Регистрация землетрясений
Прибор, записывающий сейсмические колебания, называется сейсмографом, а сама запись- сейсмограммой. Сейсмограф состоит из маятника, подвешенного внутри корпуса на пружине, и записывающего устройства.
Одно из первых записывающих устройств представляло собой вращающийся барабан с бумажной лентой. При вращении барабан постепенно смещается в одну сторону, так что нулевая линия записи на бумаге имеет вид спирали. Каждую минуту на график наносятся вертикальные линии- отметки времени; для этого используются очень точные часы, которые периодически сверяют с эталоном точного времени. Для изучения близких землетрясений необходима точность маркировки- до секунды или меньше.
Во многих сейсмографах для преобразования механического сигнала в электрический используются индукционные устройства, в которых при перемещении инертной массы маятника относительно корпуса изменяется величина магнитного потока, проходящего через витки индукционной катушки. Возникающий при этом слабый электрический ток приводит в действие гальванометр, соединенный с зеркальцем, которое отбрасывает луч света на светочувствительную бумагу записывающего устройства. В современных сейсмографах регистрация колебаний ведется в цифровом виде с использованием компьютеров.
6. Магнитуда землетрясений
Магнитуда землетрясений обычно определяется по шкале, основанной на записях сейсмографов. Эта шкала известна под названием шкалы магнитуд, или шкалы Рихтера (по имени американского сейсмолога Ч.Ф.Рихтера, предложившего ее в 1935). Магнитуда землетрясения- безразмерная величина, пропорциональная логарифму отношения максимальных амплитуд определенного типа волн данного землетрясения и некоторого стандартного землетрясения. Существуют различия в методах определения магнитуд близких, удаленных, мелкофокусных (неглубоких) и глубоких землетрясений. Магнитуды, определенные по разным типам волн, отличаются по величине. Землетрясения разной магнитуды (по шкале Рихтера) проявляются следующим образом:
2- самые слабые ощущаемые толчки;
41/2 - самые слабые толчки, приводящие к небольшим разрушениям;
6- умеренные разрушения;
81/2- самые сильные из известных землетрясений.
7. Интенсивность землетрясений
Интенсивность землетрясений оценивается в баллах при обследовании района по величине вызванных ими разрушений наземных сооружений или деформаций земной поверхности. Для ретроспективной оценки балльности исторических или более древних землетрясений используют некоторые эмпирически полученные соотношения. В США оценка интенсивности обычно проводится по модифицированной 12-балльной шкале Меркалли.
1 балл. Ощущается немногими особо чувствительными людьми в особенно благоприятных для этого обстоятельствах.
3 балла. Ощущается людьми как вибрация от проезжающего грузовика.
4 балла. Дребезжат посуда и оконные стекла, скрипят двери и стены.
5 баллов. Ощущается почти всеми; многие спящие просыпаются. Незакрепленные предметы падают.
6 баллов. Ощущается всеми. Небольшие повреждения.
8 баллов. Падают дымовые трубы, памятники, рушатся стены. Меняется уровень воды в колодцах. Сильно повреждаются капитальные здания.
10 баллов. Разрушаются кирпичные постройки и каркасные сооружения. Деформируются рельсы, возникают оползни.
12 баллов. Полное разрушение. На земной поверхности видны волны.
В России и некоторых соседних с ней странах принято оценивать интенсивность колебаний в баллах МSК (12-балльной шкалы Медведева- Шпонхойера- Карника), в Японии- в баллах ЯМА (9-балльной шкалы Японского метеорологического агентства).
Интенсивность в баллах (выражающихся целыми числами без дробей) определяется при обследовании района, в котором произошло землетрясение, или опросе жителей об их ощущениях при отсутствии разрушений, или же расчетами по эмпирически полученным и принятым для данного района формулам. Среди первых сведений о произошедшем землетрясении становится известной именно его магнитуда, а не интенсивность. Магнитуда определяется по сейсмограммам даже на больших расстояниях от эпицентра.
8. Последствия землетрясений
Сильные землетрясения оставляют множество следов, особенно в районе эпицентра: наибольшее распространение имеют оползни и осыпи рыхлого грунта и трещины на земной поверхности. Характер таких нарушений в значительной степени определяется геологическим строением местности. В рыхлом и водонасыщенном грунте на крутых склонах часто происходят оползни и обвалы, а мощная толща водонасыщенного аллювия в долинах деформируется легче, чем твердые породы. На поверхности аллювия образуются просадочные котловины, заполняющиеся водой. И даже не очень сильные землетрясения получают отражение в рельефе местности.
