контрольная работа  Особенности применения метода наименьших квадратов для макроэкономического планирования и прогнозирования

Линейная зависимость между объемом валового регионального продукта и численностью работающих в регионе. Применение метода экспоненциального сглаживания для прогноза финансовых расходов на капитальный ремонт жилищно-коммунального хозяйства города.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

 __   _____    ___  __   _____ 
/  | |  _  |  /   |/  | |  _  |
`| | | | | | / /| |`| |  \ V / 
 | | | | | |/ /_| | | |  / _ \ 
_| |_\ |_| /\___  |_| |_| |_| |
\___/ \___/     |_/\___/\_____/
                               
                               

Введите число, изображенное выше:

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 08.02.2019
Размер файла 188,1 K

Подобные документы

  • Основные задачи и принципы экстраполяционного прогнозирования, его методы и модели. Экономическое прогнозирование доходов ООО "Уфа-Аттракцион" с помощью экстраполяционных методов. Анализ особенностей применения метода экспоненциального сглаживания Хольта.

    курсовая работа [1,7 M], добавлен 21.02.2015

  • Классификационные принципы методов прогнозирования: фактографические, комбинированные и экспертные. Разработка приёмов статистического наблюдения и анализа данных. Практическое применение методов прогнозирования на примере метода наименьших квадратов.

    курсовая работа [77,5 K], добавлен 21.07.2013

  • Изучение метода экспоненциального сглаживания - эффективного метода прогнозирования, который дает возможность получить оценку параметров тренда, характеризующих не средний уровень процесса, а тенденцию, сложившуюся к моменту последнего наблюдения.

    лабораторная работа [28,7 K], добавлен 15.11.2010

  • Сущность метода наименьших квадратов. Экономический смысл параметров кривой роста (линейная модель). Оценка погрешности и проверка адекватности модели. Построение точечного и интервального прогноза. Суть графического построения области допустимых решений.

    контрольная работа [32,3 K], добавлен 23.04.2013

  • Использование принципа дисконтирования информации в методах статистического прогнозирования. Общая формула расчета экспоненциальной средней. Определение значения параметра сглаживания. Ретроспективный прогноз и средняя квадратическая ошибка отклонений.

    реферат [9,8 K], добавлен 16.12.2011

  • Применение метода наименьших квадратов при оценке параметров уравнения регрессии. Зависимость случайных остатков. Предпосылка о нормальном распределении остатков. Особенности определения наличия гомо- и гетероскедастичности. Расчет основных коэффициентов.

    курсовая работа [252,1 K], добавлен 26.04.2012

  • Оценка влияния разных факторов на среднюю ожидаемую продолжительность жизни по методу наименьших квадратов. Анализ параметров линейной двухфакторной эконометрической модели с помощью метода наименьших квадратов. Графическое изображение данной зависимости.

    практическая работа [79,4 K], добавлен 20.10.2015

  • Эффективная оценка по методу наименьших квадратов. Корелляционно-регрессионный анализ в эконометрическом моделировании. Временные ряды в эконометрических исследованиях. Моделирование тенденции временного ряда. Расчет коэффициента автокорреляции.

    контрольная работа [163,7 K], добавлен 19.06.2015

  • Сущность статистического метода прогноза максимальных за день концентраций примесей в отдельных точках города. Разработка и отладка компьютерной программы на алгоритмическом языке C++. Особенности применения метода множественной линейной регрессии.

    курсовая работа [857,5 K], добавлен 28.04.2011

  • Описание задачи линейного целочисленного программирования. Общий алгоритм решения задач с помощью метода границ и ветвей, его сущность и применение для задач календарного планирования. Пример использования метода при решении задачи трех станков.

    курсовая работа [728,8 K], добавлен 11.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.