Эконометрика как наука

Эконометрика как наука, изучающая конкретные количественные и качественные взаимосвязи экономических объектов и процессов с помощью математических и статистических методов и моделей. Применение моделей для статистического анализа экономических данных.

Рубрика Экономико-математическое моделирование
Вид конспект урока
Язык русский
Дата добавления 15.03.2016
Размер файла 75,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Эконометрика как наука

Эконометрика -- это наука, изучающая конкретные количественные и качественные взаимосвязи экономических объектов и процессов с помощью математических и статистических методов и моделей. Эконометрические методы -- это, прежде всего методы статистического анализа конкретных экономических данных. В настоящее время, естественно, с помощью компьютеров, хотя начиналась эконометрика в докомпьютерную эру.

Именно в нашей стране создана наиболее мощная научная школа в области основы эконометрики -- теории вероятностей.

Кратко: эконометрика -- это статистические методы в экономике.

Основы эконометрики были заложены до компьютерной эры. Устоявшиеся традиции эконометрики, восходят обычно к Я. Тинбергену, который по заказу Лиги наций разработал методы множественной регрессии для анализа экономических циклов в 30-е годы ХХ века. Тогда сокращение объема требуемых вычислений было приоритетной задачей, что до сих пор нередко оказывают негативное влияние на выбор конкретных эконометрических методов, прежде всего, в силу большей доступности, наличия библиотек программ для ЭВМ для методов, ставящих сокращение вычислений более важной задачей, чем достижение более точных результатов. Эта тенденция в современной эконометрике осознается, делаются шаги по ее перелому, но до окончательного решения проблемы еще далеко. Традиция все еще оказывает негативное влияние (иногда называется "проблемой сокращения размерности").

Статистические (эконометрические) методы используются в зарубежных и отечественных экономических и технико-экономических исследованиях, работах по управлению (менеджменту). Применение прикладной статистики и других статистических методов дает заметный экономический эффект. Например, в США -- не менее 20 миллиардов долларов ежегодно только в области статистического контроля качества. В 1988 г. затраты на статистический анализ данных в нашей стране оценивались в 2 миллиарда рублей ежегодно. Согласно расчетам сравнительной стоимости валют на основе потребительских паритетов, эту величину можно сопоставить с 2 миллиардами долларов США. Следовательно, объем отечественного «рынка статистических и эконометрических услуг» был на порядок меньше, чем в США, что совпадает с оценками и по другим показателям, например, по числу специалистов.

Публикации по новым статистическим методам, по их применениям в технико-экономических исследованиях, в инженерном деле постоянно появляются, например, в журнале «Заводская лаборатория», в секции «Математические методы исследования». Надо назвать также журналы «Автоматика и телемеханика» (издается Институтом проблем управления Российской академии наук), «Экономика и математические методы» (издается Центральным экономико-математическим институтом РАН), "Прикладная эконометрика" (издательство Market DS). Однако необходимо констатировать, что для большинства менеджеров, экономистов и инженеров эконометрика является экзотикой. эконометрика математический модель

Это объясняется тем, что в вузах современным статистическим методам почти не учат. Во всяком случае, каждый квалифицированный специалист в этой области -- самоучка. Этому выводу не мешает то, что в вузовских программах обычно есть два курса, связанных со статистическими методами. Один из них -- «Теория вероятностей и математическая статистика». Этот небольшой курс читают специалисты с математических кафедр и успевают дать лишь общее представление об основных понятиях математической статистики. Кроме того, внимание математиков обычно сосредоточено на внутриматематических проблемах, их больше интересует доказательства теорем, а не применение современных статистических методов в задачах экономики и менеджмента.

Эконометрика (как учебный предмет) призвана, опираясь на два названных вводных курса, вооружить экономиста, менеджера, инженера современным эконометрическим инструментарием, разработанным за последние 50-70 лет. Не владея эконометрикой, отечественный специалист -- менеджер и инженер -- оказывается неконкурентоспособным по сравнению с зарубежным. Во многих странах мира -- Японии и США, Франции и Швейцарии, Перу и Ботсване и др. -- статистическим методам обучают в средней школе, ЮНЕСКО постоянно проводят конференции по вопросам такого обучения. В СССР и СЭВ, а теперь -- по плохой традиции -- и в России игнорируют этот предмет в средней школе и лишь слегка затрагивают его в высшей. Результат на рынке труда очевиден -- снижение конкурентоспособности специалистов.