Смещения по разломам или возникновение поверхностных разрывов могут изменить плановое и высотное положение отдельных точек земной поверхности вдоль линии разлома, как это произошло во время землетрясения 1906 в Сан-Франциско. При землетрясении в октябре 1915 в долине Плезант в Неваде на разломе образовался уступ длиной 35 км и высотой до 4,5 м. При землетрясении в мае 1940 в долине Импириал в Калифорнии подвижки произошли на 55-километровом участке разлома, причем наблюдались горизонтальные смещения до 4,5 м. В результате Ассамского землетрясения (Индия) в июне 1897 в эпицентральной области высота местности изменилась не менее, чем на 3 м.
Значительные поверхностные деформации прослеживаются не только вблизи разломов и приводят к изменению направления речного стока, подпруживанию или разрывам водотоков, нарушению режима источников воды, причем некоторые из них временно или навсегда перестают функционировать, но в то же время могут появиться новые. Колодцы и скважины заплывают грязью, а уровень воды в них ощутимо меняется. При сильных землетрясениях вода, жидкая грязь или песок могут фонтанами выбрасываться из грунта.
При смещении по разломам происходят повреждения автомобильных и железных дорог, зданий, мостов и прочих инженерных сооружений. Однако качественно построенные здания редко разрушаются полностью. Обычно степень разрушений находится в прямой зависимости от типа сооружения и геологического строения местности. При землетрясениях умеренной силы могут происходить частичные повреждения зданий, а если они неудачно спроектированы или некачественно построены, то возможно и их полное разрушение.
При очень сильных толчках могут обрушиться и сильно пострадать сооружения, построенные без учета сейсмической опасности. Обычно не обрушиваются одно- и двухэтажные постройки, если у них не очень тяжелые крыши. Однако бывает, что они смещаются с фундаментов и часто у них растрескивается и отваливается штукатурка.
Дифференцированные движения могут приводить к тому, что мосты сдвигаются со своих опор, а инженерные коммуникации и водопроводные трубы разрываются. При интенсивных колебаниях уложенные в грунт трубы могут «складываться», всовываясь одна в другую, или выгибаться, выходя на поверхность, а железнодорожные рельсы деформироваться. В сейсмоопасных районах сооружения должны проектироваться и строиться с соблюдением строительных норм, принятых для данного района в соответствии с картой сейсмического районирования.
В густонаселенных районах едва ли не больший ущерб, чем сами землетрясения, наносят пожары, возникающие в результате разрыва газопроводов и линий электропередач, опрокидывания печей, плит и разных нагревательных приборов. Борьба с пожарами затрудняется из-за того, что водопровод оказывается поврежденным, а улицы непроезжими вследствие образовавшихся завалов.
Сопутствующие явления.
Иногда подземные толчки сопровождаются хорошо различимым низким гулом, когда частота сейсмических колебаний лежит в диапазоне, воспринимаемом человеческим ухом, иногда такие звуки слышатся и при отсутствии толчков. В некоторых районах они представляют собой довольно обычное явление, хотя ощутимые землетрясения происходят очень редко. Имеются также многочисленные сообщения о возникновении свечения во время сильных землетрясений. Общепринятого объяснения таких явлений пока нет. Цунами (большие волны на море) возникают при быстрых вертикальных деформациях морского дна во время подводных землетрясений. Цунами распространяются в океанах в пределах глубоководных зон океанов со скоростью 400-800 км/ч и могут вызвать разрушения на берегах, удаленных на тысячи километров от эпицентра. У близлежащих к эпицентру берегов эти волны иногда достигают в высоту 30м.
При многих сильных землетрясениях помимо основных толчков регистрируются форшоки (предшествующие землетрясения) и многочисленные афтершоки (землетрясения, следующие за основным толчком). Афтершоки обычно слабее, чем основной толчок, и могут повторяться в течение недель и даже лет, становясь все реже и реже.
9. Географическое распространение землетрясений
Большинство землетрясений сосредоточено в двух протяженных, узких зонах. Одна из них обрамляет Тихий океан, а вторая тянется от Азорских о-вов на восток до Юго-Восточной Азии.
Тихоокеанская сейсмическая зона проходит вдоль западного побережья Южной Америки. В Центральной Америке она разделяется на две ветви, одна из которых следует вдоль островной дуги Вест-Индии, а другая продолжается на север, расширяясь в пределах США, до западных хребтов Скалистых гор. Далее эта зона проходит через Алеутские о-ва до Камчатки и затем через Японские о-ва, Филиппины, Новую Гвинею и острова юго-западной части Тихого океана к Новой Зеландии и Антарктике.
Вторая зона от Азорских о-вов простирается на восток через Альпы и Турцию. На юге Азии она расширяется, а затем сужается и меняет направление на меридиональное, следует через территорию Мьянмы, острова Суматра и Ява и соединяется с циркумтихоокеанской зоной в районе Новой Гвинеи.
