Эконометрические методы исследований
Расчет параметров уравнений линейной, экспоненциальной, полулогарифмической, обратной и гиперболической парной регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Анализ параметров уравнения регрессии, критерий Стьюдента.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 27.03.2017 |
Размер файла | 324,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Вычисление определителя показано в шаблоне решения Excel
В нашем случае rx1 x2 имеют |r|>0.7, что говорит о мультиколлинеарности факторов и о необходимости исключения одного из них из дальнейшего анализа.
Модель регрессии в стандартном масштабе предполагает, что все значения исследуемых признаков переводятся в стандарты (стандартизованные значения) по формулам:
где хji - значение переменной хji в i-ом наблюдении.
Таким образом, начало отсчета каждой стандартизованной переменной совмещается с ее средним значением, а в качестве единицы изменения принимается ее среднее квадратическое отклонение S.
Если связь между переменными в естественном масштабе линейная, то изменение начала отсчета и единицы измерения этого свойства не нарушат, так что и стандартизованные переменные будут связаны линейным соотношением:
ty = ?вjtxj
Для оценки в-коэффциентов применим МНК. При этом система нормальных уравнений будет иметь вид:
rx1y=в1+rx1x2*в2 + ... + rx1xm*вm
rx2y=rx2x1*в1 + в2 + ... + rx2xm*вm
rxmy=rxmx1*в1 + rxmx2*в2 + ... + вm
Для наших данных (берем из матрицы парных коэффициентов корреляции):
-0.982 = в1 + 0.995в2
-0.983 = 0.995в1 + в2
Данную систему линейных уравнений решаем методом Гаусса: в1 = -0.343; в2 = -0.642;
Стандартизированная форма уравнения регрессии имеет вид:
y0 = -0.343x1 -0.642x2
Найденные из данной системы в-коэффициенты позволяют определить значения коэффициентов в регрессии в естественном масштабе по формулам:
3. Анализ параметров уравнения регрессии.
Перейдем к статистическому анализу полученного уравнения регрессии: проверке значимости уравнения и его коэффициентов, исследованию абсолютных и относительных ошибок аппроксимации
Для несмещенной оценки дисперсии проделаем следующие вычисления:
Несмещенная ошибка е = Y - Y(x) = Y - X*s (абсолютная ошибка аппроксимации)
Y |
Y(x) |
е = Y - Y(x) |
е2 |
(Y-Yср)2 |
|е : Y| |
|
89 |
87.34 |
1.66 |
2.74 |
93.44 |
0.0186 |
|
83 |
84.42 |
-1.42 |
2.01 |
13.44 |
0.0171 |
|
80 |
80.66 |
-0.66 |
0.43 |
0.44 |
0.00821 |
|
77 |
77.52 |
-0.52 |
0.27 |
5.44 |
0.00678 |
|
75 |
74.6 |
0.4 |
0.16 |
18.78 |
0.00537 |
|
72 |
71.46 |
0.54 |
0.29 |
53.78 |
0.00746 |
|
0 |
5.91 |
185.33 |
0.0635 |
Средняя ошибка аппроксимации
Оценка дисперсии равна:
se2 = (Y - X*Y(X))T(Y - X*Y(X)) = 5.91
Несмещенная оценка дисперсии равна:
Оценка среднеквадратичного отклонения (стандартная ошибка для оценки Y):
Найдем оценку ковариационной матрицы вектора k = S * (XTX)-1
Дисперсии параметров модели определяются соотношением S2i = Kii, т.е. это элементы, лежащие на главной диагонали
Показатели тесноты связи факторов с результатом.
Если факторные признаки различны по своей сущности и (или) имеют различные единицы измерения, то коэффициенты регрессии bj при разных факторах являются несопоставимыми. Поэтому уравнение регрессии дополняют соизмеримыми показателями тесноты связи фактора с результатом, позволяющими ранжировать факторы по силе влияния на результат.
К таким показателям тесноты связи относят: частные коэффициенты эластичности, в-коэффициенты, частные коэффициенты корреляции.
Частные коэффициенты эластичности.