Сначала необходимо выяснить, что обычно понимают под эконометрикой. Затем обсудим современное состояние эконометрики как научно-практической дисциплины.

Во вводных монографиях по экономической теории, как правило, выделяют в качестве ее разделов макроэкономику, микроэкономику и эконометрику. При этом о макроэкономике и микроэкономике обычно подробно рассказывается в тех же монографиях или в дальнейших учебных пособиях, в то время как об эконометрике узнать что-либо самостоятельно российскому студенту почти невозможно. Лишь в последнее время появились отдельные курсы в нескольких московских экономических вузах и соответствующие учебники, увы, трактующие ее крайне узко.

В одном из наиболее распространенных в России вводном курсе западной экономической теории сказано: «Статистический анализ экономических данных называется эконометрикой, что буквально означает: наука об экономических измерениях». Действительно, термин «эконометрика» состоит из двух частей: «эконо-» -- от «экономика» и «-метрика» -- от «измерение». Эконометрика (в другом русско- и англоязычном варианте названия этой дисциплины -- эконометрия) входит в обширное семейство дисциплин, посвященных измерениям и применению статистических методов в различных областях науки и практики. К этому семейству относятся, в частности, биометрика (или биометрия), технометрика, наукометрия, психометрика, хемометрика (наука об измерениях и применении статистических методов в химии), квалиметрика (или квалиметрия - наука об измерении качества). Особняком стоит социометрия -- этот термин закрепился за статистическими методами анализа взаимоотношений в малых группах, то есть за небольшой частью такой дисциплины, как статистический анализ в социологии. Эконометрика, как и другие «метрики», посвящена развитию и применению статистических методов в конкретной области науки и практики -- в экономике, прежде всего в теории и практике менеджмента.

В мировой науке эконометрика занимает достойное место. Нобелевские премии по экономике получили эконометрики Ян Тинберген, Рагнар Фриш, Лоуренс Клейн, Трюгве Хаавельмо. В 2000 г. к ним добавились еще двое -- Джеймс Хекман и Дэниель Мак-Фадден. Выпускается ряд научных журналов, полностью посвященных эконометрике, в том числе: Journal of Econometrics (Швеция), Econometric Reviews (США), Econometrica (США), Sankhya. Indian Journal of Statistics. Ser.D. Quantitative Economics (Индия), Publications Econometriques (Франция).

Однако в нашей стране по ряду причин эконометрика не была сформирована как самостоятельное направление научной и практической деятельности, в отличие, например, от Польши, которая стараниями О. Ланге и его коллег покрыта сетью эконометрических «институтов» (в российской терминологии -- кафедр вузов). В настоящее время в России начинают развертываться эконометрические исследования, в частности, начинается широкое преподавание этой дисциплины.

Кратко рассмотрим современную структуру эконометрики. Знакомство с ней необходимо для обоснованных суждений о возможностях применения эконометрических методов и моделей в экономических и технико-экономических исследованиях.

В эконометрике, как дисциплине на стыке экономики (включая менеджмент) и статистического анализа, естественно выделить три вида научной и прикладной деятельности (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):

а) разработка и исследование эконометрических методов (методов прикладной статистики) с учетом специфики экономических данных;

б) разработка и исследование эконометрических моделей в соответствии с конкретными потребностями экономической науки и практики;

в) применение эконометрических методов и моделей для статистического анализа конкретных экономических данных.

Кратко рассмотрим три только что выделенных вида научной и прикладной деятельности. По мере движения от а) к в) сужается широта области применения конкретного эконометрического метода, но при этом повышается его значение для анализа конкретной экономической ситуации. Если работам вида а) соответствуют научные результаты, значимость которых оценивается по общеэконометрическим критериям, то для работ вида в) основное -- успешное решение задач конкретной области экономики. Работы вида б) занимают промежуточное положение, поскольку, с одной стороны, теоретическое изучение эконометрических моделей может быть весьма сложным и математизированным, с другой -- результаты представляют интерес не для всей экономической науки, а лишь для некоторого направления в ней.

