Эконометрические методы исследований

Расчет параметров уравнений линейной, экспоненциальной, полулогарифмической, обратной и гиперболической парной регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Анализ параметров уравнения регрессии, критерий Стьюдента.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 27.03.2017
Размер файла 324,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Вычисление определителя показано в шаблоне решения Excel

В нашем случае rx1 x2 имеют |r|>0.7, что говорит о мультиколлинеарности факторов и о необходимости исключения одного из них из дальнейшего анализа.

Модель регрессии в стандартном масштабе предполагает, что все значения исследуемых признаков переводятся в стандарты (стандартизованные значения) по формулам:

где хji - значение переменной хji в i-ом наблюдении.

Таким образом, начало отсчета каждой стандартизованной переменной совмещается с ее средним значением, а в качестве единицы изменения принимается ее среднее квадратическое отклонение S.

Если связь между переменными в естественном масштабе линейная, то изменение начала отсчета и единицы измерения этого свойства не нарушат, так что и стандартизованные переменные будут связаны линейным соотношением:

ty = ?вjtxj

Для оценки в-коэффциентов применим МНК. При этом система нормальных уравнений будет иметь вид:

rx1y1+rx1x22 + ... + rx1xmm

rx2y=rx2x11 + в2 + ... + rx2xmm

rxmy=rxmx11 + rxmx22 + ... + вm

Для наших данных (берем из матрицы парных коэффициентов корреляции):

-0.982 = в1 + 0.995в2

-0.983 = 0.995в1 + в2

Данную систему линейных уравнений решаем методом Гаусса: в1 = -0.343; в2 = -0.642;

Стандартизированная форма уравнения регрессии имеет вид:

y0 = -0.343x1 -0.642x2

Найденные из данной системы в-коэффициенты позволяют определить значения коэффициентов в регрессии в естественном масштабе по формулам:

3. Анализ параметров уравнения регрессии.

Перейдем к статистическому анализу полученного уравнения регрессии: проверке значимости уравнения и его коэффициентов, исследованию абсолютных и относительных ошибок аппроксимации

Для несмещенной оценки дисперсии проделаем следующие вычисления:

Несмещенная ошибка е = Y - Y(x) = Y - X*s (абсолютная ошибка аппроксимации)

Y

Y(x)

е = Y - Y(x)

е2

(Y-Yср)2

|е : Y|

89

87.34

1.66

2.74

93.44

0.0186

83

84.42

-1.42

2.01

13.44

0.0171

80

80.66

-0.66

0.43

0.44

0.00821

77

77.52

-0.52

0.27

5.44

0.00678

75

74.6

0.4

0.16

18.78

0.00537

72

71.46

0.54

0.29

53.78

0.00746

0

5.91

185.33

0.0635

Средняя ошибка аппроксимации

Оценка дисперсии равна:

se2 = (Y - X*Y(X))T(Y - X*Y(X)) = 5.91

Несмещенная оценка дисперсии равна:

Оценка среднеквадратичного отклонения (стандартная ошибка для оценки Y):

Найдем оценку ковариационной матрицы вектора k = S * (XTX)-1

Дисперсии параметров модели определяются соотношением S2i = Kii, т.е. это элементы, лежащие на главной диагонали

Показатели тесноты связи факторов с результатом.

Если факторные признаки различны по своей сущности и (или) имеют различные единицы измерения, то коэффициенты регрессии bj при разных факторах являются несопоставимыми. Поэтому уравнение регрессии дополняют соизмеримыми показателями тесноты связи фактора с результатом, позволяющими ранжировать факторы по силе влияния на результат.

К таким показателям тесноты связи относят: частные коэффициенты эластичности, в-коэффициенты, частные коэффициенты корреляции.

Частные коэффициенты эластичности.

С целью расширения возможностей содержательного анализа модели регрессии используются частные коэффициенты эластичности, которые определяются по формуле:

Частный коэффициент эластичности показывает, насколько процентов в среднем изменяется признак-результат у с увеличением признака-фактора хj на 1% от своего среднего уровня при фиксированном положении других факторов модели.

