Основные этапы развития экономико-математических методов за рубежом
Роль моделирования как универсального метода научного познания. Современные проблемы экономической науки. Применение математических методов в экономике. Различие между потребительной и меновой стоимостями товаров. Функции мультипликатора в теории Кейнса.
Рубрика | Экономико-математическое моделирование |
Вид | доклад |
Язык | русский |
Дата добавления | 26.12.2020 |
Размер файла | 18,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
«Тихоокеанский государственный университет»
Кафедра «Экономической теории и национальной экономики»
ДОКЛАД
Тема: Основные этапы развития экономико-математических методов за рубежом
Выполнил: студент Николаева А.Г.
Руководитель: ст.преп. Уразова К.А.
Хабаровск 2020
Содержание
Введение
Глава 1. История применения математических методов в экономике
Глава 2. История развития экономико-математического моделирования в США
Заключение
Список литературы
Введение
Моделирование, как метод научного познания, стало применяться еще в глубокой древности и постепенно захватило области научных познаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки.
Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования XX век. Однако методология моделирования долгое время развивалась отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться важная роль моделирования как универсального метода научного познания.
Цель данной работы изучить основные этапы развития экономико-математических методов за рубежом. Для достижения цели необходимо решить следующие задачи:
- рассмотреть теоретические основы исследования данной проблемы
- проанализировать как развивались экономико-математические методы за рубежом
- сделать соответствующие выводы
1. История применения математических методов в экономике
Понятие об экономике как науке возникло в период расцвета греческой рабовладельческой демократии, когда были сделаны первые попытки не просто заметить, а теоретически осмыслить факты экономической жизни.
Слово «экономия», от которого произошли такие понятия, как «экономика», «экономическая наука» и т. д., в переводе с греческого имеет смысл науки о ведении домашнего хозяйства. По своему основному содержанию она должна была заниматься вопросами рационального хозяйствования.
Однако поскольку богатое греческое рабовладельческое хозяйство являлось сложной производственной системой, на которой отражались все процессы, происходившие в обществе, то эта наука неизбежно затрагивала и более общие проблемы: из каких хозяйственных единиц должно состоять разумно построенное государство; в каком отношении эти единицы должны обменивать производимые ими товары; какую роль играют торговля и деньги? Проблемы экономической науки в таком виде сформулировал великий греческий философ Аристотель, которого принято считать ее основателем. Аристотель первым пытался рассмотреть экономические закономерности, господствующие в обществе, выдвинул идею о различии между потребительной и меновой стоимостями товаров, высказал мысль о превращении денег в капитал и т. д.
Таким образом, еще в Древней Греции в экономической науке возникли два направления исследований: во-первых, это анализ методов рационального управления народным хозяйством и, во-вторых, изучение основных экономических закономерностей. В дальнейшем первое направление превратилось в науку о рациональном управлении деятельностью производительных единиц любого уровня - от производственного участка до экономики в целом. Второе направление дало начало экономической теории - науке, изучающей основные экономические закономерности, сменяющих друг друга общественно-экономических формаций. Оба направления экономической науки развивались и развиваются в тесной связи между собой, их общность особенно заметна в исследованиях, направленных на изучение экономики страны как целого.
В системе экономических наук главенствующее положение занимает экономическая теория: она служит теоретической и методологической основой всего комплекса экономических наук. Применение математических методов в экономике началось именно в теоретико-экономических исследованиях.
Обычно в качестве исторически первой модели общественного производства называют экономическую таблицу Ф. Кене (1694 - 1774). В 1758 г. Он опубликовал первый вариант своей «Экономической таблицы», второй вариант - «Арифметическая формула» - был опубликован в 1766 году. К. Маркс высоко оценил таблицу Ф. Кенэ. «Это попытка, - писал Маркс, - сделанная во второй трети XIII столетия, в период детства политической экономии, была в высшей степени гениальной идеей, бесспорно самой гениальной из всех, какие только выдвинула до сего времени политическая экономия».
Представители буржуазной политической экономии уже с середины XIX века в своих теоретических исследованиях начинают использовать все более и более сложный математический аппарат. В последнее тридцатилетие XIX века складывается самостоятельное математическое направление в буржуазной политической экономии.
