Трансформации форм гетерогенной самоорганизующейся системы при наличии внешних воздействий
Метод синтеза систем, способных изменять форму в ответ на внешние воздействия, с помощью динамической модели произвольной размерности. Ее построение на основе системы, совмещающей свойства "эластичной петли" и самоорганизующейся формы с памятью состояний.
Рубрика | Экономико-математическое моделирование |
Вид | статья |
Язык | русский |
Дата добавления | 31.08.2018 |
Размер файла | 568,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Размещено на http://www.allbest.ru//
Самарский государственный технический университет
Трансформации форм гетерогенной самоорганизующейся системы при наличии внешних воздействийАлександр Эдуардович Воронин, магистрант, каф.автоматики и управления в технических системах.
Александр Анатольевич Юдашкин(д.т.н.), профессор, каф.автоматики и управления в технических системах.
А.Э.Воронин
Предложен метод синтеза систем, способных изменять форму в ответ на внешние воздействия, с помощью динамической модели произвольной размерности. Модель задается как набор типизированных точек на плоскости, ее динамика определяется на основе функции потенциальной энергии, совмещающей в себе свойства «эластичной петли» и самоорганизующейся формы с памятью состояний. Показано, что построенная таким образом система принимает одну из запомненных форм при внешнем воздействии, задаваемым, как и система, типизированным набором точек, причем взаимодействие между точками системы и внешнего воздействия происходит только при условии совпадения типов.
Ключевые слова:нелинейная динамика, самоорганизация, гетерогенная система, трансформация форм.
Введение
В природе и технике многие объекты состоят из отдельных взаимодействующих составляющихчастей. Только в таких системахможет происходить процесс упорядочения элементов одного уровня за счет внутренних факторов без внешних специфических воздействий (изменение внешних условий может рассматриваться как стимулирующее воздействие). Подобные системы принято называть самоорганизующимися.
Универсальных методов синтеза систем, способных к самоорганизации, на данный момент не существует, однако зачастую оказывается желательным, чтобы процесс упорядочения в системе происходил в ответ на некий внешний раздражитель. Также для системы может быть задана цель функционирования, например изменение собственной структуры в соответствии с окружающейся обстановкой, что дополнительно усложняет задачу синтеза.
Решению данной и близких к ней проблем посвящен ряд работ. Так, вработах [1, 2] используется подход к построению самоорганизующихся систем, основанный на принципах клеточного автомата, в котором конфигурация системы в пространстве восстанавливается только за счет взаимодействия соседних элементов. Иное решение проблемы предложено в работе [3] - здесь самоорганизующаяся система состоит из активных и пассивных элементов, процесс формирования пространственной структуры в ней происходит за счет перемещения активными элементами пассивных. В работах [4, 5] самоорганизация происходит за счет того, что каждый элемент системы знает свое расположение относительноостальных элементов и способен определить свою динамику для перевода системы в новое состояние.
Поскольку самоорганизующиеся системы можно рассматривать и на уровне функционирования системы в целом, и на уровне поведения ее отдельных элементов, будем использовать уже имеющийся математический аппарат, разработанный в рамках синергетики для описания подобных сложных систем [6]. Его особенность заключается в том, что на основе поведения составных частей системы на микроскопическом уровне выводятся закономерности ее поведения на макроскопическом уровне или, возможно решение обратной задачи, когда для системы задается цель функционирования, на основе которой определяется поведение ее составных частей. Это подход успешно применен в работах [7,8].
В данной работе синтезируется модель, описывающая явление изменения формы в ответ на воздействие внешнего раздражителя на примере простейшего микроорганизма, поглощающего питательную частицу. Модель строится на основе потенциальной системы, совмещающей в себе свойства «эластичной петли» и самоорганизующейся формы с памятью состояний.
самоорганизующийся система память воздействие
Математическая модель
Предложенная модель обладает двумя ключевыми особенностями. Во-первых,введение различных типов для точек самой системы и набора точек, определяющих раздражитель для нее, чтопозволяет воздействовать только на строго определенные точки системы. Во-вторых, наличие нескольких запомненных структур, изменение которых в ответ на внешний раздражитель и является целью функционирования системы.
