Виды моделей

Понятия объекта, системы и модели. Классификации моделей целям использования, области знаний, фактору времени, способу представления, назначению, типу задач, форме реализации, отношению ко времени, характеру зависимости выходных параметров от входных.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 30.05.2016
Размер файла 14,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Объект, система, модель

2. Виды моделей. Информационная модель

3. Классификация с различных точек зрения

Заключение

Список литературы

Введение

Моделированием называют построение модели того или иного явления реального мира. В общем виде модель - это абстракция реального явления, сохраняющая его существенную структуру таким образом, чтобы ее анализ дал возможность определить влияние одних сторон явления на другие или же на явления в целом. В зависимости от логических свойств и связей моделей с отображаемыми явлениями можно все модели разделить на три типа: изобразительные, аналоговые и математические.

Специалист должен представлять себе современное состояние науки о моделировании, знать основные модели, их свойства и соответствующие методы решения. Каждый тип моделей имеет свои особенности, ориентирован на тот или иной класс задач, связан с определенными требованиями к вычислительной технике и т. п. В этой связи становится важной классификация моделей.

1. Объект, система, модель

Модель - это искусственно созданный объект, дающий упрощенное представление о реальном объекте, процессе или явлении, отражающий существенные стороны изучаемого объекта с точки зрения цели моделирования. Моделирование - это построение моделей, предназначенных для изучения и исследования объектов, процессов или явлений.

Объект, для которого создается модель, называют оригиналом или прототипом. Любая модель не является абсолютной копией своего оригинала, она лишь отражает некоторые его качества и свойства, наиболее существенные для выбранной цели исследования. При создании модели всегда присутствуют определенные допущения и гипотезы.

Системный подход позволяет создавать полноценные модели. Особенности системного подхода заключаются в следующем. Изучаемый объект рассматривается как система, описание и исследование элементов которой не выступает как сама цель, а выполняется с учетом их места (наличие подзадач). В целом объект не отделяется от условий его существования и функционирования. Объект рассматривается как составная часть чего-то целого (сам является подзадачей). Один и тот же исследуемый элемент рассматривается как обладающий разными характеристиками, функциями и даже принципами построения. При системном подходе на первое место выступают не только причинные объяснения функционирования объекта, но и целесообразность включения его в состав других элементов. Допускается возможность наличия у объекта множества индивидуальных характеристик и степеней свободы. Альтернативы решения задач сравниваются в первую очередь по критерию "стоимость-эффективность".

2. Виды моделей. Информационная модель

Модель - общенаучное понятие, означающее как идеальный, так и физический объект анализа. Важным классом идеальных моделей является математическая модель - в ней изучаемое явление или процесс представлены в виде абстрактных объектов или наиболее общих математических закономерностей, выражающих либо законы природы, либо внутренние свойства самих математических объектов, либо правила логических рассуждений.

Границы между моделями различных типов или классов, а также отнесение модели к какому-то типу или классу чаще всего условны. Наиболее распространенные признаки, по которым классифицируются модели:

- цель использования;

- область знаний;

- фактор времени;

- способ представления.

По целям использования выделяются модели учебные, опытные, имитационные, игровые, научно-технические.

По области знаний выделяются модели биологические, экономические, исторические, социологические и т.д.

По фактору времени разделяются модели динамические и статические. Статическая модель отражает строение и параметры объекта, поэтому ее называют также структурной. Она описывает объект в определенный момент времени, дает срез информации о нем. Динамическая модель отражает процесс функционирования объекта или изменения и развития процесса во времени.

Любая модель имеет конкретный вид, форму или способ представления, она всегда из чего-то и как-то сделана или представлена и описана. В этом классе, прежде всего, модели рассматриваются как материальные и нематериальные.

Материальные модели - это материальные копии объектов моделирования. Они всегда имеют реальное воплощение, воспроизводят внешние свойства или внутреннее строение, либо действия объекта-оригинала. Материальное моделирование использует экспериментальный (опытный) метод познания.

Нематериальное моделирование использует теоретический метод познания. По-другому его называют абстрактным, идеальным. Абстрактные модели, в свою очередь, делятся на воображаемые и информационные.

Информационная модель - это совокупность информации об объекте, описывающая свойства и состояние объекта, процесса или явления, а также связи и отношения с окружающим миром. Информационные модели представляют объекты в виде, словесных описаний, текстов, рисунков, таблиц, схем, чертежей, формул и т.д. Информационную модель нельзя потрогать, у нее нет материального воплощения, она строится только на информации. Ее можно выразить на языке описания (знаковая модель) или языке представления (наглядная модель).Одна и та же модель одновременно относится к разным классам деления. Например, программы, имитирующие движение тел. Такие программы используются на уроках физики (область знания) с целями обучения (цель использования). В то же время они являются динамическими, так как учитывают положение тела в разные моменты времени, и алгоритмическими по способу реализации.

