Социально-экономическое прогнозирование методом экстраполяции
Экстраполяция как один из важнейших способов современного социально-экономического и политического прогнозирования. Тренд – изменение, определяющее общее направление развития, основную тенденцию временных рядов. Сущность метода наименьших квадратов.
Рубрика | Экономико-математическое моделирование |
Вид | реферат |
Язык | русский |
Дата добавления | 02.02.2018 |
Размер файла | 21,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Сущность социально-экономического прогнозирования. Роль сахара в жизни человека. Математический аппарат, используемый при прогнозировании потребления. Регрессионный анализ. Методы наименьших квадратов и моментов. Оценка качества моделей прогнозирования.
курсовая работа [1,5 M], добавлен 26.11.2012Изучение сущности метода экономического моделирования и особенностей его применения. Экономическая оценка качества планов и прогнозов. Прогнозирование урожайности картофеля методом экстраполяции. Составление баланса производства и распределения картофеля.
контрольная работа [86,5 K], добавлен 09.11.2010Прогнозирование, его основные подходы и виды. Текущее состояние российского кинематографа, его проблемы и тенденции. Прогнозирование числа выходящих кинофильмов в Российской Федерации методом экстраполяции временного ряда и методом наименьших квадратов.
курсовая работа [280,0 K], добавлен 20.06.2014Основные элементы эконометрического анализа временных рядов. Задачи анализа и их первоначальная обработка. Решение задач кратко- и среднесрочного прогноза значений временного ряда. Методы нахождения параметров уравнения тренда. Метод наименьших квадратов.
контрольная работа [37,6 K], добавлен 03.06.2009Проблемы и тенденции развития гостиничного бизнеса в России. Структура номерного фонда гостиниц. Прогнозирование уровня заполняемости гостиниц в России в ближайшие несколько лет методом экстраполяции временного ряда и методом наименьших квадратов.
курсовая работа [330,6 K], добавлен 20.06.2014Классификационные принципы методов прогнозирования: фактографические, комбинированные и экспертные. Разработка приёмов статистического наблюдения и анализа данных. Практическое применение методов прогнозирования на примере метода наименьших квадратов.
курсовая работа [77,5 K], добавлен 21.07.2013Методы социально-экономического прогнозирования. Статистические и экспертные методы прогнозирования. Проблемы применения методов прогнозирования в условиях риска. Современные компьютерные технологии прогнозирования. Виды рисков и управление ими.
реферат [42,4 K], добавлен 08.01.2009Изучение метода экспоненциального сглаживания - эффективного метода прогнозирования, который дает возможность получить оценку параметров тренда, характеризующих не средний уровень процесса, а тенденцию, сложившуюся к моменту последнего наблюдения.
лабораторная работа [28,7 K], добавлен 15.11.2010Создание модели анализа и прогнозирования социально-экономического развития Российских регионов методом главных компонент. Оценка основных экономических показателей региона. Формирование индикаторов устойчивого развития с использованием программы МИДАС.
курсовая работа [969,1 K], добавлен 29.08.2015Теоретические выкладки в области теории хаоса. Методы, которые используются в математике, для прогнозирования стохастических рядов. Анализ финансовых рядов и рядов Twitter, связь между сентиметными графиками и поведением временного финансового ряда.
курсовая работа [388,9 K], добавлен 01.07.2017Обзор основных инструментов, применяемых в прогнозировании. Характеристика базовых методов построения прогнозов социально-экономических систем при помощи программного обеспечения MS EXCEL. Особенности разработки прогнозных моделей на 2004, 2006 и 2009 гг.
лабораторная работа [218,4 K], добавлен 04.12.2012Анализ развития рынка телевизионных сериалов производства РФ. Соотношение высокобюджетных проектов, ситкомов и драмеди в российском телеэфире. Прогнозирование объема многосерийной продукции методами экстраполяции временного ряда и наименьших квадратов.
курсовая работа [283,6 K], добавлен 20.06.2014Структурные компоненты детерминированной составляющей. Основная цель статистического анализа временных рядов. Экстраполяционное прогнозирование экономических процессов. Выявление аномальных наблюдений, а также построение моделей временных рядов.
курсовая работа [126,0 K], добавлен 11.03.2014Теория и анализ временных рядов. Построение линии тренда и прогнозирование развития случайного процесса на основе временного ряда. Сглаживание временного ряда, задача выделения тренда, определение вида тенденции. Выделение тригонометрической составляющей.
курсовая работа [722,6 K], добавлен 09.07.2019Временные ряды и их характеристики. Факторы, влияющие на значения временного ряда. Тренд и сезонные составляющие. Декомпозиция временных рядов. Метод экспоненциального сглаживания. Построение регрессионной модели. Числовые характеристики переменных.
контрольная работа [1,6 M], добавлен 18.06.2012Классические подходы к анализу финансовых рынков, алгоритмы машинного обучения. Модель ансамблей классификационных деревьев для прогнозирования динамики финансовых временных рядов. Выбор алгоритма для анализа данных. Практическая реализация модели.
дипломная работа [1,5 M], добавлен 21.09.2016Статистические методы прогнозирования и их роль в экономической практике. Классификация экономических прогнозов. Требования, предъявляемые к временным рядам, и их компонентный состав. Сопоставимость уровней ряда и допустимая длина временных рядов.
контрольная работа [1,2 M], добавлен 13.08.2010Оценка влияния разных факторов на среднюю ожидаемую продолжительность жизни по методу наименьших квадратов. Анализ параметров линейной двухфакторной эконометрической модели с помощью метода наименьших квадратов. Графическое изображение данной зависимости.
практическая работа [79,4 K], добавлен 20.10.2015Анализ временных рядов с помощью статистического пакета "Minitab". Механизм изменения уровней ряда. Trend Analysis – анализ линии тренда с аппроксимирующими кривыми (линейная, квадратическая, экспоненциальная, логистическая). Декомпозиция временного ряда.
методичка [1,2 M], добавлен 21.01.2011Эффективная оценка по методу наименьших квадратов. Корелляционно-регрессионный анализ в эконометрическом моделировании. Временные ряды в эконометрических исследованиях. Моделирование тенденции временного ряда. Расчет коэффициента автокорреляции.
контрольная работа [163,7 K], добавлен 19.06.2015