Методы решения обыкновенных дифференциальных уравнений
Изучение методов решения обыкновенных дифференциальных уравнений. Характеристика метода Эйлера, его модификация и условия для использования. Описание и отличительные черты метода Рунге-Кутта, его применение при расчете дифференциального уравнения.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 14.06.2015 |
Размер файла | 99,7 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Анализ диапазона частот и амплитуд собственных колебаний. Определение жесткости рессорного подвешивания тележки. Разработка математической модели колебаний вагона на рессорном подвешивании. Выбор метода решения обыкновенных дифференциальных уравнений.
курсовая работа [230,6 K], добавлен 18.04.2014Анализ вопросов теории дифференциальных уравнений. Применение дифференциальных уравнений в экономике. Геометрический и экономический смысл производной, ее использование для решения задач по экономической теории. Определение числовой последовательности.
контрольная работа [456,9 K], добавлен 19.06.2015Численные методы решения трансцедентных уравнений. Решение с помощью метода жордановых исключений системы линейных алгебраических уравнений. Симплексный метод решения задачи линейного программирования. Транспортная задача, применение метода потенциалов.
методичка [955,1 K], добавлен 19.06.2015Применение математических методов в моделировании физических процессов, распределение информации и использование языка программирования Pascal. Построение графиков функций, решение уравнений в MathCAD, геометрический смысл методов Эйлера и Рунге-Кутта.
курсовая работа [158,1 K], добавлен 15.11.2009Рост общественного благосостояния, модель Золотаса. Пример анализа производительности труда. Динамика рыночной цены, модель Самуэльсона. Применение дифференциальных уравнений в процессе естественного роста выпуска продукции и динамике рыночной цены.
контрольная работа [501,7 K], добавлен 25.02.2014Представление матрицы в виде произведения унитарной и верхнетреугольной матрицы. Листинг программы. Зависимость погрешности от размерности матрицы на примере метода Холецкого. Приближенные методы решения алгебраических систем. Суть метода Зейделя.
контрольная работа [630,5 K], добавлен 19.05.2014Cистема дифференциальных уравнений, связывающая значение заданной функции в некоторой точке и её производных различных порядков в той же точке. Расчет фазовых переменных зависимости погрешности, трудоемкости от шага, выраженного процессом x в степени n+1.
лабораторная работа [431,0 K], добавлен 01.12.2011Решение системы дифференциальных уравнений методом Рунге-Кутта. Исследованы возможности применения имитационного моделирования для исследования систем массового обслуживания. Результаты моделирования базового варианта системы массового обслуживания.
лабораторная работа [234,0 K], добавлен 21.07.2012Описание задачи линейного целочисленного программирования. Общий алгоритм решения задач с помощью метода границ и ветвей, его сущность и применение для задач календарного планирования. Пример использования метода при решении задачи трех станков.
курсовая работа [728,8 K], добавлен 11.05.2011Связь стохастических процессов и дифференциальных уравнений. Алгоритм Бюффона для определения числа Пи. Геометрический алгоритм Монте-Карло интегрирования. Применение метода Монте-Карло в логистике. Алгоритм Метрополиса, квантовый метод Монте-Карло.
курсовая работа [258,0 K], добавлен 26.12.2013