Математическая школа возникла в рамках так называемого неоклассического направления в политической экономии, главным содержанием которого является теория предельной полезности (маржинализм). В ходе развития неоклассического направления проблемы социально-экономической динамики незаметно исчезают из анализа, постепенно осуществляется переход к общим проблемам функционирования экономических систем, рыночных и ценовых механизмов, реализации принципа экономичности и рациональности в условиях совершенной конкуренции, условий частного и общего равновесия.
Родоначальником математической школы считается французский ученый О. Курно (1801 - 1877). В 1838 г. вышла его книга «Исследование математических принципов теории богатства».
Видными представителями математической школы являются Г. Госсен (1810-1859) в Германии, В. Джевонс (1835 - 1882) в Англии, Л. Вальрас (1834-1910) в Швейцарии, Г. Кассель (1866 - 1944) в Швеции, Ф. Эджворд (1845-1926) в Англии, В. Парето (1848 - 1923) в Италии, В. Дмитриев )1868 - 1913) в России.
Представители математического направления в буржуазной политической экономии достигли известных успехов в области математического моделирования, в раскрытии ряда объективных закономерностей производства, обмена, распределения и потребления. В этой связи необходимо отметить важность работ русского экономиста В. К. Дмитриева. Его основная работа «Экономические очерки. Опыт органического синтеза трудовой ценности и теории предельной полезности» была опубликована в 1904 году. В своих работах В, К. Дмитриев предвосхитил ряд выводов, которые позднее были получены В. Леонтьевым на основе анализа моделей «затраты - выпуск». В частности, эти выводы важны для подсчета коэффициентов полных материальных и трудовых затрат. Кроме того, стремясь примирить трудовую теорию стоимости с теорией предельной полезности, что, естественно, сделать невозможно, он тем не менее поставил проблему соотношения категорий стоимости и полезности.
Родоначальники математической школы рассматривали математические методы, математическое моделирование связей между элементами экономической системы как методы исследования, а не как методы изложения, иллюстраций экономических положений и законов, полученных других путем. Изложение же выводов, полученных математически, может быть дано и на обычном языке, или в математической форме, но без доказательства. Так, Л. Вальрас писал: «Весьма немногие из нас в состоянии прочесть «Математические начала натуральной философии» Ньютона или «Небесную механику» Лапласа, и тем не менее мы все принимаем на веру сделанное сведущими людьми описание мира астрономических явлений согласно закону всеобщего тяготения. Почему точно таким же образом не принять описание мира экономических явлений, сделанного согласно закону свободной конкуренции».
Представители математической школы с помощью математических методов стремились разрешить не отдельные частные проблемы экономической теории, а охватить весь экономический процесс в целом, дать общую картину взаимозависимости всех экономических явлений.
Математический метод рассматривается как основной, важнейший метод, который только один в состоянии дать экономической теории научную законченность.
Основным научным результатом неоклассического направления является разработка моделей частного и общего равновесия и, условий использования ресурсов, их оптимального распределения по различным направлениям, условий равновесия обмена и потребления. Сюда относятся разработка моделей поведения потребителя, построение функций спроса, зависимостей спроса от цен и дохода, построение производственной функции, моделей поведения фирмы, моделей общего экономического равновесия, прежде всего модели Л. Вальраса.
2. История развития экономико-математического развития в США
За рубежом методы экономико-математического моделирования стали широко использоваться и активно применяться в экономической сфере с середины XX века, параллельно с созданием электронно-вычислительных машин и возникновением и развитием принципиально новых математических направлений и методов, в том числе теории игр, математического программирования.
Цель, к которой стремились специалисты при проведении экономико-математических расчетов, - создание необходимых условий для совершенствования механизма разработки и согласования управленческих решений, принимаемых на разных уровнях руководства фирмы (корпорации). В методологическом плане развитие теории и практики экономико-математического моделирования связано с именами таких известных зарубежных ученых, как Л. Вальрас, Н. Винер, Дж. Нейман, Дж. Данциг, Р. Беллман, У. Эшби, нобелевских лауреатов по экономике Д. Хикс, Р. Солоу, В. Леонтьев. Одним из первых научных исследований в области математического моделирования за рубежом считается вышедшая в 1947 году работа Дж. Данцига, посвященная вопросам применения методов решения линейных экстремальных задач.