Учет этих особенностей модели осуществляется с помощью способа ее задания: вводится два типизированных набора точек на плоскости. Первый определяется вектором комплексных чисел R {, }, второй - вектором комплексных чисел r {,}.
Для каждой точки наборов вводится тип , и ,, учитываемый при моделировании системы с помощью матрицы связей С. Элементы матрицыс вязей определяются по правилу:
(1)
Точки набора r описывают пространственную структуру самоорганизующейся системы,то есть вектор r - описание системы на макроскопическом уровне, в то же время каждая точка ,характеризует систему на микроскопическом уровне. С помощью вектора R формируется внешний раздражитель, на который будет реагировать моделируемая система, или, другими словами, определяется, перейдет ли система в новое устойчивое состояние или останется в текущем. Взаимодействие между точками векторов rи R происходит только при совпадении типов , ,.
Как было сказано ранее, самоорганизующаяся система должна стремиться восстановить одну из запомненных структур в ответ на внешний раздражитель. В данной работе мы будем понимать под структурой системы ее форму. Набор допустимых форм системы задается с помощью векторов , и, как будет показано далее, используется для формирования матрицы системной памяти.
В качестве энергетической функции, описывающей динамику системы, примем взвешенную сумму вида
(2)
где - энергия взаимодействия векторов, определяющих описываемую систему и набор раздражителей для нее, - энергия взаимодействия точек системы друг с другом, характеризующая форму системы в целом, - энергия, разделяющая фазовое пространство системы на области притяжения отдельных аттракторов, характеризующих форму системы, коэффициенты , , определяют относительную величину вклада каждого слагаемого в результирующую функцию энергии системы.
Энергию примем в виде
, (3)
где - управляющий параметр, влияющий на радиус притяжения точек набора R.
Данный вид функции потенциальной энергии получен Р. Дурбином и Д. Уилшоу при решении задачи коммивояжера [9] и использован для задания внешних возмущений для самоорганизующихся систем в работе [10].
В работе [11] показан подход к построению самоорганизующихся систем с памятью состояний. В соответствии с ним энергию определим следующим образом:
, (4)
где H - оператор, переводящий центр масс структуры самоорганизующейся системы в начало координат, J - матрица, являющаяся системной памятью системы.
Матрица J рассчитывается по правилу:
,
где V - матрица, каждый столбец которой содержит одну из запоминаемых форм системой, ;U - матрица, вычисляемая по правилу: .
Согласно [12] минимуму энергии кроме запомненных форм соответствуют еще и ложные состояние системы. Чтобы их исключить, вводится энергия :
(5)
где , - соответственно к и lстолбцы матрицы U, С - число запомненных системой форм.
Динамика системы описывается выражением, минимизирующим функцию энергии (2):
.
С учетом выражений (3), (4), (5) получим:
.(6)
Вектор в (6) определяется следующим образом:
,
где в трактовке Р. Дурбина и Д. Уилшоу - коэффициент, определяющий силу связи между i-тым элементом вектора R и j-тым элементом вектора r.
Численные расчеты
Рис.1. Формы, запомненные моделью
Для наглядности на основе предложенной математической модели (6) рассмотрен процесс механического поглощения микроорганизмом питательной частицы.Система, моделирующая микроорганизм, состоит из 25 точек; данный набор точек подвижен. Микроорганизм может находиться в двух устойчивых состояниях: -нормальное состояние; - состояние после поглощения питательной частицы (рис. 1).
Модель питательной частицы, то есть внешний раздражитель для самоорганизующейся системы, состоит из 6 точек и является неподвижным набором. Каждая точка неподвижного набора имеет уникальный тип, в то время как в подвижном наборе только6 точек своими типами соответствуют им. Таким образом, внешний раздражитель воздействует на 6 точек самоорганизующейся гетерогенной системы, динамика остальных 19 точек определяется стремлением модели принять одну из допустимых форм.
