Системы компьютерной математики в решении дифференциальных уравнений
Особенность систематического применения систем компьютерной математики в математическом моделировании. Характеристика построения нескольких фазовых траекторий системы двух дифференциальных уравнений и векторного поля, соответствующего этой концепции.
Рубрика | Экономико-математическое моделирование |
Вид | статья |
Язык | русский |
Дата добавления | 20.07.2018 |
Размер файла | 389,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского
Физико-математические науки
Системы компьютерной математики в решении дифференциальных уравнений
Зинина Анна Ивановна, магистр, ассистент
В статье рассматриваются примеры решения обыкновенных дифференциальных уравнений в системе Wolfram Mathematica.
Похожие материалы
· Использование Wolfram Mathematica в решении дифференциальных уравнений
· Организация самостоятельной работы студентов в условиях информационно-образовательной среды вуза
· Применение систем компьютерной математики при изучении комплексного анализа
· Использование прикладных программ при изучении математической статистики
· Математическая подготовка студентов в вузе в контексте будущей профессиональной деятельности
Первые пакеты программ аналитических вычислений появились в 60-х-70-х годах ХХ-го столетия. Первоначально такие пакеты выполняли узкопрофессиональные задачи и были предназначены для реализации на больших ЭВМ. Первые системы символьной математики, пригодные для работы на ЭВМ и рассчитанные на широкого пользователя, появились в 80-х годах. В конце 80-х годов такие системы назывались системами компьютерной алгебры. В настоящее время такие системы принято называть системами компьютерной математики.
Одними из первых монографий, посвященных систематическому применению систем компьютерной математики в математическом моделировании были монографии А. Грея, посвященные применению Mathematica к проблемам дифференциальной геометрии и теории обыкновенных дифференциальных уравнений.
Особое место среди систем компьютерной математики занимает «Mathematica» - признанный мировой лидер в области программного обеспечения математических исследований за совершенство технологии. Пакет задуман и выполнен с целью максимального упрощения для пользователя компьютерной реализации математических алгоритмов и методов. Это упрощение достигается тем, что приемы программирования не являются чем-то специфическим и внешним по отношению к традиционным методам решения математических задач, а совершенно однородны с обычным математическим творчеством. Огромное преимущество системы Mathematica состоит в том, что множество ее операторов и способы записи алгоритмов просты и естественны. Как правило, здесь не надо особенным образом заранее объявлять тип переменных, не надо специально распределять память для хранения той или иной информации, научиться работать в системе Mathematica довольно просто. Во многих видах вычислений система Mathematica является мировым рекордсменом по скорости вычислений и объему обрабатываемой информации.
Система Mathematica обладает обширными возможностями решения обыкновенных дифференциальных уравнений и их систем в символьном виде. Для этого используется функция DSolve, в алгоритме которой реализовано большинство известных на сегодняшний день аналитических методов.
Пример 1. Построим несколько фазовых траекторий системы двух дифференциальных уравнений и векторное поле, соответствующее этой системе.
В примерах 2-3 рассмотрим волновые уравнения.
Пример 2. траектория дифференциальный уравнение векторный
Примеры использования Mathematica в решении геометрических задач приведены в [1-5]. Система Wolfram Mathematica используется для решения дифференциальных уравнений не только в математике, но и актуальна в других научных областях. Ее можно применять и в механике, в частности, для решения различных постановок задач, где в качестве математических объектов используются дифференциальные уравнения. В работах [6, 7] рассмотрены уравнения движения мембран и акустических сред в виде обыкновенных дифференциальных уравнений. Для их решения может быть использована система компьютерной математики Wolfram Mathematica.
Список литературы
1. Букушева А.В. Использование Mathematica для описания геометрии динамических систем // Математика и ее приложения: фундаментальные проблемы науки и техники : сборник трудов всероссийской конференции, Барнаул, 24 - 26 ноября 2015. - Барнаул : Изд-во Алт. ун-та, 2015. С. 248-249.
2. Букушева А.В. Применение Wolfram Language для выделения специальных классов почти контактных метрических структур // Компьютерные науки и информационные технологии : Материалы Междунар. науч. конф. - Саратов : Издат. центр."Наука", 2016. С. 105-107.
