Оценка параметров парной линейной регрессии
Построение линейного уравнения парной регрессии y от x. Причины существования случайной ошибки. Определение среднеквадратического отклонения; коэффициентов корреляции, эластичности, детерминации. Оценка статистической значимости парной линейной регрессии.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 14.04.2021 |
Размер файла | 512,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Построить линейное уравнение парной регрессии y от x
Таблица 1. Аддитивная модель временного ряда
Линейное уравнение имеет вид y=bx+a.
Для этого рассчитаем и занесем в таблицу значение квадрата X, квадрата Y и произведения X и Y.
Для решения будет использоваться графический метод.
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции.
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид y = bx + a
Оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + е, где ei - наблюдаемые значения (оценки) ошибок еi, a и b соответственно оценки параметров б и в регрессионной модели, которые следует найти.
Здесь е - случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления - это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения еi для каждого конкретного наблюдения i - случайны и их значения в выборке неизвестны, то:
1) по наблюдениям xi и yi можно получить только оценки параметров б и в
2) Оценками параметров б и в регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Для оценки параметров б и в - используют МНК (метод наименьших квадратов).
Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии. Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (е) и независимой переменной (x).
Формально критерий МНК можно записать так:
S = ?(yi - y*i)2 > min
Система нормальных уравнений.
a·n + b·?x = ?y
a·?x + b·?x2 = ?y·x
Для расчета параметров регрессии построим расчетную таблицу (табл. 2)
Таблица 2
x |
y |
x2 |
y2 |
x*y |
|
78 |
133 |
6084 |
17689 |
10374 |
|
94 |
139 |
8836 |
19321 |
13066 |
|
85 |
141 |
7225 |
19881 |
11985 |
|
73 |
127 |
5329 |
16129 |
9271 |
|
91 |
154 |
8281 |
23716 |
14014 |
|
88 |
142 |
7744 |
20164 |
12496 |
|
73 |
122 |
5329 |
14884 |
8906 |
|
82 |
135 |
6724 |
18225 |
11070 |
|
99 |
142 |
9801 |
20164 |
14058 |
|
113 |
168 |
12769 |
28224 |
18984 |
|
69 |
124 |
4761 |
15376 |
8556 |
|
83 |
130 |
6889 |
16900 |
10790 |
|
1028 |
1657 |
89772 |
230673 |
143570 |
Для наших данных система уравнений имеет вид
12a + 1028·b = 1657
1028·a + 89772·b = 143570
Домножим уравнение (1) системы на (-85.667), получим систему, которую решим методом алгебраического сложения.
-1028a -88065.676 b = -141950.219
1028*a + 89772*b = 143570
Получаем: 1706.324*b = 1619.781
Откуда b = 0.9494
Теперь найдем коэффициент «a» из уравнения (1):
12a + 1028*b = 1657
12a + 1028*0.9494 = 1657
12a = 681.002
a = 56.7502
Получаем эмпирические коэффициенты регрессии: b=0.9494, a = 56.7502
Уравнение регрессии (эмпирическое уравнение регрессии):
y = 0.9494 x + 56.7502
Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов вi, а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.
1. Параметры уравнения регрессии.
Выборочные средние.
Выборочные дисперсии:
Среднеквадратическое отклонение
Коэффициент корреляции b можно находить по формуле, не решая систему непосредственно:
Коэффициент корреляции.
Ковариация.
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:
Линейный коэффициент корреляции принимает значения от -1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 < rxy < 0.3: слабая;
0.3 < rxy < 0.5: умеренная;
0.5 < rxy < 0.7: заметная;
0.7 < rxy < 0.9: высокая;
0.9 < rxy < 1: весьма высокая;
В нашем примере связь между признаком Y и фактором X весьма высокая и прямая.
Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:
Значимость коэффициента корреляции.
Выдвигаем гипотезы:
H0: rxy = 0, нет линейной взаимосвязи между переменными;
H1: rxy ? 0, есть линейная взаимосвязь между переменными;
Для того чтобы при уровне значимости б проверить нулевую гипотезу о равенстве нулю генерального коэффициента корреляции нормальной двумерной случайной величины при конкурирующей гипотезе H1 ? 0, надо вычислить наблюдаемое значение критерия (величина случайной ошибки)
и по таблице критических точек распределения Стьюдента, по заданному уровню значимости б и числу степеней свободы k = n-2 найти критическую точку tкрит двусторонней критической области. Если tнабл < tкрит оснований отвергнуть нулевую гипотезу. Если |tнабл| > tкрит -- нулевую гипотезу отвергают.