В настоящее время статистическая обработка данных проводится, как правило, с помощью соответствующих программных продуктов. Разрыв между математической и прикладной статистикой проявляется, в частности, в том, что большинство методов, включенных в статистические пакеты программ (например, в заслуженные Statgraphics и SPSS или в более новую систему Statistica), даже не упоминается в учебниках по математической статистике. В результате специалист по математической статистике оказывается зачастую беспомощным при обработке реальных данных, а пакеты программ применяют (и что еще хуже -- разрабатывают) лица, не имеющие необходимой теоретической подготовки. Естественно, что они допускают разнообразные ошибки (напомним, анализ типовых ошибок при применении критериев согласия Колмогорова и омега-квадрат дан в, в том числе в таких ответственных документах, как государственные стандарты по статистическим методам.

Ситуация с внедрением современных статистических (эконометрических) методов на предприятиях и в организациях различных отраслей народного хозяйства противоречива.

Для анализа экономических данных могут применяться все разделы прикладной статистики, а именно:

- статистика случайных величин;

- многомерный статистический анализ;

- статистика временных рядов и случайных процессов;

- статистика объектов нечисловой природы, в том числе статистика интервальных данных.

Перечисленные четыре области выделены на основе математической природы элементов выборки: в первой из них это -- числа, во второй -- вектора, в третьей -- функции, в четвертой -- объекты нечисловой природы, то есть элементы пространств, в которых нет операций сложения и умножения на число. Примерами объектов нечисловой природы являются значения качественных признаков, бинарные отношения (ранжировки, разбиения, толерантности), последовательности из 0 и 1, множества, нечеткие множества, интервалы, тексты.

Итак, специфика эконометрики проявляется не в перечне применяемых для анализа конкретных экономических данных статистических методов, а в частоте использования тех или иных методов.

2. Использование в экономических исследованиях методов регрессии и корреляции

Начальным пунктом эконометрического анализа зависимостей обычно является оценка линейной зависимости переменных. Это объясняется простотой исследования линейной зависимости. Поэтому проверка наличия такой зависимости, оценивание ее индикаторов и параметров является одним из важнейших направлений приложения математической статистики.

Наиболее простым для изучения является случай взаимосвязи двух переменных (обозначим их х и у). Если это реальные статистические данные, то мы никогда не получим простую линию - линейную, квадратичную, экспоненциальную и т.д. Всегда будут присутствовать отклонения зависимой переменной, вызванные ошибками измерения, влиянием неучтенных величин или случайных факторов. Связь переменных, на которую накладываются воздействия случайных факторов, называется статистической связью. Наличие такой связи заключается в том, что изменение одной переменной приводят к изменению математического ожидания другой переменной.

Выделяют два типа взаимосвязей между переменными х и у:

1) переменные равноправны, т.е. может быть не известно, какая из двух переменных является независимой, а какая - зависимой;

2) две исследуемые переменные неравноправны, но одна из них рассматривается как объясняющая (или независимая), а другая как объясняемая (или зависящая от первой).

В первом случае говорят о статистической взаимосвязи корреляционного типа. При этом возникают проблемы оценки связи между переменными. Например, связь показателей безработицы и инфляции в данной стране за определенный период времени. Может стоять вопрос, связаны ли между собой эти показатели, и при положительном ответе на него встает задача нахождения формы связи. Вопрос о наличии связи между экономическими переменными сводится к определению конкретной формулы (спецификации) такой связи, устойчивой к изменению числа наблюдений. Для этого используются специальные статистические методы и, соответственно, показатели, значения которых определенным образом (и с определенной вероятностью) свидетельствуют о наличии или отсутствии линейной связи между переменными.

Во втором случае, когда изменение одной из переменных служит причиной для изменения другой, должно быть оценено уравнение регрессии y = f(x). Уравнение регрессии - это формула статистической связи между переменными. Формула статистической связи двух переменных называется парной регрессией, зависимость от нескольких переменных - множественной регрессией. Например, Кейнсом была предложена линейная формула зависимости частного потребления С от располагаемого личного дохода Yd : С = С0 + b Yd, где С0 > 0 - величина автономного потребления, 1> b > 0 - предельная склонность к потреблению.

