Основы регрессионного анализа

Математическая постановка задачи регрессии. Определение зависимости величины (числового значения) определенного свойства случайного процесса или физического явления от другого переменного свойства или параметра. Анализ классов нелинейных регрессий.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 22.06.2015
Размер файла 88,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Построение математической модели выбранного экономического явления методами регрессионного анализа. Линейная регрессионная модель. Выборочный коэффициент корреляции. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы.

    курсовая работа [1,1 M], добавлен 22.05.2015

  • Понятие регрессии. Оценка параметров модели. Показатели качества регрессии. Проверка статистической значимости в парной линейной регрессии. Реализация регрессионного анализа в программе MS Excel. Условия Гаусса-Маркова. Свойства коэффициента детерминации.

    курсовая работа [233,1 K], добавлен 21.03.2015

  • Модель зависимости доходности индекса телекоммуникации от индекса рынка. Результаты регрессионного анализа. Уравнение регрессии зависимости доходности отраслевого индекса от индекса. Регрессионная статистика, дисперсный анализ. Минимальный риск портфеля.

    лабораторная работа [1,7 M], добавлен 15.11.2010

  • Определение методом регрессионного и корреляционного анализа линейных и нелинейных связей между показателями макроэкономического развития. Расчет среднего арифметического по столбцам таблицы. Определение коэффициента корреляции и уравнения регрессии.

    контрольная работа [4,2 M], добавлен 14.06.2014

  • Теоретические основы прикладного регрессионного анализа. Проверка предпосылок и предположений регрессионного анализа. Обнаружение выбросов в выборке. Рекомендации по устранению мультиколлинеарности. Пример практического применения регрессионного анализа.

    курсовая работа [1,2 M], добавлен 04.02.2011

  • Построение типологических регрессий по отдельным группам наблюдений. Пространственные данные и временная информация. Сферы применения кластерного анализа. Понятие однородности объектов, свойства матрицы расстояний. Проведение типологической регрессии.

    презентация [322,6 K], добавлен 26.10.2013

  • Аппроксимация данных с учетом их статистических параметров. Математическая постановка задачи регрессии, ее принципы. Виды регрессии: линейная и нелинейная, полиномиальная. Сглаживание данных и предсказание зависимостей. Реализация задач в Mathcad.

    реферат [167,8 K], добавлен 12.04.2009

  • Определение задачи регрессионного анализа как установления формы корреляционной связи (линейной, квадратичной, показательной). Графическая интерпретация коэффициента детерминации. Виды регрессий: линейная, нелинейная, гипербола, экспонента и парабола.

    доклад [131,5 K], добавлен 13.12.2011

  • Сущность корреляционно-регрессионного анализа и экономико-математической модели. Обеспечение объема и случайного состава выборки. Измерение степени тесноты связи между переменными. Составление уравнений регрессии, их экономико-статистический анализ.

    курсовая работа [440,3 K], добавлен 27.07.2015

  • Проверка графика на анормальности и наличие тренда. Определение параметров линейной регрессии. Сглаживание уровней ряда методом простой скользящей средней. Расчет среднеквадратического отклонения. Адекватность и точность параметров нелинейных регрессий.

    контрольная работа [912,4 K], добавлен 26.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.