По таблице Стьюдента с уровнем значимости б=0.05 и степенями свободы k=10 находим tкрит:
tкрит(n-m-1;б/2) = tкрит(10;0.025) = 2.634
где m = 1 - количество объясняющих переменных.
Если |tнабл| > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку |tнабл| > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значим
В парной линейной регрессии t2r = t2b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.
Интервальная оценка для коэффициента корреляции (доверительный интервал).
Доверительный интервал для коэффициента корреляции.
rЃё(0.557;1)
Уравнение регрессии (оценка уравнения регрессии).
Линейное уравнение регрессии имеет вид y = 0.949 x + 56.75
Коэффициентам уравнения линейной регрессии можно придать экономический смысл.
Коэффициент регрессии b = 0.949 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 0.949.
Коэффициент a = 56.75 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и х определяет знак коэффициента регрессии b (если > 0 - прямая связь, иначе - обратная). В нашем примере связь прямая.
Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета-коэффициенты.
Средний коэффициент эластичности E показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения.
Коэффициент эластичности находится по формуле:
Коэффициент эластичности меньше 1. Следовательно, при изменении Х на 1%, Y изменится менее чем на 1%. Другими словами - влияние Х на Y не существенно.
Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R2= 0.9072 = 0.8231
т.е. в 82.31% случаев изменения х приводят к изменению y. Другими словами - точность подбора уравнения регрессии - высокая. Остальные 17.69% изменения Y объясняются факторами, не учтенными в модели (а также ошибками спецификации).
Для оценки качества параметров регрессии построим расчетную таблицу (табл. 3)
Таблица 3
x |
y |
y(x) |
(yi-ycp)2 |
(y-y(x))2 |
|
78 |
133 |
130.804 |
25.84 |
4.82 |
|
94 |
139 |
145.995 |
0.84 |
48.932 |
|
85 |
141 |
137.45 |
8.507 |
12.6 |
|
73 |
127 |
126.057 |
122.84 |
0.888 |
|
91 |
154 |
143.147 |
253.34 |
117.79 |
|
88 |
142 |
140.299 |
15.34 |
2.895 |
|
73 |
122 |
126.057 |
258.674 |
16.463 |
|
82 |
135 |
134.602 |
9.507 |
0.158 |
|
99 |
142 |
150.742 |
15.34 |
76.426 |
|
113 |
168 |
164.034 |
895.007 |
15.729 |
|
69 |
124 |
122.26 |
198.34 |
3.028 |
|
83 |
130 |
135.552 |
65.34 |
30.82 |
|
1028 |
1657 |
1657 |
1868.917 |
330.549 |
2. Оценка параметров уравнения регрессии
Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:
S2 = 33.055 - необъясненная дисперсия или дисперсия ошибки регрессии (мера разброса зависимой переменной вокруг линии регрессии).
S = 5.75 - стандартная ошибка оценки.
Стандартная ошибка регрессии рассматривается в качестве меры разброса данных наблюдений от смоделированных значений. Чем меньше значение стандартной ошибки регрессии, тем качество модели выше.
Sa - стандартное отклонение случайной величины a.
Sb - стандартное отклонение случайной величины b.
Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
С помощью МНК мы получили лишь оценки параметров уравнения регрессии, которые характерны для конкретного статистического наблюдения (конкретного набора значений x и y).
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н0 о случайной природе показателей, т.е. о незначимом их отличии от нуля.
Чтобы проверить, значимы ли параметры, т.е. значимо ли они отличаются от нуля для генеральной совокупности используют статистические методы проверки гипотез.
В качестве основной (нулевой) гипотезы выдвигают гипотезу о незначимом отличии от нуля параметра или статистической характеристики в генеральной совокупности. Наряду с основной (проверяемой) гипотезой выдвигают альтернативную (конкурирующую) гипотезу о неравенстве нулю параметра или статистической характеристики в генеральной совокупности.
Проверим гипотезу H0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H1 не равно) на уровне значимости б=0.05.
H0: b = 0, то есть между переменными x и y отсутствует линейная взаимосвязь в генеральной совокупности;
H1: b ? 0, то есть между переменными x и y есть линейная взаимосвязь в генеральной совокупности.
В случае если основная гипотеза окажется неверной, мы принимаем альтернативную. Для проверки этой гипотезы используется t-критерий Стьюдента.