Выбор формулы связи переменных называется спецификацией уравнения регрессии. В данном случае выбрана линейная формула. Далее требуется оценить значения параметров и проверить надежность оценок.

Построение уравнения регрессии сводится к оценке ее параметров. Для оценки линейных параметров регрессий используют метод наименьших квадратов (МНК), который позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических х минимальна, т.е.

Для уравнений, приводимых к линейному виду, решается следующая система линейных уравнений:

Можно воспользоваться готовыми формулами, которые вытекают из этой системы:

Оценку качества построенной модели даст коэффициент R2 = rxy2 (индекс детерминации), а также средняя ошибка аппроксимации:

Допустимый предел значений средней ошибки аппроксимации - не более 8-10%. В этом случае модель оценивается как достаточно точная, в противном случае говорят о плохом качестве построенной модели.
Одной из наиболее эффективных оценок адекватности регрессионной модели, мерой качества уравнения регрессии или, как говорят, мерой качества подгонки регрессионной модели к наблюдаемым значениям, характеристикой прогностической силы анализируемой регрессионной модели является коэффициент детерминации (0 R2 1), определяемый по формуле:

Коэффициент детерминации R2показывает, какая часть (доля) дисперсии результативного признака у, обусловлена вариацией объясняющей переменной. Показатель (1-R2) характеризует долю дисперсии у, вызванную влиянием остальных, не учтенных в модели факторов. Например, если R2 = 0,982, уравнением регрессии объясняется 98,2% результативного признака, а на долю прочих факторов приходится лишь 1,8% ее дисперсии (остаточная дисперсия). Чем ближе значение R2 единице, тем большую долю изменения результативного фактора можно объяснить за счет вариации включенного в модель фактора х, меньше роль прочих факторов, и, следовательно, линейная модель хорошо аппроксимирует исходные данные (наблюдения теснее примыкают к линии регрессии) и модель можно использовать для прогноза значений результативного признака.

Заметим, что коэффициент детерминации R2 имеет смысл рассматривать только при наличии свободного члена в уравнении регрессии, так как лишь в этом случае верны равенства:

Если известен коэффициент детерминации R2, то критерий значимости уравнения регрессии или самого коэффициента детерминации может быть записан в виде:

В случае парной линейной модели коэффициент детерминации равен квадрату коэффициента корреляции, рассчитанного по формуле (1) (см. выше) Тогда

Существуют 2 этапа интерпретации уравнения регрессии:

1. Первый состоит в словесном истолковании уравнения так, чтобы оно было понятно человеку, не являющемуся специалистом в области эконометрики и статистики.

2. На втором этапе необходимо решить, следует ли ограничиться первым этапом или провести более детальное исследование зависимости.

При анализе связи между переменными, измеренными на интервальном уровне, часто используют графическое представление такой связи, называемое диаграммой рассеивания. На диаграмме рассеивания каждое наблюдение, т. е. каждый “случай”, изображается точкой в двухмерной системе координат. Значение независимой переменной для данного наблюдения определяет положение соответствующей точки относительно оси X, а значение зависимой переменной задает вторую координату точки -- по оси Y. Иными словами, перпендикуляр, опущенный из точки-“случая” на ось X, соответствует измеренному уровню независимой переменной, тогда как перпендикуляр, опущенный на ось Y, будет точно соответствовать наблюдавшемуся уровню зависимой переменной.

Существует обобщенный показатель, позволяющий оценить, насколько связь между переменными приближается к линейному функциональному отношению, которое на диаграмме рассеивания выглядит как прямая линия. Это коэффициент корреляции, измеряющий тесноту связи между переменными, т. е. их тенденцию изменяться совместно. Как и в рассмотренных выше мерах связи качественных признаков, коэффициент корреляции позволяет оценить возможность предсказания значений зависимой переменной по значениям независимой.

Наконец, при отсутствии систематической связи произведения будут иногда положительными, иногда отрицательными, а их сумма (и, следовательно, ковариация Х и Y) будет, в пределе, равная нулю. Таким образом, ковариация показывает величину и направление связи, совместного изменения Х и Y. Если разделить ковариацию Sxy на стандартные отклонения Sx и Sy (чтобы избавиться от влияния масштаба шкал, в которых измеряются Х и Y ), то мы получим искомую форму коэффициента корреляции Пирсона.