Выделяется также зона меньшего размера в центральной части Атлантического океана, следующая вдоль Срединно-Атлантического хребта.
Существует ряд районов, где землетрясения происходят довольно часто. К ним относятся Восточная Африка, Индийский океан и в Северной Америке долина р.Св. Лаврентия и северо-восток США.
Иногда в районах, которые принято считать неактивными, происходят сильные землетрясения, как, например, в Чарлстоне (шт. Южная Каролина) в 1886.
По сравнению с мелкофокусными глубокофокусные землетрясения имеют более ограниченное распространение. Они не были зарегистрированы в пределах Тихоокеанской зоны от южной Мексики до Алеутских о-вов, а в Средиземноморской зоне- к западу от Карпат. Глубокофокусные землетрясения характерны для западной окраины Тихого океана, Юго-Восточной Азии и западного побережья Южной Америки. Зона с глубокофокусными очагами обычно располагается вдоль зоны мелкофокусных землетрясений со стороны материка.
10. Прогноз землетрясений
Для повышения точности прогноза землетрясений необходимо лучше представлять механизмы накопления напряжений в земной коре, крипа и деформаций на разломах, выявить зависимости между тепловым потоком из недр Земли и пространственным распределением землетрясений, а также установить закономерности повторяемости землетрясений в зависимости от их магнитуды.
Во многих районах земного шара, где существует вероятность возникновения сильных землетрясений, ведутся геодинамические наблюдения с целью обнаружения предвестников землетрясений, среди которых заслуживают особого внимания изменения сейсмической активности, деформации земной коры, аномалии геомагнитных полей и теплового потока, резкие изменения свойств горных пород (электрических, сейсмических и т.п.), геохимические аномалии, нарушения водного режима, атмосферные явления, а также аномальное поведение насекомых и других животных (биологические предвестники). Такого рода исследования проводятся на специальных геодинамических полигонах (например, Паркфилдском в Калифорнии, Гармском в Таджикистане и др.). С 1960 работает множество сейсмических станций, оборудованных высокочувствительной регистрирующей аппаратурой и мощными компьютерами, позволяющими быстро обрабатывать данные и определять положение очагов землетрясений.
11. Моретрясения
Если эпицентр землетрясения находится на дне моря или на суше, но вблизи от морского берега, то на море возникают явления, которые принято называть моретрясениями. Следует подчеркнуть, что выделение моретрясений имеет чисто формальный характер и отражает лишь разные формы проявления одного и того же процесса на суше и в жидкой среде океана. Землетрясения с эпицентрами вблизи от берега вызывают моретрясения, а моретрясение с эпицентрами вблизи от континента ощущается там как обычное землетрясение. Изменения морского дна при моретрясении имеют такой же характер, как и изменения поверхности суши.
Однако на поверхности моря моретрясения проявляются иначе, чем землетрясения на суше. Сильные моретрясения вызывают огромные волны, называемые цунами (от япон. «цунами» -- волна) и представляющие собой одну из форм волн тяжести на поверхности воды. Отступание и наступание моря в прибрежных районах, связанное с появлением волн цунами, или сопровождаются сейсмическими толчками, или следуют непосредственно вслед за ними. При этом цунами атакуют сушу настолько быстро, что вызывают катастрофы не менее губительные, чем само землетрясение. Обычно отступание моря от берега продолжается от 5 до 35 мин и лишь в редких случаях -- несколько часов. Так, при землетрясении в Перу в 1690 г. море отступило и вернулось только через 3 ч. Во время лиссабонского землетрясения 1755 г. море сначала отступило, а потом вернулось мощной волной, превышающей средний морской уровень на 26 м. Эта волна проникла в глубь суши на 15 км, выбросила на берег много судов, разрушила все, что уцелело при землетрясении, и явилась причиной гибели нескольких десятков тысяч человек.
Иногда отступание и наступание моря повторяется несколько раз. Это имело, например, место на Камчатке вблизи от пос. Усть-Камчатска в 1923 г. 5 февраля 1923 г. в этом районе произошло довольно сильное землетрясение. 14 апреля землетрясение повторилось и сопровождалось идущими последовательно волнами цунами, следовавшими за подземными толчками и достигавшими 450 км в длину при высоте 6,5 м. Очевидцы катастрофы описывают ее следующим образом: «Спустя 15 мин после сильного подземного толчка послышался с моря сильный шум, казалось, что море устремилось на сушу… На рассвете взору предстала ужасная картина: коса оказалась совершенно чистой от построек, которые были смыты гигантской волной. На месте завода виднелась бесформенная груда обломков…».