С целью расширения возможностей содержательного анализа модели регрессии используются частные коэффициенты эластичности, которые определяются по формуле:
Частный коэффициент эластичности показывает, насколько процентов в среднем изменяется признак-результат у с увеличением признака-фактора хj на 1% от своего среднего уровня при фиксированном положении других факторов модели.
Частный коэффициент эластичности |E1| < 1. Следовательно, его влияние на результативный признак Y незначительно.
Частный коэффициент эластичности |E2| < 1. Следовательно, его влияние на результативный признак Y незначительно.
Стандартизированные частные коэффициенты регрессии.
Стандартизированные частные коэффициенты регрессии - в-коэффициенты (вj) показывают, на какую часть своего среднего квадратического отклонения S(у) изменится признак-результат y с изменением соответствующего фактора хj на величину своего среднего квадратического отклонения (Sхj) при неизменном влиянии прочих факторов (входящих в уравнение).
По максимальному вj можно судить, какой фактор сильнее влияет на результат Y.
По коэффициентам эластичности и в-коэффициентам могут быть сделаны противоположные выводы. Причины этого: а) вариация одного фактора очень велика; б) разнонаправленное воздействие факторов на результат.
Коэффициент вj может также интерпретироваться как показатель прямого (непосредственного) влияния j-ого фактора (xj) на результат (y). Во множественной регрессии j-ый фактор оказывает не только прямое, но и косвенное (опосредованное) влияние на результат (т.е. влияние через другие факторы модели).
Косвенное влияние измеряется величиной: ?вirxj,xi, где m - число факторов в модели. Полное влияние j-ого фактора на результат равное сумме прямого и косвенного влияний измеряет коэффициент линейной парной корреляции данного фактора и результата - rxj,y.
Так для нашего примера непосредственное влияние фактора x1 на результат Y в уравнении регрессии измеряется вj и составляет -0.343; косвенное (опосредованное) влияние данного фактора на результат определяется как:
rx1x2в2 = 0.995 * -0.642 = -0.6388
Сравнительная оценка влияния анализируемых факторов на результативный признак.
5. Сравнительная оценка влияния анализируемых факторов на результативный признак производится:
- средним коэффициентом эластичности, показывающим на сколько процентов среднем по совокупности изменится результат y от своей средней величины при изменении фактора xi на 1% от своего среднего значения;
- в-коэффициенты, показывающие, что, если величина фактора изменится на одно среднеквадратическое отклонение Sxi, то значение результативного признака изменится в среднем на в своего среднеквадратического отклонения;
- долю каждого фактора в общей вариации результативного признака определяют коэффициенты раздельной детерминации (отдельного определения): d2i = ryxiвi.
d21 = -0.98 * (-0.343) = 0.34
d22 = -0.98 * (-0.642) = 0.63
При этом должно выполняться равенство:
?d2i = R2 = 0.97
Множественный коэффициент корреляции (Индекс множественной корреляции).
Тесноту совместного влияния факторов на результат оценивает индекс множественной корреляции.
В отличии от парного коэффициента корреляции, который может принимать отрицательные значения, он принимает значения от 0 до 1.
Поэтому R не может быть использован для интерпретации направления связи. Чем плотнее фактические значения yi располагаются относительно линии регрессии, тем меньше остаточная дисперсия и, следовательно, больше величина Ry(x1,...,xm).
Таким образом, при значении R близком к 1, уравнение регрессии лучше описывает фактические данные и факторы сильнее влияют на результат. При значении R близком к 0 уравнение регрессии плохо описывает фактические данные и факторы оказывают слабое воздействие на результат.
Связь между признаком Y факторами X сильная
Расчёт коэффициента корреляции выполним, используя известные значения линейных коэффициентов парной корреляции и в-коэффициентов.
Коэффициент детерминации.