Коэффициент корреляции позволяет оценить степень связи между переменными. Однако этого недостаточно для того, чтобы непосредственно преобразовывать информацию, относящуюся к одной переменной, в оценки другой переменной. Допустим, мы выяснили, что коэффициент корреляции между переменными “величина партийного бюджета” и “число мест в парламенте” равен 0,8. Можем ли мы теперь предсказать, сколько мест в парламенте получит партия, годовой бюджет которой равен 100 млн. рублей? Похоже, что знание величины коэффициента корреляции нам здесь не поможет. Однако мы можем вспомнить, что коэффициент корреляции -- это еще и оценка соответствия разброса наших наблюдений той идеальной модели линейного функционального отношения, которое на рассмотренных выше диаграммах рассеивания представлено пунктирными прямыми. Эти линии называют линиями регрессии.

Как говорилось выше, линия регрессии не обязательно должна быть прямой, но мы ограничимся рассмотрением самого простого случая линейной зависимости (нелинейные связи во многих случаях также могут быть приближенно описаны линейными отношениями).

Существуют специальные статистические процедуры, которые позволяют найти регрессионную прямую, максимально соответствующую реальным данным. Регрессионный анализ, таким образом, дает возможность предсказывать значения Y по значениям X с минимальным количеством ошибок. В общем виде уравнение, описывающее прямую линию регрессии Y по X, выглядит так: где -- то предсказываемое значение по переменной Y (в только что рассмотренном примере -- количество мест в парламенте), а -- это точка, в которой прямая пересекает ось Y (т. е. значение Y для случая, когда Х = 0), и b -- коэффициент регрессии, т. е. наклон прямой. Часто удобно измерять обе переменные не в “сырых” шкалах, а в единицах отклонения от среднего. Процедура стандартизации, т. е. перевода исходной шкалы в стандартные Z-оценки, вам уже известна. Преимущество использования стандартизированных переменных в регрессионном анализе заключается в том, что линия регрессии в этом случае проходит через начало координат.

3. Множественная регрессия

Общее назначение множественной регрессии (этот термин был впервые использован в работе Пирсона - Pearson, 1908) состоит в анализе связи между несколькими независимыми переменными (называемыми также регрессорами или предикторами) и зависимой переменной. Например, агент по продаже недвижимости мог бы вносить в каждый элемент реестра размер дома (в квадратных футах), число спален, средний доход населения в этом районе в соответствии с данными переписи и субъективную оценку привлекательности дома. Как только эта информация собрана для различных домов, было бы интересно посмотреть, связаны ли и каким образом эти характеристики дома с ценой, по которой он был продан. Например, могло бы оказаться, что число спальных комнат является лучшим предсказывающим фактором (предиктором) для цены продажи дома в некотором специфическом районе, чем "привлекательность" дома (субъективная оценка). Могли бы также обнаружиться и "выбросы", т.е. дома, которые могли бы быть проданы дороже, учитывая их расположение и характеристики.

Специалисты по кадрам обычно используют процедуры множественной регрессии для определения вознаграждения адекватного выполненной работе. Можно определить некоторое количество факторов или параметров, таких, как "размер ответственности" (Resp) или "число подчиненных" (No_Super), которые, как ожидается, оказывают влияние на стоимость работы. Кадровый аналитик затем проводит исследование размеров окладов (Salary) среди сравнимых компаний на рынке, записывая размер жалования и соответствующие характеристики (т.е. значения параметров) по различным позициям. Эта информация может быть использована при анализе с помощью множественной регрессии для построения регрессионного уравнения в следующем виде:

Salary = .5*Resp + .8*No_Super

Как только эта так называемая линия регрессии определена, аналитик оказывается в состоянии построить график ожидаемой (предсказанной) оплаты труда и реальных обязательств компании по выплате жалования. Таким образом, аналитик может определить, какие позиции недооценены (лежат ниже линии регрессии), какие оплачиваются слишком высоко (лежат выше линии регрессии), а какие оплачены адекватно.