Скорость сейсмической волны в море превышает 1400 м/сек, т. е. почти равна скорости звука в морской воде (1440 м/сек). Скорость возникающей при толчке морской волны гораздо меньше и меняется от 20 до 100 м/сек в мелких местах и до 200 м/сек на глубине. Таким образом, цунами значительно отстают от сейсмических волн, передающих толчки, причем отставание тем больше, чем дальше от берега находится эпицентр толчка.
В августе 1868 г. в Арике (Чили) волна в несколько метров высотой обрушилась на берег через 20 мин после первого толчка. Она вскоре отхлынула, но затем последовала опустошительная волна высотой до 20 м, а затем за ней -- еще несколько меньших волн. Максимальная волна распространилась по всему Тихому океану. Через 12 ч она достигла Гавайских островов, через 19 ч -- Новой Зеландии, где еще имела высоту 3 м и смыла 25 тыс. человек. Через 24 ч эта волна достигла Японии.
Возникновение волн цунами в открытом море до сих пор никто не наблюдал. Может быть, эти волны надо рассматривать, как колебания всей массы воды в океаническом бассейне, подобно тому как колеблется вода в сотрясаемом сосуде, выплескиваясь через его края. В этом случае в открытом море никакой волны вообще не будет заметно, а она возникает только у берегов.
Кроме цунами, производящих опустошения в прибрежных районах, толчки и колебания моря наблюдаются и вдали от берегов. По наблюдениям моряков, сейсмические явления в море, прежде всего, проявляются в виде толчка. Если толчок сильный, то, кажется, что судно натолкнулось на мель. Все неустойчивые предметы опрокидываются, и люди с трудом удерживаются на ногах. Толчок сопровождается глухим шумом. При вертикальном ударе, кажется, что судно, вдруг поднявшись, снова опускается и останавливается. Боковые толчки резко наклоняют корабль. Продолжительность толчков обычно не превышает нескольких секунд.
Обычно даже самые сильные толчки вдали от берега не производят сильного волнения. Гораздо реже поверхность моря как бы вспучивается, образуя кратковременные течения по всем направлениям. Иногда вода подбрасывается струями на высоту 0,3--0,5 м и как бы вскипает с выделением, газов. Иногда на поверхность выбрасываются оглушенные рыбы. Возможно, подобные явления связаны с деятельностью подводных вулканов. Наблюдение моретрясений позволило установить для них шкалу интенсивности, которая носит пока схематический характер и не связана с какими-либо числовыми параметрами.
Последствиями моретрясений становятся гигантские волны, или, как их называют, цунами. В открытом океане эти волны можно даже не заметить. Единственное, что их выделяет - это огромная скорость. Волны несутся со скоростью почти восемьсот километров в час. Вдумайтесь в эти цифры, с такой скоростью летают некоторые самолеты.
По мере приближения к берегу, волны начинают вырастать, а скорость их заметно падает. В такие моменты море как будто отступает назад, чтобы потом на берег обрушились несколько громаднейших волн. Высота таких волн достигает двадцати метров, сравнить это можно с городской шестнадцатиэтажкой.
В качестве примера можно привести одно из самых разрушительных моретрясений в истории человечества, которое произошло в 1755 году в столице Португалии Лиссабоне. На город обрушилась семнадцатиметровая волна. Последующие толчки довершили начатое волной: треть города просто стерло с лица Земли, более шестидесяти тысяч человек погибли.
Не стоит забывать о том, что поверхность нашей планеты постоянно движется. Землетрясения катастрофической силы, конечно, происходят достаточно редко. При этом сейсмологи каждый год регистрируют до пятисот тысяч подземных толчков.
12. Цунами
Цунами (яп. ’Г”g, где ’Г -- «порт, залив», ”g -- «волна») -- это длинные волны, порождаемые мощным воздействием на всю толщу воды в океане или другом водоёме. Причиной большинства цунами являются подводные землетрясения, во время которых происходит резкое смещение (поднятие или опускание) участка морского дна. Цунами образуются при землетрясении любой силы, но большой силы достигают те, которые возникают из-за сильных землетрясений (более 7 баллов). В результате землетрясения распространяется несколько волн. Более 80 % цунами возникают на периферии Тихого океана. Первое научное описание явления дал Хосе де Акоста в 1586 в Лиме, Перу после мощного землетрясения, тогда цунами высотой 25 метров ворвалось на сушу на расстояние 10 км.