Найденное по данным наблюдений значение t-критерия (его еще называют наблюдаемым или фактическим) сравнивается с табличным (критическим) значением, определяемым по таблицам распределения Стьюдента (которые обычно приводятся в конце учебников и практикумов по статистике или эконометрике).
Табличное значение определяется в зависимости от уровня значимости (б) и числа степеней свободы, которое в случае линейной парной регрессии равно (n-2), n-число наблюдений.
Если фактическое значение t-критерия больше табличного (по модулю), то основную гипотезу отвергают и считают, что с вероятностью (1-б) параметр или статистическая характеристика в генеральной совокупности значимо отличается от нуля.
Если фактическое значение t-критерия меньше табличного (по модулю), то нет оснований отвергать основную гипотезу, т.е. параметр или статистическая характеристика в генеральной совокупности незначимо отличается от нуля при уровне значимости б.
tкрит(n-m-1;б/2) = tкрит(10;0.025) = 2.634
Поскольку 6.82 > 2.634, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Поскольку 4.71 > 2.634, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b - tкрит Sb; b + tкрит Sb)
(0.95 - 2.634*0.139; 0.95 + 2.634*0.139)
(0.583;1.316)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a - tкрит Sa; a + tкрит Sa)
(56.75 - 2.634*12.037; 56.75 + 2.634*12.037)
(25.044;88.456)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
2) F-статистика. Критерий Фишера.
Коэффициент детерминации R2 используется для проверки существенности уравнения линейной регрессии в целом.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.
где m - число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R2=0 на уровне значимости б.
2. Далее определяют фактическое значение F-критерия:
или по формуле:
где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
Fтабл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости б. Уровень значимости б - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно б принимается равной 0,05 или 0,01.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-б) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=10, Fтабл = 4.96
Поскольку фактическое значение F>Fтабл, то коэффициент детерминации статистически значим (найденная оценка уравнения регрессии статистически надежна).
Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством:
Таблица 4 Показатели качества уравнения регрессии.
Показатель |
Значение |
|
Коэффициент детерминации |
0.8231 |
|
Средний коэффициент эластичности |
0.589 |
регрессия корреляция детерминация статистический
Выводы
Изучена зависимость Y от X. На этапе спецификации была выбрана парная линейная регрессия. Оценены её параметры методом наименьших квадратов. Статистическая значимость уравнения проверена с помощью коэффициента детерминации и критерия Фишера. Установлено, что в исследуемой ситуации 82.31% общей вариабельности Y объясняется изменением X. Установлено также, что параметры модели статистически значимы. Возможна экономическая интерпретация параметров модели - увеличение X на 1 ед.изм. приводит к увеличению Y в среднем на 0.949 ед.изм.
Размещено на Allbest.ru
Подобные документы
Понятие регрессии. Оценка параметров модели. Показатели качества регрессии. Проверка статистической значимости в парной линейной регрессии. Реализация регрессионного анализа в программе MS Excel. Условия Гаусса-Маркова. Свойства коэффициента детерминации.
курсовая работа [233,1 K], добавлен 21.03.2015Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.
контрольная работа [108,5 K], добавлен 28.03.2018Определение количественной зависимости массы пушного зверька от его возраста. Построение уравнения парной регрессии, расчет его параметров и проверка адекватности. Оценка статистической значимости параметров регрессии, расчет их доверительного интервала.
лабораторная работа [100,5 K], добавлен 02.06.2014Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.
контрольная работа [110,4 K], добавлен 28.07.2012Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.
контрольная работа [1,6 M], добавлен 14.05.2008Построение линейного уравнения парной регрессии, расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Определение коэффициентов корреляции и эластичности, индекса корреляции, суть применения критерия Фишера в эконометрике.
контрольная работа [141,3 K], добавлен 05.05.2010Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.
контрольная работа [155,8 K], добавлен 11.12.2010Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.
задача [142,0 K], добавлен 20.03.2010Исследование зависимости часового заработка одного рабочего от общего стажа работы после окончания учебы с помощью построения уравнения парной линейной регрессии. Вычисление описательных статистик. Построение поля корреляции и гипотезы о форме связи.
контрольная работа [226,6 K], добавлен 11.08.2015Особенности расчета параметров уравнений линейной, степенной, полулогарифмической, обратной, гиперболической парной и экспоненциальной регрессии. Методика определения значимости уравнений регрессии. Идентификация и оценка параметров системы уравнений.
контрольная работа [200,1 K], добавлен 21.08.2010