В 1928 г. Ч. Кобб и П. Дуглас на основе данных по обрабатывающей промышленности США за период 1899 - 1922 гг. представили функцию
P = bLa K1-a.
Это была первая эмпирическая ПФ, построенная по данным временных рядов. Ее конкретный вид:
P = 1.01L0.75K0.25,
где Р - расчетный индекс производства,
К - индекс основного капитала,
L - индекс занятости.
В настоящее время формула Кобба - Дугласа широко используется в учебной и научной литературе.
В 1928 г. В. Рамсей предложил упрощенную модель, в которой дается не только описание долгосрочного роста, но и ставится проблема определения его оптимального варианта. Модель интересна тем, что по существу она явилась предвестницей современного подхода к проблемам оптимального роста.
В 1932 г. Джон фон Нейман изложил основы многосекторной модели расширяющейся экономики, в которой ввел понятие динамического равновесия. С моделью Неймана связаны знаменитые теоремы о магистрали. Модель построена в предположении совершенной конкуренции, в рамках основных положений неоклассического направления.
В 30-х же годах значительное внимание экономистами - математиками было уделено проблеме существования решения системы уравнений общего равновесия.
Для доказательства существования экономически содержательного решения использовался упрощенный вариант модели Вальраса. Исходными предпосылками такой модели были следующие: ресурсы заданы и используются при постоянных технологических коэффициентах, но когда ресурсы заданы в фиксированных количествах, естественно, что они, как правило, не будут соответствовать структуре производства необходимой продукции, и, следовательно, не будут использоваться полностью.
Венгерский математик А. Вальд в 1935 - 1937 гг. выяснил ограничивающие условия, при которых модель дает экономически содержательное решение без отрицательных значений искомых переменных (выпуск продукции, цены, в том числе заработная плата), и показал, какие блага являются «редкими», какие «избыточными», «общедоступными».
Такими условиями являются преобразования некоторых уравнений в неравенстве и предположение, что некоторые (избыточные) факторы производства будут недоиспользованы и должны получить нулевую оценку, некоторые способы производства не используются, так как издержки производства превышают цену производимого продукта. Нетрудно видеть, что уже здесь присутствуют предпосылки линейного программирования. В 1931 г. было создано международное эконометрическое общество, видным представителем и активным деятелем которого был норвежский ученый Р. Фриш (1895 - 1973). математический экономический мультипликатор
Термин «эконометрика» Фриш ввел для обозначения направления, которое должно было представлять синтез экономической теории, математики и статистики. В дальнейшем круг проблем, разрабатываемых в рамках данного направления, сузился, и сегодня в понятие «эконометрика» включается главным образом построение математико-статистических моделей экономических процессов (так называемых эконометрических моделей), использование методов математической статистики для определения параметров этих моделей.
В 1936 г. опубликована работа Д. М. Кейнса «Общая теория занятости, процента и денег», которая явилась реакцией на кризис 1929 - 1933 гг. Острие своей критики Кейнс направил против основ классической и неоклассической теорий равновесия, на первое место он поставил проблему рынка и реализации общественного продукта. В модельном отношении важное значение имеет мультипликатор, введенный Кейнсом, который послужил основой ряда макроэкономических моделей.
В качестве кейнсианских (или неокейнсианских) моделей можно назвать модели экономического роста Е. Домара и Р. Харрода. Стремление примирить теорию Кейнса с неоклассической теорией породило так называемый неоклассический синтез, сущность которого сводится к утверждению, что в зависимости от состояния экономики можно применять либо кейнсианскую теорию равновесия, либо неоклассическую.
Теория Кейнса действует в условиях неполной занятости, по достижении полной занятости возобновляется действие неоклассической теории. Значительную роль в разработке моделей роста сыграл Р. Солоу. В статье, опубликованной в 1956 году, он предложил простую модель, которая привела к появлению многочисленных исследований в области неоклассических моделей роста. В качестве основного аналитического инструмента в них используется аппарат производственной функции, и детальная разработка макроэкономических производственных функций неразрывно связана с развитием неоклассических моделей.