В открытом океане волны цунами распространяются со скоростью
,
где g -- ускорение свободного падения, а H -- глубина океана (так называемое приближение мелкой воды, когда длина волны существенно больше глубины). При средней глубине 4000 метров скорость распространения получается 200 м/с или 720 км/час. В открытом океане высота волны редко превышает один метр, а длина волны (расстояние между гребнями) достигает сотен километров, и поэтому волна не опасна для судоходства. При выходе волн на мелководье, вблизи береговой черты, их скорость и длина уменьшаются, а высота увеличивается. У берега высота цунами может достигать нескольких десятков метров. Наиболее высокие волны, до 30--40 метров, образуются у крутых берегов, в клинообразных бухтах и во всех местах, где может произойти фокусировка. Районы побережья с закрытыми бухтами являются менее опасными. Цунами обычно проявляется как серия волн, так как волны длинные, то между приходами волн может проходить более часа. Именно поэтому не стоит возвращаться на берег после ухода очередной волны, а стоит выждать несколько часов.
13. Причины образования цунами
Подводное землетрясение (около 85 % всех цунами). При землетрясении под водой образуется вертикальная подвижка дна: часть дна опускается, а часть приподнимается. Поверхность воды приходит в колебательное движение по вертикали, стремясь вернуться к исходному уровню, -- среднему уровню моря, -- и порождает серию волн. Далеко не каждое подводное землетрясение сопровождается цунами. Цунамигенным (то есть порождающим волну цунами) обычно является землетрясение с неглубоко расположенным очагом. Проблема распознавания цунамигенности землетрясения до сих пор не решена, и службы предупреждения ориентируются на магнитуду землетрясения. Наиболее сильные цунами генерируются в зонах субдукции.
Оползни. Цунами такого типа возникают чаще, чем это оценивали в ХХ веке (около 7 % всех цунами). Зачастую землетрясение вызывает оползень и он же генерирует волну. 9 июля 1958 года в результате землетрясения на Аляске в бухте Литуйя возник оползень. Масса льда и земных пород обрушилась с высоты 1100 м. Образовалась волна, достигшая на противоположном берегу бухты высоты более 500 м.[1][2] Подобного рода случаи весьма редки и, конечно, не рассматриваются в качестве эталона. Но намного чаще происходят подводные оползни в дельтах рек, которые не менее опасны. Землетрясение может быть причиной оползня и, например, в Индонезии, где очень велико шельфовое осадконакопление, оползневые цунами особенно опасны, так как случаются регулярно, вызывая локальные волны высотой более 20 метров.
Вулканические извержения (около 4,99 % всех цунами). Крупные подводные извержения обладают таким же эффектом, что и землетрясения. При сильных вулканических взрывах образуются не только волны от взрыва, но вода также заполняет полости от извергнутого материала или даже кальдеру в результате чего возникает длинная волна. Классический пример -- цунами, образовавшееся после извержения Кракатау в 1883 году. Огромные цунами от вулкана Кракатау наблюдались в гаванях всего мира и уничтожили в общей сложности 5000 кораблей, погибло 36 000 человек.
Человеческая деятельность. В наш век атомной энергии у человека в руках появилось средство вызывать сотрясения, раньше доступные лишь природе. В 1946 году США произвели в морской лагуне глубиной 60 м подводный атомный взрыв с тротиловым эквивалентом 20 тыс. тонн. Возникшая при этом волна на расстоянии 300 м от взрыва поднялась на высоту 28,6 м, а в 6,5 км от эпицентра ещё достигала 1,8 м. Но для дальнего распространения волны нужно вытеснить или поглотить некоторый объём воды, и цунами от подводных оползней и взрывов всегда несут локальный характер. Если одновременно произвести взрыв нескольких водородных бомб на дне океана, вдоль какой-либо линии, то не будет никаких теоретических препятствий к возникновению цунами, такие эксперименты проводились, но не привели к каким-либо существенным результатам по сравнению с более доступными видами вооружений. В настоящее время любые подводные испытания атомного оружия запрещены серией международных договоров.
Падение крупного небесного тела может вызвать огромное цунами, так как, имея огромную скорость падения, данные тела имеют также колоссальную кинетическую энергию, которая будет передана воде, следствием чего и будет волна. Так, падение метеорита 65 млн лет назад тоже вызвало цунами, отложения которого найдены на территории штата Техас.
Ветер может вызывать большие волны (примерно до 20 м), но такие волны не являются цунами, так как они короткопериодные и не могут вызывать затопления на берегу. Однако возможно образование метео-цунами при резком изменении давления или при быстром перемещении аномалии атмосферного давления. Такое явление наблюдается на Балеарских островах и называется Риссага (en:Rissaga).
14. Признаки появления цунами
Внезапный быстрый отход воды от берега на значительное расстояние и осушка дна. Чем дальше отступило море, тем выше могут быть волны цунами. Люди, находящиеся на берегу и не знающие об опасности, могут остаться из любопытства или для сбора рыбы и ракушек. Таким правилом следует руководствоваться, находясь, например, в Японии, на Индоокеанском побережье Индонезии, Камчатке. В случае телецунами волна обычно подходит без отступления воды.