Форма представления информационной модели зависит от способа кодирования (алфавита) и материального носителя.

Воображаемое (мысленное или интуитивное) моделирование - это мысленное представление об объекте. Такие модели формируются в воображении человека и сопутствуют его сознательной деятельности. Они всегда предшествуют созданию материального объекта, материальной и информационной модели, являясь одним из этапов творческого процесса.

Вербальное моделирование (относится к знаковым) - это представление информационной модели средствами естественного разговорного языка (фонемами). Мысленная модель, выраженная в разговорной форме, называется вербальной. Форма представления такой модели - устное или письменное сообщение. Примерами являются литературные произведения, информация в учебных пособиях и словарях, инструкции пользования устройством, правила дорожного движения.

Наглядное (выражено на языке представления) моделирование - это выражение свойств оригинала с помощью образов. Например, рисунки, художественные полотна, фотографии, кинофильмы. При научном моделировании понятия часто кодируются рисунками - иконическое моделирование. Сюда же относятся геометрические модели - информационные модели, представленные средствами графики.

Образно-знаковое моделирование использует знаковые образы какого-либо вида: схемы, графы, чертежи, графики, планы, карты. Например, географическая карта, план квартиры, родословное дерево, блок-схема алгоритма. К этой группе относятся структурные информационные модели, создаваемые для наглядного изображения составных частей и связей объектов. Наиболее простые и распространенные информационные структуры - это таблицы, схемы, графы, блок-схемы, деревья.

Знаковое (символическое выражено на языке описания) моделирование использует алфавиты формальных языков: условные знаки, специальные символы, буквы, цифры и предусматривает совокупность правил оперирования с этими знаками. Примеры: специальные языковые системы, физические или химические формулы, математические выражения и формулы, нотная запись и т. д. Программа, записанная по правилам языка программирования, является знаковой моделью.

Одним из наиболее распространенных формальных языков является алгебраический язык формул в математике, который позволяет описывать функциональные зависимости между величинами. Составление математической модели во многих задачах моделирования хоть и промежуточная, но очень существенная стадия.

Математическая модель - способ представления информационной модели, отображающий связь различных параметров объекта через математические формулы и понятия. В тех случаях, когда моделирование ориентировано на исследование моделей с помощью компьютера, одним из его этапов является разработка компьютерной модели.

Компьютерная модель - это созданный за счет ресурсов компьютера виртуальный образ, качественно и количественно отражающий внутренние свойства и связи моделируемого объекта, иногда передающий и его внешние характеристики. Компьютерная модель представляет собой материальную модель, воспроизводящую внешний вид, строение или действие моделируемого объекта посредством электромагнитных сигналов. Разработке компьютерной модели предшествуют мысленные, вербальные, структурные, математические и алгоритмические модели.

3. Классификация с различных точек зрения

Классификация моделей может быть проведена с различных точек зрения. Рассмотрим некоторые из них.

1. Классификация по целевому назначению.

Модели структуры описывают связи между средой и компонентами системы. Из них можно выделить: канонические модели, где описана связь с окружающей средой через вход и выход; модели внутренней структуры, описывающие состав компонентов системы и связь между ними; модели иерархической структуры, где целое расчленяется на элементы более низкого уровня (обычно в виде дерева структуры системы) и др.

Модели функционирования - модели жизненного цикла системы в целом; модели операции, представляющие описание процессов функционирования отдельных элементов; информационные модели, описывающие взаимосвязи источников и потребителей информации, характер ее преобразования, временные и другие количественные характеристики; процедурные модели, отражающие порядок взаимодействия элементов при выполнении отдельных операций; временные модели, описывающие процедуры функционирования во времени.

Стоимостные модели предназначены для комплексной оценки по экономическим критериям.

2. Классификация по типу задач.

Описательные (дескриптивные) модели (к ним часто приводят, постановки задач типа. А) предназначены для описания изучаемого процесса, объяснения наблюдаемых фактов, а также прогноза поведения системы: модели планирования без оптимизации (балансовые модели); модели для некоторых задач сетевого планирования и управления (расчет по известным формулам); модели для задач учета; модели для задач контроля и анализа (обычно в виде статистических моделей); модели прогнозирования; модели для расчета параметров функционирования случайных систем с неформализованными связями. В описательной модели нет сторон, принимающих решения. Формально число таких сторон в описательной модели равно нулю. Типичным примером подобных моделей является модели систем массового обслуживания. Для построения описательных моделей может также использоваться теория надежности, теория графов, теория вероятностей, метод статических испытаний (метод Монте-Карло).