В общественных и естественных науках процедуры множественной регрессии чрезвычайно широко используются в исследованиях. В общем, множественная регрессия позволяет исследователю задать вопрос (и, вероятно, получить ответ) о том, "что является лучшим предиктором для...". Например, исследователь в области образования мог бы пожелать узнать, какие факторы являются лучшими предикторами успешной учебы в средней школе. А психолога мог быть заинтересовать вопрос, какие индивидуальные качества позволяют лучше предсказать степень социальной адаптации индивида.

Общая вычислительная задача, которую требуется решать при анализе методом множественной регрессии, состоит в подгонке прямой линии к некоторому набору точек. В простейшем случае, когда имеется одна зависимая и одна независимая переменная, это можно увидеть на диаграмме рассеяния.

Метод наименьших квадратов. На диаграмме рассеяния имеется независимая переменная или переменная X и зависимая переменная Y. Эти переменные могут, например, представлять коэффициент IQ (уровень интеллекта, оцененный с помощью теста) и достижения в учебе (средний балл успеваемости - grade point average; GPA) соответственно. Каждая точка на диаграмме представляет данные одного студента, т.е. его соответствующие показатели IQ и GPA. Целью процедур линейной регрессии является подгонка прямой линии по точкам. А именно, программа строит линию регрессии так, чтобы минимизировать квадраты отклонений этой линии от наблюдаемых точек. Поэтому на эту общую процедуру иногда ссылаются как на оценивание по методу наименьших квадратов.

Уравнение регрессии. Прямая линия на плоскости (в пространстве двух измерений) задается уравнением Y=a+b*X; более подробно: переменная Y может быть выражена через константу (a) и угловой коэффициент (b), умноженный на переменную X. Константу иногда называют также свободным членом, а угловой коэффициент - регрессионным или B-коэффициентом. Например, значение GPA можно лучше всего предсказать по формуле 1+.02*IQ. Таким образом, зная, что коэффициент IQ у студента равен 130, вы могли бы предсказать его показатель успеваемости GPA, скорее всего, он близок к 3.6 (поскольку 1+.02*130=3.6).

В многомерном случае, когда имеется более одной независимой переменной, линия регрессии не может быть отображена в двумерном пространстве, однако она также может быть легко оценена. Например, если в дополнение к IQ вы имеете другие предикторы успеваемости (например, Мотивация, Самодисциплина), вы можете построить линейное уравнение, содержащее все эти переменные. Тогда, в общем случае, процедуры множественной регрессии будут оценивать параметры линейного уравнения вида:

Y = a + b1*X1 + b2*X2 + ... + bp*Xp

Однозначный прогноз и частная корреляция. Регрессионные коэффициенты (или B-коэффициенты) представляют независимые вклады каждой независимой переменной в предсказание зависимой переменной. Другими словами, переменная X1, к примеру, коррелирует с переменной Y после учета влияния всех других независимых переменных. Этот тип корреляции упоминается также под названием частной корреляции (этот термин был впервые использован в работе Yule, 1907). Вероятно, следующий пример пояснит это понятие. Кто-то мог бы, вероятно, обнаружить значимую отрицательную корреляцию в популяции между длиной волос и ростом (невысокие люди обладают более длинными волосами).

На первый взгляд это может показаться странным; однако, если добавить переменную Пол в уравнение множественной регрессии, эта корреляция, скорее всего, исчезнет. Это произойдет из-за того, что женщины, в среднем, имеют более длинные волосы, чем мужчины; при этом они также в среднем ниже мужчин. Таким образом, после удаления разницы по полу посредством ввода предиктора Пол в уравнение, связь между длиной волос и ростом исчезает, поскольку длина волос не дает какого-либо самостоятельного вклада в предсказание роста помимо того, который она разделяет с переменной Пол. Другими словами, после учета переменной Пол частная корреляция между длиной волос и ростом нулевая. Иными словами, если одна величина коррелирована с другой, то это может быть отражением того факта, что они обе коррелированы с третьей величиной или с совокупностью величин.