Разработка неоклассических моделей роста поставила проблему оптимальной нормы накопления, получившей название «золотого правила». В 60-х гг. почти одновременно и независимо друг от друга это правило сформулировали Дж. Робинсон, Д. Мид, Э. Фелпс.
Заключение
Разработка математических методов и моделей оптимизации отдельных производственно-экономических процессов, общественного производства в целом, оказалось тесно связанной с конкретными проблемами экономической теории: теорией стоимости, ценообразования. Во всей полноте вновь встала проблема измерения затрат и результатов производства, эффективности капиталовложений и путей рационального использования ресурсов производства.
Возникла необходимость выявления сущности предельных величин, их роли в экономическом анализе, в процессах ценообразования и определения эффективности затрат.
Применение математических методов и моделей в экономике поставило перед экономической наукой ряд важных методологических проблем, связанных с выяснением закономерностей оптимизации общественного производства и его отдельных процессов, вызвало необходимость анализа и обобщения теоретических основ математического моделирования народнохозяйственных процессов.
Список литературы
1. Гранберг А.Г. Математические модели социалистической экономики. - М.: Экономика, 1988.
2. Лотов А.В. Введение в экономико-математическое моделирование. - М.: Наука, 1984.
3. Кантарович Л.В., Горстко А.Б. Оптимальные решения в экономике. - М.: Наука, 1979.
Размещено на Allbest.ru
Подобные документы
Открытие и историческое развитие методов математического моделирования, их практическое применение в современной экономике. Использование экономико-математического моделирования на всей уровнях управления по мере внедрения информационных технологий.
контрольная работа [22,4 K], добавлен 10.06.2009Основные понятия и типы моделей, их классификация и цели создания. Особенности применяемых экономико-математических методов. Общая характеристика основных этапов экономико-математического моделирования. Применение стохастических моделей в экономике.
реферат [91,1 K], добавлен 16.05.2012Теоретические основы экономико-математических методов. Этапы принятия решений. Классификация задач оптимизации. Задачи линейного, нелинейного, выпуклого, квадратичного, целочисленного, параметрического, динамического и стохастического программирования.
курсовая работа [2,3 M], добавлен 07.05.2013Применение математических методов в решении экономических задач. Понятие производственной функции, изокванты, взаимозаменяемость ресурсов. Определение малоэластичных, среднеэластичных и высокоэластичных товаров. Принципы оптимального управления запасами.
контрольная работа [83,3 K], добавлен 13.03.2010Анализ вопросов теории дифференциальных уравнений. Применение дифференциальных уравнений в экономике. Геометрический и экономический смысл производной, ее использование для решения задач по экономической теории. Определение числовой последовательности.
контрольная работа [456,9 K], добавлен 19.06.2015Сущность и содержание метода моделирования, понятие модели. Применение математических методов для прогноза и анализа экономических явлений, создания теоретических моделей. Принципиальные черты, характерные для построения экономико-математической модели.
контрольная работа [141,5 K], добавлен 02.02.2013Общая характеристика и классификация экономико-математических методов. Стохастическое моделирование и анализ факторных систем хозяйственной деятельности. Балансовые методы и модели в анализе связей внутризаводских подразделений, в расчетах и цен.
курсовая работа [200,8 K], добавлен 16.06.2014Математическое моделирование как теоретико-экспериментальный метод позновательно-созидательной деятельности, особенности его практического применения. Основные понятия и принципы моделирования. Классификация экономико-математических методов и моделей.
курсовая работа [794,7 K], добавлен 13.09.2011История развития экономико-математических методов. Математическая статистика – раздел прикладной математики, основанный на выборке изучаемых явлений. Анализ этапов экономико-математического моделирования. Вербально-информационное описание моделирования.
курс лекций [906,0 K], добавлен 12.01.2009Предмет экономико-математического моделирования, цель разработки экономико-математических методов. Для условной экономики, состоящей из трех отраслей, за отчетный период известны межотраслевые потоки и вектор конечного использования продукции.
контрольная работа [71,0 K], добавлен 14.09.2006