Моделирование системы поддержки принятия решений об инвестировании в инновационные проекты ранних стадий развития

Характерные черты инновационных проектов ранних стадий развития. Оптимизация оценки инновационных проектов и принятия решения по инвестированию. Программное обеспечение для многопараметрической оценки и кластеризации инновационных проектов ранних стадий.

Рубрика Финансы, деньги и налоги
Вид статья
Язык русский
Дата добавления 29.03.2019
Размер файла 216,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФГБОУ ВО «Волгоградский государственный аграрный университет»

Моделирование системы поддержки принятия решений об инвестировании в инновационные проекты ранних стадий развития

Конченкова Е.И., Фомиченко А.С.

Развитие высокотехнологичных секторов российской экономики невозможно представить без появления и активного роста большого количества малых инновационных предприятий, которые создавали и продвигали бы на российский, а так же международный рынок востребованные конкурентоспособные товары и услуги. Развитие именно такого рода компаний зачастую может требовать привлечения «комфортного» венчурного капитала. Основным источником такого капитала на ранних стадиях развития малых инновационных компаний являются частные инвесторы.

В настоящее время в большинстве регионов нашей страны существует достаточно большое количество успешных предпринимателей, а так же высококвалифицированных менеджеров, обладающих значительными объемами свободных денежных средств, а так же потенциальной готовностью к индивидуальной инвестиционной деятельности, либо вхождению в ассоциацию частных инвесторов для совместного инвестирования в инновационные проекты.

В современном финансовом мире частные инвесторы - неотъемлемая часть формирования здоровой экономики. Согласно утверждениям экспертов, накопленный размер вложений, сделанных частными инвесторами за последние 30 лет, в два раза превысил значения вложений, сделанных венчурными инвесторами. Специалисты Центра Венчурных Исследований в Витморской школе бизнеса и экономики при Университете Нью-Хэмпшира (Великобритания) вычислили, что вложения частных инвесторов составляют примерно 20 миллиардов долларов США в год.

Размер вложений частных инвесторов сопоставим с инвестициями венчурных фондов, из которых лишь 2% представляют собой вложения в компании ранних стадий развития своего развития. Помимо этого, частные инвесторы зачастую являются хорошими специалистами в области ведения бизнеса, способными давать полезные практические советы предпринимателям, желающим грамотно развивать свою компанию.

Актуальность темы исследования. Институт частного инвестирования в России представляет собой сегмент венчурного инвестирования, на котором работают физические и юридические лица, инвестирующие свободные денежные средства в инновационные проекты ранних стадий развития (pre-seed-ы, seed-ы, start-up-ы).

Инновационные проекты ранних стадий развития характеризуются своей уникальностью и высокой степенью неопределенности и рискованностью. Так же в силу того, что в России данный сегмент венчурного инвестирования находится в стадии формирования, не существует определенного алгоритма оценки и принятия решений по инновационным проектам, подаваемым на рассмотрение частным инвесторам. В связи с этим для оптимизации оценки инновационных проектов и принятия решения по инвестированию достаточно острым является отбор наиболее значимых критериев оценки проекта, которые стали бы универсальным набором характеристик проекта. Так же существует безусловная необходимость разработки универсального алгоритма работы частного инвестора с заявками на инвестирование, с дальнейшей разработкой системы поддержки принятия решений по каждому инновационному проекту. Именно решение данных проблем позволит облегчить работу частных инвесторов и ускорить процесс принятия решений по каждому проекту. инновационный проект инвестирование решение

Для решения подобного рода задач весьма удачно подходят такие «интеллектуальные» системы анализа данных, как сети простейших нейропроцессоров. Отсюда вытекает необходимость и обоснованность разработки универсального программного обеспечения для многопараметрической оценки и кластеризации инновационных проектов ранних стадий развития и принятия решения об инвестировании, основанного на современных интеллектуальных компьютерных системах.

Хотелось бы отметить, что инициаторы инновационных проектов на стадии наличия своих идей зачастую не имеют начального капитала для реализации своих проектов. Поэтому они вынуждены искать денежные средства для воплощения своих идей. Так, денежные средства можно взять в кредит в банке, либо обращаться в различные фонды. Либо же можно найти частного инвестора (бизнес-ангела). В случае удачного знакомства с инвестором и заинтересованности инвестора в проекте - начинается работа с идеей. Тем не менее, можно заметить, что эксперту (бизнес-ангелу или инновационному менеджеру) необходимо постоянно поддерживать связь с инициатором отобранного для рассмотрения инновационного проекта (инициаторами). На рисунке 1 отражена основная схема взаимодействия инновационного менеджера и представителей проекта.

Рисунок 1 Взаимодействие менеджера и инициатора проекта [1,2]

Первым этапом является формирование инициаторами инновационных проектов заявок на инвестирование, которые сохраняются в базе данных заявок или у инвесторов. Далее менеджер (или инвестор) отбирает наиболее близкие себе проекты. Далее начинается анализ информации о проекте, а так же построение графика работ с проектом, в частности - работа с инициаторами проекта. Далее готовится уже заключение эксперта (на основе внутренней экспертизы и привлечения регионального партнера, обеспечивающего более плотное взаимодействие с инициаторами проектов. И последним этапом уже является принятие решения о судьбе проекта.

