Построение линейного уравнения парной регрессии

Основной расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Анализ оценки статистической значимости параметров регрессии с помощью критерия Фишера и Стьюдента. Характеристика верхней и нижней границ доверительных интервалов.

Рубрика Экономико-математическое моделирование
Вид задача
Язык русский
Дата добавления 20.06.2016
Размер файла 42,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Комсомольский-на-Амуре государственный технический университет»

Факультет экономики и менеджмента

Кафедра «Экономики, финансов и бухгалтерского учета»

РАСЧЁТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ

по дисциплине «Эконометрика»

Студент группы

А.Ю. Зайченко

Преподаватель

И.И. Антонова

2016

Задача

Таблица 1

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

78

133

2

82

148

3

87

134

4

79

154

5

89

162

6

106

195

7

67

139

8

88

158

9

73

152

10

87

162

11

76

159

12

115

173

Требуется:

1. Построить линейное уравнение парной регрессии от .

2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.

3. Оценить статистическую значимость параметров регрессии и корреляции с помощью -критерия Фишера и -критерия Стьюдента.

4. Выполнить прогноз заработной платы при прогнозном значении среднедушевого прожиточного минимума , составляющем 107% от среднего уровня.

5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

6. На одном графике построить исходные данные и теоретическую прямую.

Решение:

1. Для расчета параметров уравнения линейной регрессии строим расчетную таблицу 2. линейный корреляция аппроксимация регрессия

Таблица 2

1

78

133

10374

6084

17689

149

-16

12,0

2

82

148

12136

6724

21904

152

-4

2,7

3

87

134

11658

7569

17956

157

-23

17,2

4

79

154

12166

6241

23716

150

4

2,6

5

89

162

14418

7921

26244

159

3

1,9

6

106

195

20670

11236

38025

174

21

10,8

7

67

139

9313

4489

19321

139

0

0,0

8

88

158

13904

7744

24964

158

0

0,0

9

73

152

11096

5329

23104

144

8

5,3

10

87

162

14094

7569

26244

157

5

3,1

11

76

159

12084

5776

25281

147

12

7,5

12

115

173

19895

13225

29929

183

-10

5,8

Итого

1027

1869

161808

89907

294377

1869

0

68,9

Среднее значение

85,6

155,8

13484,0

7492,3

24531,4

-

-

5,7

12,84

16,05

-

-

-

-

-

-

164,94

257,76

-

-

-

-

-

-

;

.

Получено уравнение регрессии:

.

С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,89 руб.

2. Тесноту линейной связи оценит коэффициент корреляции:

;

.

Это означает, что 51% вариации заработной платы () объясняется вариацией фактора - среднедушевого прожиточного минимума.

Качество модели определяет средняя ошибка аппроксимации:

.

Качество построенной модели оценивается как хорошее, так как не превышает 8-10%.

3. Оценку значимости уравнения регрессии в целом проведем с помощью -критерия Фишера. Фактическое значение -критерия:

Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы и составляет . Так как , то уравнение регрессии признается статистически значимым.

Оценку статистической значимости параметров регрессии проведем с помощью -статистики Стьюдента и путем расчета доверительного интервала каждого из показателей.

Табличное значение -критерия для числа степеней свободы и составит .

Определим случайные ошибки , , :

;

;

Тогда

;

;

.

Фактические значения -статистики превосходят табличное значение:

;;,

поэтому параметры , и не случайно отличаются от нуля, а статистически значимы. Рассчитаем доверительные интервалы для параметров регрессии и . Для этого определим предельную ошибку для каждого показателя:

;

.

Доверительные интервалы:

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры и , находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.

4. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит:

руб.,

тогда прогнозное значение заработной платы составит:

руб.

Ошибка прогноза составит:

.

Предельная ошибка прогноза, которая в случаев не будет превышена, составит:

.

Доверительный интервал прогноза:

руб.;

руб.

Выполненный прогноз среднемесячной заработной платы является надежным () и находится в пределах от 131,66 руб. до 190,62 руб. В заключение решения задачи построим на одном графике исходные данные и теоретическую прямую (рисунок1)

Рисунок 1

Размещено на Allbest.ru


Подобные документы

  • Построение линейного уравнения парной регрессии, расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Определение коэффициентов корреляции и эластичности, индекса корреляции, суть применения критерия Фишера в эконометрике.

    контрольная работа [141,3 K], добавлен 05.05.2010

  • Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.

    контрольная работа [1,6 M], добавлен 14.05.2008

  • Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.

    контрольная работа [155,8 K], добавлен 11.12.2010

  • Экономическая интерпретация коэффициента регрессии. Нахождение статочной суммы квадратов и оценка дисперсии остатков. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Расчет средней относительной ошибки аппроксимации.

    контрольная работа [261,1 K], добавлен 23.03.2010

  • Построение доверительного интервала для коэффициента регрессии. Определение ошибки аппроксимации, индекса корреляции и F-критерия Фишера. Оценка эластичности изменения материалоемкости продукции. Построение линейного уравнения множественной регрессии.

    контрольная работа [250,5 K], добавлен 11.04.2015

  • Расчет параметров уравнения линейной регрессии, оценка тесноты связи с помощью показателей корреляции и детерминации. Определение средней ошибки аппроксимации. Статистическая надежность моделирования с помощью F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа [58,3 K], добавлен 17.10.2009

  • Определение количественной зависимости массы пушного зверька от его возраста. Построение уравнения парной регрессии, расчет его параметров и проверка адекватности. Оценка статистической значимости параметров регрессии, расчет их доверительного интервала.

    лабораторная работа [100,5 K], добавлен 02.06.2014

  • Построение гипотезы о форме связи денежных доходов на душу населения с потребительскими расходами в Уральском и Западно-Сибирском регионах РФ. Расчет параметров уравнений парной регрессии, оценка их качества с помощью средней ошибки аппроксимации.

    контрольная работа [4,5 M], добавлен 05.11.2014

  • Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.

    контрольная работа [108,5 K], добавлен 28.03.2018

  • Построение поля корреляции. Расчет параметров уравнений парной регрессии. Зависимость средней ожидаемой продолжительности жизни от некоторых факторов. Изучение "критерия Фишера". Оценка тесноты связи с помощью показателей корреляции и детерминации.

    контрольная работа [173,8 K], добавлен 22.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.