Землетрясение. Эпицентр землетрясения находится, как правило, в океане. На берегу землетрясение обычно гораздо слабее, а часто его нет вообще. В цунамиопасных регионах есть правило, что если ощущается землетрясение, то лучше уйти дальше от берега и при этом забраться на холм, таким образом заранее подготовиться к приходу волны.
Необычный дрейф льда и других плавающих предметов, образование трещин в припае.
Громадные взбросы у кромок неподвижного льда и рифов, образование толчеи, течений.
Почему цунами часто приводит к большим жертвам?
Может быть непонятным, почему цунами высотой несколько метров оказалось катастрофическим, в то время, как волны той же высоты, возникшие во время шторма, к жертвам и разрушениям не приводят? Можно назвать несколько факторов, которые приводят к катастрофическим последствиям:
Высота волны у берега в случае цунами, вообще говоря, не является определяющим фактором. В зависимости от конфигурации дна возле берега, явление цунами может пройти вовсе без волны, в обычном понимании, а как серия стремительных приливов и отливов, что также может привести к жертвам и разрушениям.
Во время шторма в движение приходит лишь приповерхностный слой воды, во время цунами -- вся толща. И на берег при цунами выплёскиваются намного большие массы воды.
Скорость волн цунами, даже у берега, превышает скорость ветровых волн. Кинетическая энергия у волн цунами больше.
Цунами, как правило, порождает не одну, а несколько волн. Первая волна, не обязательно самая большая, смачивает поверхность, уменьшая сопротивление для последующих волн.
При шторме волнение нарастает постепенно, люди обычно успевают отойти на безопасное расстояние до прихода больших волн. Цунами приходит внезапно.
Сила цунами может возрасти в гавани -- там, где ветровые волны ослабляются, а следовательно, жилые постройки могут стоять у самого берега.
Отсутствие у населения элементарных знаний о возможной опасности. Так, во время цунами 2004 года, когда море отступило от берега, многие местные жители оставались на берегу -- из любопытства или из желания собрать не успевшую уйти рыбу. Кроме того, после первой волны многие возвращались в свои дома -- оценить ущерб или пытаться найти близких, не зная о последующих волнах.
Система оповещения о цунами есть не везде и работает не всегда.
Разрушение береговой инфраструктуры усугубляет бедствие, добавляя катастрофические техногенные и социальные факторы. Затопление низменностей, долин рек приводит к засолению почв.
15. Системы предупреждения цунами
Системы предупреждения цунами строятся главным образом на обработке сейсмической информации. Если землетрясение имеет магнитуду более 7,0 (в прессе это называют баллами по шкале Рихтера) и центр расположен под водой, то подаётся предупреждение о цунами. В зависимости от региона и заселённости берегов условия выработки сигнала тревоги могут быть различными.
Вторая возможность предупреждения о цунами это предупреждение «по факту» -- способ более надёжный, так как практически отсутствуют ложные тревоги, но часто такое предупреждение может быть выработано слишком поздно. Предупреждение по факту полезно для телецунами -- глобальных цунами, оказывающих влияние на весь океан и приходящих на другие границы океана спустя несколько часов. Так индонезийское цунами в декабре 2004 года для Африки является телецунами. Классическим случаем являются Алеутские цунами -- после сильного заплеска на Алеутах можно ожидать существенный заплеск на Гавайских островах. Для выявления волн цунами в открытом океане используются придонные датчики гидростатического давления. Система предупреждения, основанная на таких датчиках со спутниковой связью с приповерхностного буя, разработанная в США, называется DART (en:Deep-ocean Assessment and Reporting of Tsunamis). Обнаружив реальную волну тем или иным образом, можно достаточно точно определить время её прибытия в различные населённые пункты.
Существенным моментом системы предупреждения является распространение актуальной информации среди населения. Очень важно, чтобы население представляло, какую угрозу несёт с собой цунами. Японцы имеют множество образовательных программ по природным катастрофам, а в Индонезии население в основном было не знакомо с цунами, что и стало основной причиной большого количества жертв. Также важное значение имеет законодательная база по застройке прибрежной зоны.
16. Наиболее крупные цунами
XX век
5.11.1952 г. Северо-Курильск (СССР).
Вызвано мощным землетрясением (оценка магнитуды по разным источникам колеблется от 8,3 до 9), которое произошло в Тихом океане в 130 километрах от побережья Камчатки. Три волны высотой до 15--18 метров (по разным источникам) уничтожили город Северо-Курильск и нанесли ущерб ряду прочих населённых пунктов. По официальным данным, погибло более двух тысяч человек.
