Использование метода Бокса-Дженкинса для прогнозирования временных рядов
Интегрированная модель авторегрессии – скользящего среднего; ARIMA – стандартизированная статистическая модель для прогнозирования и анализа временных рядов. Процесс идентификации, оценки и проверки модели на специфичных наборах данных (Бокса-Дженкинса).
Рубрика | Экономико-математическое моделирование |
Вид | статья |
Язык | русский |
Дата добавления | 19.12.2017 |
Размер файла | 628,5 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Создание комбинированных моделей и методов как современный способ прогнозирования. Модель на основе ARIMA для описания стационарных и нестационарных временных рядов при решении задач кластеризации. Модели авторегрессии AR и применение коррелограмм.
презентация [460,1 K], добавлен 01.05.2015Классические подходы к анализу финансовых рынков, алгоритмы машинного обучения. Модель ансамблей классификационных деревьев для прогнозирования динамики финансовых временных рядов. Выбор алгоритма для анализа данных. Практическая реализация модели.
дипломная работа [1,5 M], добавлен 21.09.2016Основные элементы эконометрического анализа временных рядов. Задачи анализа и их первоначальная обработка. Решение задач кратко- и среднесрочного прогноза значений временного ряда. Методы нахождения параметров уравнения тренда. Метод наименьших квадратов.
контрольная работа [37,6 K], добавлен 03.06.2009Общая характеристика организации, задачи и функции экономико-аналитического отдела. Анализ временных рядов, модель авторегрессии - проинтегрированного скользящего среднего. Применение методов эконометрического моделирования, факторный анализ выручки.
отчет по практике [2,0 M], добавлен 07.06.2012Теоретические выкладки в области теории хаоса. Методы, которые используются в математике, для прогнозирования стохастических рядов. Анализ финансовых рядов и рядов Twitter, связь между сентиметными графиками и поведением временного финансового ряда.
курсовая работа [388,9 K], добавлен 01.07.2017Статистические методы анализа одномерных временных рядов, решение задач по анализу и прогнозированию, построение графика исследуемого показателя. Критерии выявления компонент рядов, проверка гипотезы о случайности ряда и значения стандартных ошибок.
контрольная работа [325,2 K], добавлен 13.08.2010Структурные компоненты детерминированной составляющей. Основная цель статистического анализа временных рядов. Экстраполяционное прогнозирование экономических процессов. Выявление аномальных наблюдений, а также построение моделей временных рядов.
курсовая работа [126,0 K], добавлен 11.03.2014Временные ряды и их характеристики. Факторы, влияющие на значения временного ряда. Тренд и сезонные составляющие. Декомпозиция временных рядов. Метод экспоненциального сглаживания. Построение регрессионной модели. Числовые характеристики переменных.
контрольная работа [1,6 M], добавлен 18.06.2012Тесты, с помощью которых можно построить эконометрические модели. Эконометрическое моделирование денежного агрегата М0, в зависимости от валового внутреннего продукта и индекса потребительских цен. Проверка рядов на стационарность и гетероскедастичность.
курсовая работа [814,0 K], добавлен 24.09.2012Изучение особенностей стационарных временных рядов и их применения. Параметрические тесты стационарности. Тестирование математического ожидания, дисперсии и коэффициентов автокорреляции. Проведение тестов Манна-Уитни, Сиджела-Тьюки, Вальда-Вольфовитца.
курсовая работа [451,7 K], добавлен 06.12.2014