Нормативные, или прескриптивные модели, к которым обычно приводят постановки задач типа В. В моделях такого типа отражается то, что должно было бы происходить, если принять некоторые исходные предположения. Построение нормативных моделей преследует цель определения наилучшего эффекта или состояния. С их помощью дается ответ на вопросы о том, как должно быть. Для нормативной модели характерно множество сторон. Принципиально можно выделить два вида нормативных моделей: модели оптимизации и теоретико-игровые.

В моделях оптимизации основная задача выработки решений технически сводится к строгой максимизации или минимизации критерия эффективности, т.е. определяются такие значения управляемых переменных, при которых критерий эффективности достигает экстремального значения (максимума или минимума). Для выработки решений отображаемых моделями оптимизации, наряду с классическими и новыми вариационными методами (поиск экстремума) наиболее широко используется методы математического программирования (линейное, нелинейное, динамическое).

Для теоретико-игровой модели характерна множественность числа сторон (не менее двух). Если двое с противоположными интересами, то используется теория игр, если число более двух и между ними невозможны коалиции и компромиссы, то используется теория бескоалиционных игр n-лиц. В теоретико-игровых моделях учитывается недостаточность информации о действиях противника и необходимость принимать решение в условиях неопределенности. Теоретико-игровой подход в том, по существу, и состоит, что выявляется наименее благоприятное вероятностное распределение значений неуправляемых переменных и находится оптимальное действие в этих наименее благоприятных условиях. Недостаток теоретико-игровой модели по сравнению со стохастической (точно так же, как и недостаток стохастической модели по сравнению с детерминированной) состоит в больших математических трудностях в теоретическом плане и в существенно большем объеме вычислительных работ в плане практическом.

Модели конструирования решений, выступающие в виде формализованных схем построения комплексных: решений. Они обычно включают в качестве элементов и дескриптивные, и нормативные модели. К таким моделям обычно приводят постановки задач типа С.

3. Классификация по форме реализации.

Аналитические модели, записывающиеся в виде математических конструкций, не включающих логических условий, приводящих к разветвлению вычислительного процесса.

Алгоритмические модели - это математические модели, в которых присутствуют логические условия, приводящие к разветвлению вычислительного процесса.

4. Классификация по отношению ко времени.

Различают статические и динамические модели. Статические модели - это модели, в которых время не является переменной (инвариантны ко времени). В динамических же моделях одной из переменных является время (являются функцией времени).

5. Классификация по характеру зависимости выходных параметров от входных модели.

Делятся на детерминированные и стохастические. Если существуют функциональные зависимости выходных параметров от входных, то модели являются детерминированными, если эти зависимости неизвестны, а известно лишь математическое описание выходов в виде функции входов, модели называются стохастическими.

Детерминированная модель строится в тех случаях, когда факторы, влияющие на исход операции, поддаются достаточно точному измерению или оценке, а случайные факторы либо отсутствуют, либо или можно ими пренебречь.

В стохастических моделях реальность отображается как некоторый случайный процесс, ход и исход которого описывается теми или иными характеристиками случайных величин: математическими отношениями, дисперсиями, функциями распределения и т.д. Построение такой модели возможно, если имеется достаточный фактический материал для оценки необходимых вероятностных распределений или если теория рассматриваемого явления позволяет определить эти распределения теоретически (на основе формул теории вероятностей, предельных теорем и т.д.)

6. Классификация по виду критерия эффективности и наложенных ограничений.

Два типа: линейные и нелинейные. В линейных моделях критерий эффективности и наложенные ограничения являются линейными функциями переменных модели. Допущение о линейной зависимости критерия эффективности и совокупности наложенных ограничений от переменных модели на практике вполне приемлемым. Это позволяет для выработки решений использовать хорошо разработанный аппарат линейного программирования.

7. Классификация по характеру времени.

Динамические модели делятся на непрерывные и дискретные. Первые функционируют в непрерывном времени, а вторые - в дискретном. Примером непрерывных детерминированных моделей могут служить дифференциальные или интегро-дифференциальные уравнения; примером дискретных детерминированных моделей - конечные автоматы, дискретных стохастических - вероятностные автоматы.

Заключение

Модель - очень широкое понятие, включающее в себя множество способов представления изучаемой реальности. Различают модели материальные (натурные) и идеальные (абстрактные). Материальные модели основываются на чем-то объективном, существующем независимо от человеческого сознания (каких-либо телах или процессах). Материальные модели делят на физические и аналоговые, основанные на процессах, аналогичных в каком-то отношении изучаемому. Между физическими и аналоговыми моделями можно провести границу и такая классификация моделей будет носить условный характер.

