Регрессионный анализ
Сущность регрессионного анализа. Методы определения вида регрессионных уравнений и их параметров, наименьших квадратов. График изменения видового числа древостоя ели в зависимости от средней высоты. Регрессия длины корней на длину стволиков всходов сосны.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 29.03.2018 |
Размер файла | 272,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Статистическая совокупность и ее сущность. Выбор регрессионного уравнения для выявления зависимости диаметра от высоты. Рост модальных сосновых древостоев Абаканского лесхоза. Построение графика зависимости диаметра древостоя от высоты в STATISTIKA 6.0.
дипломная работа [397,0 K], добавлен 18.11.2012Основные методы анализа линейной модели парной регрессии. Оценки неизвестных параметров для записанных уравнений парной регрессии по методу наименьших квадратов. Проверка значимости всех параметров модели (уравнения регрессии) по критерию Стьюдента.
лабораторная работа [67,8 K], добавлен 26.12.2010Эффективная оценка по методу наименьших квадратов. Корелляционно-регрессионный анализ в эконометрическом моделировании. Временные ряды в эконометрических исследованиях. Моделирование тенденции временного ряда. Расчет коэффициента автокорреляции.
контрольная работа [163,7 K], добавлен 19.06.2015Построение регрессионных моделей. Смысл регрессионного анализа. Выборочная дисперсия. Характеристики генеральной совокупности. Проверка статистической значимости уравнения регрессии. Оценка коэффициентов уравнения регрессии. Дисперсии случайных остатков.
реферат [57,4 K], добавлен 25.01.2009Понятие модели множественной регрессии. Сущность метода наименьших квадратов, который используется для определения параметров уравнения множественной линейной регрессии. Оценка качества подгонки регрессионного уравнения к данным. Коэффициент детерминации.
курсовая работа [449,1 K], добавлен 22.01.2015Особенности гетероскедастичности (определение, последствия, методы обнаружения и устранения). Проблемы пи проведении регрессионного анализа, основанного на методе наименьших квадратов, связанные с выполнимостью свойств случайных отклонений моделей.
контрольная работа [319,0 K], добавлен 11.05.2019Взаимосвязи экономических переменных. Понятие эконометрической модели. Коэффициент корреляции и его свойства. Линейная парная регрессия. Метод наименьших квадратов. Основные предпосылки и принципы регрессионного анализа. Статистика Дарбина-Уотсона.
шпаргалка [142,4 K], добавлен 22.12.2011Построение математической модели выбранного экономического явления методами регрессионного анализа. Линейная регрессионная модель. Выборочный коэффициент корреляции. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы.
курсовая работа [1,1 M], добавлен 22.05.2015Оценка влияния разных факторов на среднюю ожидаемую продолжительность жизни по методу наименьших квадратов. Анализ параметров линейной двухфакторной эконометрической модели с помощью метода наименьших квадратов. Графическое изображение данной зависимости.
практическая работа [79,4 K], добавлен 20.10.2015Оценка коэффициентов парной линейной регрессии, авторегрессионное преобразование. Трехшаговый и двухшаговый метод наименьших квадратов, его гипотеза и предпосылки. Системы одновременных уравнений в статистическом моделировании экономических ситуаций.
курсовая работа [477,2 K], добавлен 05.12.2009Навыки применения теоретических знаний по теме "Одномерный регрессионный анализ" при решении экономических задач с помощью системы GRETL. Анализ затрат в зависимости от числа ящиков, готовых к разгрузке. Обоснование результатов регрессионного анализа
лабораторная работа [27,2 K], добавлен 15.12.2008Метод наименьших квадратов; регрессионный анализ для оценки неизвестных величин по результатам измерений. Приближённое представление заданной функции другими; обработка количественных результатов естественнонаучных опытов, технических данных, наблюдений.
контрольная работа [382,4 K], добавлен 16.03.2011Расчет зависимости товарооборота за месяц. Параметры уравнения множественной регрессии, их оценка методом наименьших квадратов. Получение системы нормальных уравнений, ее решение по методу Крамера. Экономическая интерпретация параметров уравнения.
контрольная работа [45,6 K], добавлен 13.04.2014Построение поля рассеяния, его визуальный анализ. Определение точечных оценок параметров методом наименьших квадратов. Расчет относительной ошибки аппроксимации. Построение доверительных полос для уравнения регрессии при доверительной вероятности У.
контрольная работа [304,0 K], добавлен 21.12.2013Связь между случайными переменными и оценка её тесноты как основная задача корреляционного анализа. Регрессионный анализ, расчет параметров уравнения линейной парной регрессии. Оценка статистической надежности результатов регрессионного моделирования.
контрольная работа [50,4 K], добавлен 07.06.2011Проведение корреляционно-регрессионного анализа в зависимости выплаты труда от производительности труда. Построение поля корреляции, выбор модели уравнения и расчет его параметров. Вычисление средней ошибки аппроксимации и тесноту связи между признаками.
практическая работа [13,1 K], добавлен 09.08.2010Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.
контрольная работа [108,5 K], добавлен 28.03.2018Теоретические основы прикладного регрессионного анализа. Проверка предпосылок и предположений регрессионного анализа. Обнаружение выбросов в выборке. Рекомендации по устранению мультиколлинеарности. Пример практического применения регрессионного анализа.
курсовая работа [1,2 M], добавлен 04.02.2011Множественная корреляция и линейная регрессия. Оценка прогнозных качеств модели. Простейшие методы линеаризации. Вероятностный эксперимент, событие или вероятность. Фиктивные переменные в регрессионных моделях. Системы эконометрических уравнений.
курс лекций [2,0 M], добавлен 13.02.2014Модель зависимости доходности индекса телекоммуникации от индекса рынка. Результаты регрессионного анализа. Уравнение регрессии зависимости доходности отраслевого индекса от индекса. Регрессионная статистика, дисперсный анализ. Минимальный риск портфеля.
лабораторная работа [1,7 M], добавлен 15.11.2010