Как можно заметить, данная схема работы с заявками на инвестирование достаточно сложна и способна обеспечить полноценный анализ поступающей к инвесторами информации. Поэтому в ходе исследования было принято разрабатывать систему поддержки принятия решения для анализа инновационных проектов ранних стадий развития.

Проектирование информационной системы для анализа претендующих на инвестирование инновационных проектов ранних стадий развития

В настоящее время создание удобного и надежного инструментария для оценки инновационных проектов на ранних стадиях развития, дающей достаточно точные выходные данные, является как научной, так и практической проблемой, поиск решения которой является весьма актуальным. Поэтому главной целью исследования является разработка методического инструментария для оценки инновационных проектов и последующего принятия решения об инвестировании путем кластеризации полученных оценок на базе сетей нейропроцессоров. В экономике использование искусственного интеллекта в настоящее время активно использует для предсказания различных экономических явлений (рисков, наступления банкротства), рейтингования, обработки и анализа экономической информации, а так же классификации экономических объектов [5,6].

Оценка инновационного проекта в целом происходит с помощью различных подходов, в зависимости от конкретного частного инвестора. Но и, тем не менее, данный процесс занимает достаточно длительное время, и анализ всей информации, в основном, происходит «в голове» инвестора. При этом достаточно большое количество важной информации может быть упущено. В связи с этим весьма актуальным является применение для оценки инновационных проектов ранних стадий развития нейронных сетей, работа которых в общем случае очень приближена к работе головного мозга человека. Стоит отметить, что нейронные сети ранее не применялись для достижения поставленных целей. Тем не менее, сети нейронные сами по себе являются программными продуктами и нуждаются в проектировании.

Проводимые на кафедре «Информационные системы в экономике» научные исследования в области оптимизации процесса принятия решений на рынке частного венчурного инвестирования позволили Е.И. Конченковой (Брагиной) и А.Г. Гагарину разработать программу «Модуль формирования результатов экспертизы в виде цветографических схем», предназначенную для кластеризации поступающих на рассмотрение инвестору инновационных проектов с использованием аппарата искусственных нейронных сетей. Данная программа предназначена для использования частными инновационными инвесторами, а так же сетями и ассоциациями частных инвесторов, для проведения сравнительной оценки инвестиционных проектов на основе цветографических карт. В статьях 1-4 описан подробный механизм формирования цветографических карт и критерии оценки инновационных проектов.

В процессе проектирования программы авторами использовалась методология Iintegration Definition for Function Modeling (IDEF0). Методология IDEF0 используется разработчиками для создания функциональных моделей, отражающих функции и структуру создаваемой системы, а также имеющиеся внутри разрабатываемой системы потоки информации и материальных объектов, связывающие функции внутри системы.

Алгоритм анализа и многопараметрической кластеризации инновационных проектов ранних стадий развития представляется следующим образом:

- Определение структуры системы;

- Определение шкал оценок проектов и их числовых значений для дальнейшей обработки;

- Формирование информационных массивов, полученных от экспертов (частных инвесторов);

- Построение цветографических карт;

- Кластеризация полученных в результате работы изображений.

На рисунке 2 изображены функциональная диаграмма B0 для процесса формирования цветографических карт инновационного проекта и их кластеризацию.

Рисунок 2 Функциональная диаграмма верхнего уровня B0

Базы знаний содержат информацию о возможных вариантах числовых значений оценок эксперта, а так же для формирования оценок рассматриваемых проектов.

Блок B1 «Идентификация проекта» представлен на рисунке 3.

Рисунок 3 Блок B1 «Определение стадии оценки проектов»

Информационный поток процесса инициализации инновационного проекта представлен набором I1 ={I11,I12,I13}, где I11- данные о стадиях оценки инновационных проектов (deal flow и due diligence); I12 - определение набора критериев оценки инновационных проектов ранних стадий развития; I13 - информация об имеющихся градиентных шкалах оценки, в том числе и о количестве используемых оттенков цветов в шкалах и об их числовых соответствиях.

После идентификации инновационного проекта происходит формирование цветографических карт. Данный процесс отражен на рисунке 4 «Формирование цветографических карт». В данном блоке происходит непосредственно оценка проекта, то есть заполнение оценочных листов и заполнение цветографической карты.

Рисунок 4 Блок В2 «Формирование цветографических карт»

Информационный поток процесса формирования цветографических карт состоит из набора элементов I2={I21,I22,I23}, где I21 - информация по проведенной экспертом оценке инновационного проекта, оформленная в виде изображения; I22 - сохранение полученного изображения в виде цветографической карты.

Цветографические карты уже обрабатываются для дальнейших расчетов. Анализ цветографических карт и расчет оценок происходит в блоке «Расчет оценок инновационного проекта» B3 (рисунок 5).