3. Букушева А.В. Учебно-исследовательские задачи в подготовке бакалавров-математиков // Вестник Пермского государственного гуманитарно-педагогического университета. Серия «Информационные компьютерные технологии в образовании». 2015. Вып. 11. С. 85-93.
4. Букушева А.В. Решение учебно-исследовательских задач с использованием систем компьютерной математики // Информационные технологии в образовании: Материалы VII Всеросс. научно-практ. конф. - Саратов: ООО "Издательский центр "Наука"", 2015. С.185-187.
5. Букушева А.В. Учебно-исследовательские задачи в продуктивном обучении будущих бакалавров-математиков // Образовательные технологии.
6. Вельмисова А.И. Распространение и отражение гармонических волн в плоском акустическом слое с гибкими стенками в случае разрыва упругих свойств на одной из стенок // Математика. Механика: Сб. науч. тр. Саратов: Изд-во Сарат. ун-та, 2010. Вып.12. С. 136-140.
7. Вельмисова А.И., Вильде М.В., Кириллова И.В. Распространение и отражение гармонических волн в плоском акустическом слое с кусочно-неоднородными гибкими стенками // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2011. Т.11. №4. С. 68-73.
Размещено на Allbest.ru
Подобные документы
Cистема дифференциальных уравнений, связывающая значение заданной функции в некоторой точке и её производных различных порядков в той же точке. Расчет фазовых переменных зависимости погрешности, трудоемкости от шага, выраженного процессом x в степени n+1.
лабораторная работа [431,0 K], добавлен 01.12.2011Двумерные автономные динамические системы. Классификация состояний равновесия динамических систем второго порядка. Определение автономной системы дифференциальных уравнений и матрицы линеаризации системы. Фазовый портрет системы Лотки–Вольтерра.
лабораторная работа [1,1 M], добавлен 22.12.2012Анализ вопросов теории дифференциальных уравнений. Применение дифференциальных уравнений в экономике. Геометрический и экономический смысл производной, ее использование для решения задач по экономической теории. Определение числовой последовательности.
контрольная работа [456,9 K], добавлен 19.06.2015Рост общественного благосостояния, модель Золотаса. Пример анализа производительности труда. Динамика рыночной цены, модель Самуэльсона. Применение дифференциальных уравнений в процессе естественного роста выпуска продукции и динамике рыночной цены.
контрольная работа [501,7 K], добавлен 25.02.2014Математическое моделирование объектов, принципы получения и использования. Синтез устройства управления силой, уравновешивающей систему из двух грузов на трех пружинах в виде дифференциальных уравнений. Передаточная функция системы; критерии устойчивости.
курсовая работа [689,4 K], добавлен 01.12.2013Решение системы дифференциальных уравнений методом Рунге-Кутта. Исследованы возможности применения имитационного моделирования для исследования систем массового обслуживания. Результаты моделирования базового варианта системы массового обслуживания.
лабораторная работа [234,0 K], добавлен 21.07.2012Основные этапы эконометрического исследования. Система совместных, одновременных уравнений. Понятие эконометрических уравнений. Система независимых уравнений. Пример модели авторегрессии. Система линейных одновременных эконометрических уравнений.
курсовая работа [41,2 K], добавлен 17.09.2009Системы эконометрических уравнений. Структурные и приведенные системы одновременных уравнений. Проблема идентификации. Необходимое и достаточное условие идентификации. Оценивание параметров структурной модели. Косвенный метод наименьших квадратов.
контрольная работа [900,9 K], добавлен 29.06.2015Особенности создания непрерывных структурированных моделей. Схема выражения передаточной функции. Методы интегрирования систем дифференциальных уравнений. Структурная схема систем управления с учетом запаздывания в ЭВМ. Расчет непрерывной SS-модели.
курсовая работа [242,6 K], добавлен 16.11.2009Особенности расчета параметров уравнений линейной, степенной, полулогарифмической, обратной, гиперболической парной и экспоненциальной регрессии. Методика определения значимости уравнений регрессии. Идентификация и оценка параметров системы уравнений.
контрольная работа [200,1 K], добавлен 21.08.2010