9.03.1957 Аляска, (США).
Вызвано землетрясением с магнитудой 9,1, произошедшим на Андреяновских островах (Аляска), которое вызвало две волны, со средней высотой волн 15 и 8 метров соответственно. Кроме того в результате землетрясения проснулся вулкан Всевидова, расположенный на острове Умнак и не извергавшийся около 200 лет. В катастрофе погибло более 300 человек.
9.07.1958 залив Литуйя, (юго-запад Аляски, США).
Землетрясение, произошедшее севернее залива (на разломе Фэруэтер), инициировало сильный оползень на склоне расположенной над бухтой Литуйя горы (около 300 миллионов кубических метров земли, камней и льда). Вся эта масса завалила северную часть бухты и вызвала огромную волну высотой 524 метра, движущуюся со скоростью 160 км/ч.
28.03.1964 Аляска, (США).
Крупнейшее на Аляске землетрясение (магнитудой 9,2), произошедшее в проливе Принца Уильяма, вызвало цунами из нескольких волн, с наибольшей высотой -- 67 метров. В результате катастрофы (в основном, из-за цунами) по разным оценкам погибло от 120 до 150 человек.
17.07.1998 Папуа-Новая Гвинея
Землетрясение с магнитудой 7,1, произошедшее на северо-западном побережье острова Новая Гвинея, вызвало мощный подводный оползень, породивший цунами, в результате которого погибло более 2 000 человек.
XXI век
06.09.2004 побережье Японии
В 110 км от побережья полуострова Кии и в 130 км от побережья префектуры Коти произошли два сильных землетрясения (магнитудой до 6.8 и 7,3 соответственно), вызвавших цунами, с высотой волн до одного метра. Пострадало несколько десятков человек.
26.12.2004 Юго-Восточная Азия.
В 00:58 произошло мощнейшее землетрясение -- второе по мощности из всех зарегистрированных (магнитудой 9,3), вызвавшее мощнейшее из всех известных цунами. От цунами пострадали страны Азии (Индонезия -- 180 тыс. человек, Шри-Ланка -- 31-39 тыс. человек, Таиланд -- более 5 тыс. человек и др.) и африканская Сомали. Общее количество погибших превысило 235 тыс. человек.
09.01.2005 г. острова Идзу и Миякэ (восток Японии)
Землетрясение магнитудой 6,8 вызвало цунами с высотой волны 30-50 см. Однако, благодаря своевременному предупреждению, население из опасных районов было эвакуировано.
2.04.2007 Соломоновы острова (архипелаг)
Вызвано землетрясением магнитудой 8, произошедшим в южной части Тихого океана. Волны в несколько метров высотой достигли и Новой Гвинеи. Жертвами цунами стали 52 человек.
Цунами относится к наиболее грозным стихийным бедствиям. Возникая обычно в результате сейсмотектонических подвижек дна в зоне сейсмического очага, волны цунами распространяются далеко от источника, нанося ущерб там, где само землетрясение не ощущалось. Эффект неожиданности атаки цунами является дополнительным фактором риска. Можно привести пример Чилийского цунами 12 мая 1960 г., в результате которого погиб 61 человек и было разрушено около 450 домов на Гавайских островах. Эта волна вызвала значительный ущерб и на побережье Японии. Интересно, что максимальные высоты волн цунами, зарегистрированные на западном побережье Охотского моря, были связаны именно с этим цунами: 2.7 м на побережье Сахалина и свыше 4 м в районе Магадана. Цунами, вызванные землетрясениями в районе Перу, многократно регистрировались на побережье Японии.
Учитывая специфический характер поражающих факторов цунами, это стихийное бедствие можно отнести к одному из наиболее неотвратимых природных явлений. Чудовищные объемы морской воды, накатывающие на берег, в большинстве случаев не могут быть остановлены искусственными защитными сооружениями. Высота наводнения порой превышает 10 м, а в некоторых зонах побережья (в области мелководного шельфа, в устья рек и др.) волна приобретает форму бора (водной стены). Двигаясь с огромной скоростью вглубь берега, этот вал воды аккумулирует колоссальную динамическую энергию, уничтожая на своем пути суда и строения. Наиболее эффективной защитой от этого бедствия являются мероприятия по своевременной эвакуации населения в безопасные зоны побережья и увод судов в открытое море. Естественно, в этом случае важен фактор заблаговременности поступления информации о приближении волны. Своевременный оперативный прогноз цунами - это, пожалуй, наиболее важный аспект этой проблемы. Трагический урок цунами 26 декабря 2004 г. в Индийском океане показал необходимость создания оперативной службы цунами в этом регионе. Значительная часть из более 400 тыс. погибших могли бы быть спасены, если б вовремя была организована эвакуация из зоны затопления. Однако и само по себе знание степени опасности цунами на том или ином участке побережья позволяет предотвратить вероятный ущерб за счет правильной организации хозяйственной и коммунальной деятельности в прибрежной зоне, включая планирование строительства, создание путей эвакуации населения, проведение мероприятий по обучению жителей, проживающих в цунамиопасных зонах.