Рисунок 5 Блок B3 «Расчет оценок инновационного проекта»

Информационный поток процесса расчета оценок инновационного проекта состоит из набора элементов I3 ={I31,I32, I331,I332 }, где I31 - информация по всем полученным оценкам инновационного проекта, переведенная из изображения в числовую форму; I32 - информация по полученным оценкам инновационного проекта, переведенная из изображения в числовую форму и сгруппированная по структурным группам; I331,I332 - определение классов, к которым могут быть отнесены полученные оценки инновационного проекта.

Таким образом, был разработан программный продукт, реализующий оценку инновационных проектов по многим параметрам.

Литература

1. Брагина, Е.И. Многопараметрическая кластеризация инновационных проектов на неформальном рынке венчурного инвестирования / Е.И. Брагина // Приволжский научный вестник. 2014. № 3. C. 67-74.

2. Брагина, Е.И. Многопараметрическая кластеризация инновационных проектов на неформальном рынке венчурного инвестирования / Е.И. Брагина // Приволжский научный вестник. 2014. № 3. C. 67-74.

3. Брагина, Е.И. Моделирование процесса принятия решений участниками неформального сектора рынка венчурных инвестиций / Е.И. Брагина // Экономика, статистика и информатика. Вестник УМО. 2014. № 4. C. 140-146.

4. Терелянский, П.В. Оптимизация процесса принятия решений представителями неформального сектора рынка венчурных инвестиций / П.В. Терелянский, Е.И. Брагина // Аудит и финансовый анализ. 2014. № 1. C. 441-452.

5. Амелькин, С.А. Обобщенное расстояние Евклида-Махаланобиса и его свойства / С.А. Амелькин, А.В. Захаров, В.М. Хачумов // Информационные технологии и вычислительные системы, 2006. № 4. С. 40-44.

6. Ежов, А.А. Нейрокомпьютинг и его применения в экономике и бизнесе / А.А Ежов, С.А. Шумский. М.: МИФИ, Серия «Учебники экономико-аналитического института МИФИ». 1998. 224 с.

Размещено на Allbest.ru


Подобные документы

  • Инновационные проекты: понятие и сущность; классификация форм и типов; модели и методы оценки. Анализ эффективности инновационных проектов на примере ТОО "Siemens". Рекомендации по совершенствованию системы оценки инновационных проектов на предприятии.

    дипломная работа [176,9 K], добавлен 25.02.2011

  • Сущность инновационного предпринимательства. Классификация инноваций, характеристика их организационных форм. Инновационные проекты, осуществляемые на ООО "Слоны". Измерение и оценка инновационных проектов. Теория предельной производительности.

    курсовая работа [1,5 M], добавлен 09.10.2013

  • Общая классификация источников финансирования. Финансирование в зависимости от стадии жизненного цикла инноваций. Мировые и российские площадки краудфандинга, их результаты и применение для инновационных проектов. Финансирование венчурных компаний.

    презентация [5,1 M], добавлен 07.12.2014

  • Критерии эффективности инвестиционных проектов. Оценка финансовой состоятельности. Показатели оценки роста инвестиционного проекта. Природа принятия решений об инвестировании. Пути решения проблем в аналитике. Организация работы по оценке проекта.

    курсовая работа [1,7 M], добавлен 24.11.2009

  • Содержание, этапы разработки и реализации инвестиционных проектов. Виды инвестиционных проектов и требования к их разработке. Показатели оценки финансовой надежности проекта. Принципы и методы оценки финансового состояния инвестиционных проектов.

    курсовая работа [148,5 K], добавлен 05.11.2010

  • Сущность системы финансирования инновационных проектов, их формы и методы. Характеристика системы бюджетного финансирования. Сущность собственных источников финансирования. Привлекаемые средства субъектов хозяйствования. Особенности кредитования.

    курсовая работа [469,2 K], добавлен 21.05.2012

  • Общие понятия оценки, подходы и виды стоимости. Оценка методом сравнительного подхода. Определение остаточной стоимости. Методы экспресс оценки и опционного ценообразования. Показатели экономической эффективности. Метод прямого анализа сравнения продаж.

    презентация [358,0 K], добавлен 05.11.2014

  • Понятие, фазы развития и участники инвестиционного проекта. Методы и критерии его оценки. Методы финансирования инвестиционных проектов: облигационные займы, лизинг, бюджетное традиционное и венчурное финансирование. Социальные результаты проектов.

    курсовая работа [60,4 K], добавлен 31.05.2010

  • Оценка инвестиционной привлекательности компаний. Анализ системы показателей инвестиционной привлекательности организации-эмитента и их значении для принятия решений в отношении инвестирования. Виды целей вкладчика при инвестировании в финансовые активы.

    контрольная работа [161,1 K], добавлен 21.06.2012

  • Венчурный капитал как источник финансирования инновационных проектов, его организационно-экономическое и нормативное обеспечение. Анализ зарубежного и отечественного опыта использования высокорисковых инвестиций в развитии инновационной деятельности.

    дипломная работа [292,0 K], добавлен 10.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.