Частный коэффициент эластичности |E1| < 1. Следовательно, его влияние на результативный признак Y незначительно.

Частный коэффициент эластичности |E2| < 1. Следовательно, его влияние на результативный признак Y незначительно.

Стандартизированные частные коэффициенты регрессии.

Стандартизированные частные коэффициенты регрессии - в-коэффициенты (вj) показывают, на какую часть своего среднего квадратического отклонения S(у) изменится признак-результат y с изменением соответствующего фактора хj на величину своего среднего квадратического отклонения (Sхj) при неизменном влиянии прочих факторов (входящих в уравнение).

По максимальному вj можно судить, какой фактор сильнее влияет на результат Y.

По коэффициентам эластичности и в-коэффициентам могут быть сделаны противоположные выводы. Причины этого: а) вариация одного фактора очень велика; б) разнонаправленное воздействие факторов на результат.

Коэффициент вj может также интерпретироваться как показатель прямого (непосредственного) влияния j-ого фактора (xj) на результат (y). Во множественной регрессии j-ый фактор оказывает не только прямое, но и косвенное (опосредованное) влияние на результат (т.е. влияние через другие факторы модели).

Косвенное влияние измеряется величиной: ?вirxj,xi, где m - число факторов в модели. Полное влияние j-ого фактора на результат равное сумме прямого и косвенного влияний измеряет коэффициент линейной парной корреляции данного фактора и результата - rxj,y.

Так для нашего примера непосредственное влияние фактора x1 на результат Y в уравнении регрессии измеряется вj и составляет -0.343; косвенное (опосредованное) влияние данного фактора на результат определяется как:

rx1x2в2 = 0.995 * -0.642 = -0.6388

Сравнительная оценка влияния анализируемых факторов на результативный признак.

5. Сравнительная оценка влияния анализируемых факторов на результативный признак производится:

- средним коэффициентом эластичности, показывающим на сколько процентов среднем по совокупности изменится результат y от своей средней величины при изменении фактора xi на 1% от своего среднего значения;

- в-коэффициенты, показывающие, что, если величина фактора изменится на одно среднеквадратическое отклонение Sxi, то значение результативного признака изменится в среднем на в своего среднеквадратического отклонения;

- долю каждого фактора в общей вариации результативного признака определяют коэффициенты раздельной детерминации (отдельного определения): d2i = ryxiвi.

d21 = -0.98 * (-0.343) = 0.34

d22 = -0.98 * (-0.642) = 0.63

При этом должно выполняться равенство:

?d2i = R2 = 0.97

Множественный коэффициент корреляции (Индекс множественной корреляции).

Тесноту совместного влияния факторов на результат оценивает индекс множественной корреляции.

В отличии от парного коэффициента корреляции, который может принимать отрицательные значения, он принимает значения от 0 до 1.

Поэтому R не может быть использован для интерпретации направления связи. Чем плотнее фактические значения yi располагаются относительно линии регрессии, тем меньше остаточная дисперсия и, следовательно, больше величина Ry(x1,...,xm).

Таким образом, при значении R близком к 1, уравнение регрессии лучше описывает фактические данные и факторы сильнее влияют на результат. При значении R близком к 0 уравнение регрессии плохо описывает фактические данные и факторы оказывают слабое воздействие на результат.

Связь между признаком Y факторами X сильная

Расчёт коэффициента корреляции выполним, используя известные значения линейных коэффициентов парной корреляции и в-коэффициентов.

Коэффициент детерминации.