Заключение
Безопасность человека и среды его обитания становится важнейшей характеристикой качества жизни и состояния экономики. Первостепенное значение приобретает необходимость изучения риска для человека и общества со стороны экономических и социальных структур и путей его предотвращения, а также соблюдение прав человека на безопасные условия проживания.
землетрясение моретрясение цунами
Используемая литература
1. Геология о теории и практике. Моретрясения. Электронный ресурс: http://www.mygeos.com/2010/02/21/moretryaseniya,режим доступа свободный. Проверено: 24.10.10.
2. Землетрясения. Моретрясения. Электронный ресурс: http://www.epicentrum.ru/more.php, режим доступа свободный. Проверено: 24.10.10.
3. Куликов Евгений Аркадьевич. Изучение цунами: измерение, анализ, моделирование: Дис. …д-ра физ.-мат.наук:25.00.28. Москва, 2005 228 c. РГБ ОД, 71:05-1/342. Электронный ресурс: http://www.lib.ua-ru.net/diss/cont/187169.html, режим доступа свободный. Проверено: 24.10.10.
4. Средство массовой информации. Материал из Википедии -- свободной энциклопедии. Электронный ресурс: http://ru.wikipedia.org/wiki/%D0%A6%D1%83%D0%BD%D0%B0%D0%BC%D0%B8, режим доступа свободный. Проверено: 24.10.10.
Размещено на Allbest.ru
Подобные документы
Основные причины, вызывающие волнение океанической воды. Влияние силы притяжения Луны и Солнца на появление мощных волн приливов и отливов. Образование гигантских волн цунами во время подводных землетрясений и извержений вулканов. Величина волнения волны.
презентация [1,7 M], добавлен 20.04.2016Связь ускорения вращательного движения Земли и сейсмичности планеты (сумма сейсмических событий). Соотношение величины возмущающего фактора и ответной реакции среды. Земная кора как объект в процессе подготовки и реализации тектонического землетрясения.
реферат [1,0 M], добавлен 28.08.2012Подземные толчки и колебания земной поверхности, возникающие в результате смещения и разрывов в земной коре или верхней части мантии Земли. Регистрация подземных толчков, их силы и продолжительности. Вулканические, техногенные и обвальные землетрясения.
презентация [1,4 M], добавлен 03.12.2011Понятие цунами как природного явления, основные причины и предпосылки его возникновения и развития. География и принципы распространения волны, оценка негативного воздействия на пораженное побережье. Важность систем оповещения о приближающихся цунами.
курсовая работа [1,2 M], добавлен 27.01.2015Извержение вулканов, сели, оползни, землетрясения - геологические чрезвычайные ситуации природного характера: причины, основные характеристики, классификация; человеческие жертвы и материальный ущерб. Меры безопасности, предупредительные мероприятия.
реферат [30,4 K], добавлен 02.05.2012Анализ изученности формы и размеров Земли на современном этапе. Определение общего земного сфероида. Гравиметрический, космический и геометрический методы изучения фигуры Земли. Географическое значение формы и размеров планеты. Измерения дуг меридианов.
курсовая работа [1,9 M], добавлен 08.11.2014Физико-географическое положение и формы рельефа Евразии. Распространение на территории всех основных природных зон Земли. Внутренние воды и климатические условия. Неравномерность выпадения осадков. Особенности животного и растительного мира Евразии.
курсовая работа [2,8 M], добавлен 21.03.2015Изучение внутреннего строения Земли. Внутреннее строение, физические свойства и химический состав Земли. Движение земной коры. Вулканы и землетрясения. Внешние процессы, преображающие поверхность Земли. Минералы и горные породы. Рельеф земного шара.
реферат [2,4 M], добавлен 15.08.2010Понятие литосферы, гипотезы происхождения Земли и сущность предположений Шмидта-Фесенкова. Этапы образования земной коры и ее строение. Характеристика пограничных областей между литосферными плитами, формирование и значение сейсмических поясов на Земле.
презентация [3,7 M], добавлен 27.10.2011Землетрясение как одно из самых опасных и разрушительных явлений природы, причины возникновения. Теория тектоники плит. Методы оценки силы землетрясения. Шкала интенсивности землетрясения применительно к зданиям в баллах. Сейсмические районы земного шара.
реферат [12,1 K], добавлен 12.01.2010