Еще более сложную картину представляют идеальные модели, неразрывным образом связанные с человеческим мышлением, воображением, восприятием. Среди идеальных моделей можно выделить интуитивные модели, к которым относятся, но единого подхода к классификации остальных видов идеальных моделей нет. Такой подход является не вполне оправданным, так как он переносит информационную природу познания на суть используемых в процессе моделей - при этом любая модель является информационной. Более продуктивным представляется такой подход к классификации идеальных моделей:

1. Вербальные (текстовые) модели. Эти модели используют последовательности предложений на формализованных диалектах естественного языка для описания той или иной области действительности (примерами такого рода моделей являются милицейский протокол, правила дорожного движения, настоящий учебник).

2. Математические модели - очень широкий класс знаковых моделей (основанных на формальных языках над конечными алфавитами), широко использующих те или иные математические методы. Например, математическая модель звезды. Эта модель будет представлять собой сложную систему уравнений, описывающих физические процессы, происходящие в недрах звезды. Математической моделью другого рода являются, например, математические соотношения, позволяющие рассчитать оптимальный (наилучший с экономической точки зрения) план работы какого-либо предприятия.

модель знание время

Список литературы

1. Олзоева С.И. Моделирование и расчёт распределённых информационных систем. Учебное пособие. - Улан-Удэ: Изд-во ВСГТУ, 2004. - 67 с.

2. Тихонов А.И. Основы теории подобия и моделирования (электрические машины): Учеб. пособие / ФГБОУВПО «Ивановский государственный энергетический университет имени В.И. Ленина». - Иваново, 2011. - 132 с.

Размещено на Allbest.ru


Подобные документы

  • Составление и проверка матрицы планирования. Получение математической модели объекта. Проверка адекватности математического описания. Применение метода случайного баланса для выделения наиболее существенных входных переменных многофакторного объекта.

    курсовая работа [568,7 K], добавлен 31.08.2010

  • Типовые модели менеджмента: примеры экономико-математических моделей и их практического использования. Процесс интеграции моделей разных типов в более сложные модельные конструкции. Определение оптимального плана производства продуктов каждого вида.

    контрольная работа [536,2 K], добавлен 14.01.2015

  • Основные методы прогнозирования. Критерии качества прогнозных моделей. Разработка прогнозной модели. Классификация прогнозных моделей. Математическая прогнозная модель. Разработка аналитических моделей. Основные ограничения длины прогнозного периода.

    презентация [1,2 M], добавлен 09.07.2015

  • Расчет параметров уравнения регрессии, среднего коэффициента эластичности и средней ошибки аппроксимации по рынку вторичного жилья. Определение идентификации моделей денежного и товарного рынков, выбор метода оценки параметров модели, оценка его качества.

    контрольная работа [133,1 K], добавлен 23.06.2010

  • Построение модели управления запасами в условиях детерминированного спроса. Методы и приемы определения оптимальных партий поставки для однопродуктовых и многопродуктовых моделей. Определение оптимальных параметров системы управления движением запасов.

    реферат [64,5 K], добавлен 11.02.2011

  • Основные понятия математических моделей и их применение в экономике. Общая характеристика элементов экономики как объекта моделирования. Рынок и его виды. Динамическая модель Леонтьева и Кейнса. Модель Солоу с дискретным и непрерывным временем.

    курсовая работа [426,0 K], добавлен 30.04.2012

  • Основные понятия и типы моделей, их классификация и цели создания. Особенности применяемых экономико-математических методов. Общая характеристика основных этапов экономико-математического моделирования. Применение стохастических моделей в экономике.

    реферат [91,1 K], добавлен 16.05.2012

  • Основы экономико-математического моделирования управления фирмой. Понятие и роль управления проектами. Методы построения сетевых моделей и календарных планов. Оптимизация сетевых моделей. Корректировка стоимостных и ресурсных параметров сетевого графика.

    курсовая работа [539,3 K], добавлен 21.12.2014

  • Особенности формирования и способы решения оптимизационной задачи. Сущность экономико-математической модели транспортной задачи. Характеристика и методика расчета балансовых и игровых экономико-математических моделей. Свойства и признаки сетевых моделей.

    практическая работа [322,7 K], добавлен 21.01.2010

  • Построение математических моделей по определению плана выпуска изделий, обеспечивающего максимальную прибыль, с помощью графического и симплексного метода. Построение моделей по решению транспортных задач при применении метода минимальной стоимости.

    задача [169,2 K], добавлен 06.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.