R2= 0.9842 = 0.968
Регрессионная статистика |
||||||||
Множественный R |
0,98392535 |
|||||||
R-квадрат |
0,968109095 |
|||||||
Нормированный R-квадрат |
0,946848491 |
|||||||
Стандартная ошибка |
1,403620053 |
|||||||
Наблюдения |
6 |
|||||||
Дисперсионный анализ |
||||||||
df |
SS |
MS |
F |
Значимость F |
||||
Регрессия |
2 |
179,4229 |
89,71144 |
45,53535 |
0,005695 |
|||
Остаток |
3 |
5,910448 |
1,970149 |
|||||
Итого |
5 |
185,3333 |
||||||
Y-пересечение |
110,3283582 |
58,86697 |
1,874198 |
0,157597 |
-77,0126 |
297,6693192 |
-77,0126028 |
|
Переменная X 1 |
-2,089552239 |
3,318471 |
-0,62967 |
0,573597 |
-12,6504 |
8,471304681 |
-12,65040916 |
|
Переменная X 2 |
-0,208955224 |
0,621243 |
-0,33635 |
0,75876 |
-2,18603 |
1,76811868 |
-2,186029128 |
СПИСОК ИСПОЛЬЗОВАННОЙ ЛитературЫ
1. Елисеева, И.И. Практикум по эконометрике [Текст]: учебное пособие / И.И. Елисеева, С.В. Курышева, Д.М. Гордиенко [и др.] - М.: Финансы и статистика, 2001. - 194с.
2. Кремер, Н.Ш. Эконометрика: учебник для вузов/ Под ред. проф. Н.Ш. Кремера; Н.Ш. Кремер, Б.А. Путко. - М.: ЮНИТИ-ДАНА, 2002. - 311с.
3. Практикум по эконометрике [Текст]: учебное пособие / ред. Елисеева, И.И. - М.: Финансы и статистика, 2001. - 192 с.: ил.
Размещено на Allbest.ru
Подобные документы
Особенности расчета параметров уравнений линейной, степенной, полулогарифмической, обратной, гиперболической парной и экспоненциальной регрессии. Методика определения значимости уравнений регрессии. Идентификация и оценка параметров системы уравнений.
контрольная работа [200,1 K], добавлен 21.08.2010Расчет параметров уравнения линейной регрессии, оценка тесноты связи с помощью показателей корреляции и детерминации; определение средней ошибки аппроксимации. Статистическая надежность регрессионного моделирования с помощью критериев Фишера и Стьюдента.
контрольная работа [34,7 K], добавлен 14.11.2010Построение поля корреляции и формулирование гипотезы о форме связи. Параметры уравнений линейной, степенной и гиперболической регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Оценка средней ошибки аппроксимации уравнения.
контрольная работа [136,3 K], добавлен 25.09.2014Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.
контрольная работа [1,6 M], добавлен 14.05.2008Расчет параметров уравнения линейной регрессии, оценка тесноты связи с помощью показателей корреляции и детерминации. Определение средней ошибки аппроксимации. Статистическая надежность моделирования с помощью F-критерия Фишера и t-критерия Стьюдента.
контрольная работа [58,3 K], добавлен 17.10.2009Построение поля корреляции. Расчет параметров уравнений парной регрессии. Зависимость средней ожидаемой продолжительности жизни от некоторых факторов. Изучение "критерия Фишера". Оценка тесноты связи с помощью показателей корреляции и детерминации.
контрольная работа [173,8 K], добавлен 22.11.2010Расчет уравнений линейной и нелинейной парной регрессии. Оценка тесноты связи расходов на перевозки и грузооборота с помощью показателей корреляции и детерминации. Оценка ошибки аппроксимации уравнений регрессии. Расчет прогнозного значения расходов.
курсовая работа [2,5 M], добавлен 26.12.2014Расчет параметров линейной регрессии. Сравнительная оценка тесноты связи с помощью показателей корреляции, детерминации, коэффициента эластичности. Построение поля корреляции. Определение статистической надежности результатов регрессионного моделирования.
контрольная работа [71,7 K], добавлен 17.09.2016Параметры уравнения линейной регрессии. Вычисление остаточной суммы квадратов, оценка дисперсии остатков. Осуществление проверки значимости параметров уравнения регрессии с помощью критерия Стьюдента. Расчет коэффициентов детерминации и эластичности.
контрольная работа [248,4 K], добавлен 26.12.2010Оценка тесноты связи с помощью показателей корреляции и детерминации. Построение поля корреляции и расчёт параметров линейной регрессии. Результаты вычисления функций и нахождение коэффициента детерминации. Регрессионный анализ и прогнозирование.
курсовая работа [1,1 M], добавлен 07.08.2011