Дифференциальное уравнение (6), определяющее динамику системы, решалось методом Эйлера, т. к. данный метод наиболее прост для программной реализации, при этом он позволяет получить достаточно точный результат для качественного анализа поведения системы. Для расчетов использовался математический пакет MatLab 2006. На рис. 2 представлено пространственное расположение системы в зависимости от шага k итерационного процесса решения. Незакрашенные точки задают расположение питательной частицы, закрашенные - микроорганизма. Форма знака точки определяет ее тип.
Размещено на http://www.allbest.ru//
Размещено на http://www.allbest.ru//
Рис.2. Динамика системы при переходе к устойчивому состоянию:
1 - начальное состояние системы, форма ; 2 - переходное состояние системы, поглощение частицы только началось; 3 - переходное состояние системы, поглощение частицы заканчивается; 4 - конечное состояние системы, частица полностью поглощена, форма
Заключение
На данный момент все чаще появляются упоминания об использовании самоорганизующихся систем в различных областях техники [13-15]: управление группами роботов, самособирающиеся конструкции, «умные» материалы. В свете этого актуальность предложенной методики синтеза систем высока,т. к. в вышеназванных областях ключевым фактором для применения самоорганизующихся систем является их способность реагировать определенным желаемым образом на окружающую обстановку, в т. ч. это может быть изменение структуры. Поскольку число составных элементов такой системы может быть велико, задать ее поведение с помощью классических методов, например программного управления, представляется крайне проблематичным. Предложенная же методика позволяет достаточно легко синтезировать системы, изменяющие свою структуру в ответ на внешние возмущающие воздействия.
Динамика такой системы определяется функцией энергии в виде взвешенной суммы, первое слагаемое которой учитывает взаимодействие точек подвижного и неподвижного наборов, второе и третье - стремление системы принять одну из запомненных форм. Динамика системы учитывает ее гетерогенность, что означает наличие взаимодействия между точками разных наборов только при совпадении их типов. Таким образом, поведение системы во времени определяется набором запомненных форм и внешними воздействиями, приложенными к системе.
Библиографический список
R. Nagpal. Programmable Self-Assembly Using Biologically-Inspired Multiagent Control//International Conference on Autonomous Agents and Multi-Agent Systems. -2002.-p. 8.
Bhattacharyya A. Morphogenesis as an amorphous computation// Computing frontiers 2006. - New York: ACM. -P. 53-63.
WerfelJ. Anthills Built to Order: Automating Constructing with Artificial Swarms: PhD thesis - Massachusetts: MIT, 2006. - 116p.
RavichandranR., GordonG., GoldsteinS.C. A scalable distributed algorithm for shape transformation in multi-robot systems//International Conference on Intelligent Robots and Systems (2007). - IEEE-2007. -P. 4188-4193.
SprцwitzA.,LapradeP.,BonardiS., MayerM.,MцckelR., MudryP., IjspeertA.Roombots-Towards Decentralized Reconfiguration with Self-Reconfiguring Modular Robotic Metamodules// International Conference on Intelligent Robots and Systems (2010). - Taipei:IEEE. -2010. -P. 1126-1132.
ХакенГ.Синергетика. - М.: Мир, 1980. - 405 с.
ХакенГ.Информация и самоорганизация. - М.: Мир, 1991. - 240 с.
ЮдашкинА.А.Оподходе к построению трансформирующихся систем с несколькими устойчивыми состояниями//Межвуз. сборник науч. трудов «Дифференциальные уравнения и их приложения». - Самара: СамГТУ, 2002. - Вып. 1. - С. 64-69.
Durbin R., Willshaw D.J. An analogue approach to the traveling salesman problem using an elastic net method // Nature, 1987. - Vol.326. - P. 689-691.
Синтез гетерогенных самоорганизующихся моделей для аппроксимации структур на плоскости / С.А. Колпащиков, А.С. Рязанов, А.А Юдашкин // Вестник Самарского государственного технического ун-та. Cер. Технические науки. - Самара: СамГТУ, 2009. - Вып. 3. - С. 38-43.