R2= 0.9842 = 0.968

Регрессионная статистика

Множественный R

0,98392535

R-квадрат

0,968109095

Нормированный R-квадрат

0,946848491

Стандартная

ошибка

1,403620053

Наблюдения

6

Дисперсионный анализ

df

SS

MS

F

Значимость F

Регрессия

2

179,4229

89,71144

45,53535

0,005695

Остаток

3

5,910448

1,970149

Итого

5

185,3333

Y-пересечение

110,3283582

58,86697

1,874198

0,157597

-77,0126

297,6693192

-77,0126028

Переменная X 1

-2,089552239

3,318471

-0,62967

0,573597

-12,6504

8,471304681

-12,65040916

Переменная X 2

-0,208955224

0,621243

-0,33635

0,75876

-2,18603

1,76811868

-2,186029128

СПИСОК ИСПОЛЬЗОВАННОЙ ЛитературЫ

1. Елисеева, И.И. Практикум по эконометрике [Текст]: учебное пособие / И.И. Елисеева, С.В. Курышева, Д.М. Гордиенко [и др.] - М.: Финансы и статистика, 2001. - 194с.

2. Кремер, Н.Ш. Эконометрика: учебник для вузов/ Под ред. проф. Н.Ш. Кремера; Н.Ш. Кремер, Б.А. Путко. - М.: ЮНИТИ-ДАНА, 2002. - 311с.

3. Практикум по эконометрике [Текст]: учебное пособие / ред. Елисеева, И.И. - М.: Финансы и статистика, 2001. - 192 с.: ил.

Размещено на Allbest.ru


Подобные документы

  • Особенности расчета параметров уравнений линейной, степенной, полулогарифмической, обратной, гиперболической парной и экспоненциальной регрессии. Методика определения значимости уравнений регрессии. Идентификация и оценка параметров системы уравнений.

    контрольная работа [200,1 K], добавлен 21.08.2010

  • Расчет параметров уравнения линейной регрессии, оценка тесноты связи с помощью показателей корреляции и детерминации; определение средней ошибки аппроксимации. Статистическая надежность регрессионного моделирования с помощью критериев Фишера и Стьюдента.

    контрольная работа [34,7 K], добавлен 14.11.2010

  • Построение поля корреляции и формулирование гипотезы о форме связи. Параметры уравнений линейной, степенной и гиперболической регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Оценка средней ошибки аппроксимации уравнения.

    контрольная работа [136,3 K], добавлен 25.09.2014

  • Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.

    контрольная работа [1,6 M], добавлен 14.05.2008

  • Расчет параметров уравнения линейной регрессии, оценка тесноты связи с помощью показателей корреляции и детерминации. Определение средней ошибки аппроксимации. Статистическая надежность моделирования с помощью F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа [58,3 K], добавлен 17.10.2009

  • Построение поля корреляции. Расчет параметров уравнений парной регрессии. Зависимость средней ожидаемой продолжительности жизни от некоторых факторов. Изучение "критерия Фишера". Оценка тесноты связи с помощью показателей корреляции и детерминации.

    контрольная работа [173,8 K], добавлен 22.11.2010

  • Расчет уравнений линейной и нелинейной парной регрессии. Оценка тесноты связи расходов на перевозки и грузооборота с помощью показателей корреляции и детерминации. Оценка ошибки аппроксимации уравнений регрессии. Расчет прогнозного значения расходов.

    курсовая работа [2,5 M], добавлен 26.12.2014

  • Расчет параметров линейной регрессии. Сравнительная оценка тесноты связи с помощью показателей корреляции, детерминации, коэффициента эластичности. Построение поля корреляции. Определение статистической надежности результатов регрессионного моделирования.

    контрольная работа [71,7 K], добавлен 17.09.2016

  • Параметры уравнения линейной регрессии. Вычисление остаточной суммы квадратов, оценка дисперсии остатков. Осуществление проверки значимости параметров уравнения регрессии с помощью критерия Стьюдента. Расчет коэффициентов детерминации и эластичности.

    контрольная работа [248,4 K], добавлен 26.12.2010

  • Оценка тесноты связи с помощью показателей корреляции и детерминации. Построение поля корреляции и расчёт параметров линейной регрессии. Результаты вычисления функций и нахождение коэффициента детерминации. Регрессионный анализ и прогнозирование.

    курсовая работа [1,1 M], добавлен 07.08.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.