Использование метода Бокса-Дженкинса для прогнозирования временных рядов

Интегрированная модель авторегрессии – скользящего среднего; ARIMA – стандартизированная статистическая модель для прогнозирования и анализа временных рядов. Процесс идентификации, оценки и проверки модели на специфичных наборах данных (Бокса-Дженкинса).

Рубрика Экономико-математическое моделирование
Вид статья
Язык русский
Дата добавления 19.12.2017
Размер файла 628,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Создание комбинированных моделей и методов как современный способ прогнозирования. Модель на основе ARIMA для описания стационарных и нестационарных временных рядов при решении задач кластеризации. Модели авторегрессии AR и применение коррелограмм.

    презентация [460,1 K], добавлен 01.05.2015

  • Классические подходы к анализу финансовых рынков, алгоритмы машинного обучения. Модель ансамблей классификационных деревьев для прогнозирования динамики финансовых временных рядов. Выбор алгоритма для анализа данных. Практическая реализация модели.

    дипломная работа [1,5 M], добавлен 21.09.2016

  • Основные элементы эконометрического анализа временных рядов. Задачи анализа и их первоначальная обработка. Решение задач кратко- и среднесрочного прогноза значений временного ряда. Методы нахождения параметров уравнения тренда. Метод наименьших квадратов.

    контрольная работа [37,6 K], добавлен 03.06.2009

  • Общая характеристика организации, задачи и функции экономико-аналитического отдела. Анализ временных рядов, модель авторегрессии - проинтегрированного скользящего среднего. Применение методов эконометрического моделирования, факторный анализ выручки.

    отчет по практике [2,0 M], добавлен 07.06.2012

  • Теоретические выкладки в области теории хаоса. Методы, которые используются в математике, для прогнозирования стохастических рядов. Анализ финансовых рядов и рядов Twitter, связь между сентиметными графиками и поведением временного финансового ряда.

    курсовая работа [388,9 K], добавлен 01.07.2017

  • Статистические методы анализа одномерных временных рядов, решение задач по анализу и прогнозированию, построение графика исследуемого показателя. Критерии выявления компонент рядов, проверка гипотезы о случайности ряда и значения стандартных ошибок.

    контрольная работа [325,2 K], добавлен 13.08.2010

  • Структурные компоненты детерминированной составляющей. Основная цель статистического анализа временных рядов. Экстраполяционное прогнозирование экономических процессов. Выявление аномальных наблюдений, а также построение моделей временных рядов.

    курсовая работа [126,0 K], добавлен 11.03.2014

  • Временные ряды и их характеристики. Факторы, влияющие на значения временного ряда. Тренд и сезонные составляющие. Декомпозиция временных рядов. Метод экспоненциального сглаживания. Построение регрессионной модели. Числовые характеристики переменных.

    контрольная работа [1,6 M], добавлен 18.06.2012

  • Тесты, с помощью которых можно построить эконометрические модели. Эконометрическое моделирование денежного агрегата М0, в зависимости от валового внутреннего продукта и индекса потребительских цен. Проверка рядов на стационарность и гетероскедастичность.

    курсовая работа [814,0 K], добавлен 24.09.2012

  • Изучение особенностей стационарных временных рядов и их применения. Параметрические тесты стационарности. Тестирование математического ожидания, дисперсии и коэффициентов автокорреляции. Проведение тестов Манна-Уитни, Сиджела-Тьюки, Вальда-Вольфовитца.

    курсовая работа [451,7 K], добавлен 06.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.