Использование динамических эластичных форм для аппроксимации структур на плоскости / С.А. Колпащиков, А.С. Рязанов, А.А Юдашкин // Вестник Самарского государственного технического ун-та. Cер. Физ.-мат. науки. - Самара: СамГТУ, 2009. - Вып. 2. - С. 269-273.
Юдашкин А.А.Методы синтеза самоорганизующихся систем, обладающих памятью счетного числа состояний: Дис. … д-ра технических наук. - Самара: Самар. гос. техн. ун-т, 2005. - 223 с.
HoggT.,HubermanB. Controlling Smart Matter// J. Smart Structures and Materials. 1998. V.7. P.R1-R14.
MontresorА.,Meling H., BabaogluЦ. Toward Self-Organizing, Self-Repairing and Resilient Distributed Systems. - In: Lecture Notes in Computer Science. - Berlin: Springer. - 2003. - V.2584. - P.119-123.
NithinM., AndersL.C., RehanO'G., MarcoD.Cooperation in a Heterogeneous Robot Swarm through Spatially Targeted Communication// 7th international conference on Swarm intelligence. -Berlin:Springer-Verlag. -2010. -P. 400-407.
Размещено на Allbest.ru
Подобные документы
Движение системы в переменных пространства состояний. Переходные процессы в системе. Ступенчатые воздействия по каналам управления. Устойчивость и неустойчивость линейной многомерной системы. Характер движения динамической системы. Матрица управляемости.
реферат [76,0 K], добавлен 26.01.2009Двумерные автономные динамические системы. Классификация состояний равновесия динамических систем второго порядка. Определение автономной системы дифференциальных уравнений и матрицы линеаризации системы. Фазовый портрет системы Лотки–Вольтерра.
лабораторная работа [1,1 M], добавлен 22.12.2012Методика формирования математической модели в операторной форме, а также в форме дифференциального уравнения и в пространстве состояний. Построение графа системы. Оценка устойчивости, управляемости, наблюдаемости системы автоматического управления.
контрольная работа [200,4 K], добавлен 03.12.2012Построение конструктивных моделей для стохастических систем с конечным множеством дискретных состояний. Анализ влияния среднего времени взимания дорожных сборов на длительность переходного процесса. Построение структурно-функциональной схемы системы.
курсовая работа [656,8 K], добавлен 27.05.2014Понятие и критерии оценивания системы массового обслуживания, определение ее типа, всех возможных состояний. Построение размеченного графа состояний. Параметры, характеризующие ее работу, интерпретация полученных характеристик, эффективность работы.
контрольная работа [26,2 K], добавлен 01.11.2010Изучение методики математического моделирования технических систем на макроуровне. Составление программы для ПЭВМ, ее отладка и тестирование. Проведение численного исследования и параметрической оптимизации системы, обзор синтеза расчётной структуры.
курсовая работа [129,6 K], добавлен 05.04.2012Характеристика рыбоперерабатывающей отрасли РФ. Эконометрический анализ выпуска рыбной продукции. Построение производственных функций. Построение статистической и динамической модели Леонтьева. Учет инфляции в этой модели. Построение модели Солоу.
курсовая работа [628,1 K], добавлен 06.03.2008Синтетический метод в прикладном системном анализе. Предпосылка синтеза системы с оптимальным распределением руководящих (координирующих) функций. Показатели центральности и периферийности. Целочисленное программирование. Учёт факторов неопределённости.
презентация [421,7 K], добавлен 19.12.2013Особенности управления состоянием сложных систем. Способы нахождения математической модели объекта (системы) методом площадей в виде звена 2-го и 3-го порядков. Формы определения устойчивости ЗСАУ. Нахождение переходной характеристики ЗСАУ и основных ПКР.
курсовая работа [112,5 K], добавлен 04.02.2011Процедура проведения имитационных экспериментов с моделью исследуемой системы. Этапы имитационного моделирования. Построение концептуальной модели объекта. Верификация и адаптация имитационной модели. Метод Монте-Карло. Моделирование работы отдела банка.
курсовая работа [549,5 K], добавлен 25.09.2011