Линия регрессии выражает наилучшее предсказание зависимой переменной (Y) по независимым переменным (X). Однако, природа редко (если вообще когда-нибудь) бывает полностью предсказуемой и обычно имеется существенный разброс наблюдаемых точек относительно подогнанной прямой (как это было показано ранее на диаграмме рассеяния). Отклонение отдельной точки от линии регрессии (от предсказанного значения) называется остатком.

Чем меньше разброс значений остатков около линии регрессии по отношению к общему разбросу значений, тем, очевидно, лучше прогноз. Например, если связь между переменными X и Y отсутствует, то отношение остаточной изменчивости переменной Y к исходной дисперсии равно 1.0. Если X и Y жестко связаны, то остаточная изменчивость отсутствует, и отношение дисперсий будет равно 0.0. В большинстве случаев отношение будет лежать где-то между этими экстремальными значениями, т.е. между 0.0 и 1.0. 1.0 минус это отношение называется R-квадратом или коэффициентом детерминации. Это значение непосредственно интерпретируется следующим образом. Если имеется R-квадрат равный 0.4, то изменчивость значений переменной Y около линии регрессии составляет 1-0.4 от исходной дисперсии; другими словами, 40% от исходной изменчивости могут быть объяснены, а 60% остаточной изменчивости остаются необъясненными. В идеале желательно иметь объяснение если не для всей, то хотя бы для большей части исходной изменчивости. Значение R-квадрата является индикатором степени подгонки модели к данным (значение R-квадрата близкое к 1.0 показывает, что модель объясняет почти всю изменчивость соответствующих переменных).

Интерпретация коэффициента множественной корреляции R.

Обычно, степень зависимости двух или более предикторов (независимых переменных или переменных X) с зависимой переменной (Y) выражается с помощью коэффициента множественной корреляции R. По определению он равен корню квадратному из коэффициента детерминации. Это неотрицательная величина, принимающая значения между 0 и 1. Для интерпретации направления связи между переменными смотрят на знаки (плюс или минус) регрессионных коэффициентов или B-коэффициентов.

Прежде всего, как это видно уже из названия множественной линейной регрессии, предполагается, что связь между переменными является линейной. На практике это предположение, в сущности, никогда не может быть подтверждено; к счастью, процедуры множественного регрессионного анализы в незначительной степени подвержены воздействию малых отклонений от этого предположения. Однако всегда имеет смысл посмотреть на двумерные диаграммы рассеяния переменных, представляющих интерес. Если нелинейность связи очевидна, то можно рассмотреть или преобразования переменных или явно допустить включение нелинейных членов.

В множественной регрессии предполагается, что остатки (предсказанные значения минус наблюдаемые) распределены нормально (т.е. подчиняются закону нормального распределения). И снова, хотя большинство тестов (в особенности F-тест) довольно робастны (устойчивы) по отношению к отклонениям от этого предположения, всегда, прежде чем сделать окончательные выводы, стоит рассмотреть распределения представляющих интерес переменных. Вы можете построить гистограммы или нормальные вероятностные графики остатков для визуального анализа их распределения.

Выбор числа переменных. Множественная регрессия - предоставляет пользователю "соблазн" включить в качестве предикторов все переменные, какие только можно, в надежде, что некоторые из них окажутся значимыми. Это происходит из-за того, что извлекается выгода из случайностей, возникающих при простом включении возможно большего числа переменных, рассматриваемых в качестве предикторов другой, представляющей интерес переменной. Хотя большинство предположений множественной регрессии нельзя в точности проверить, исследователь может обнаружить отклонения от этих предположений. В частности, выбросы могут вызвать серьезное смещение оценок, "сдвигая" линию регрессии в определенном направлении и тем самым, вызывая смещение регрессионных коэффициентов.

4. Системы уравнений используемые в экономике

Объектом статистического изучения в социальных науках являются сложные системы. Измерение тесноты связей между переменными, построение изолированных уравнений регрессии недостаточны для описания таких систем и объяснения механизма их функционирования.

При использовании отдельных уравнений регрессии, например, для экономических расчетов в большинстве случаев предполагается, что аргументы (факторы) можно изменять независимо друг от друга. Однако это предположение является очень грубым: практически изменение одной переменной, как правило, не может происходить при абсолютной неизменности других. Ее изменение повлечет за собой изменения во всей системе взаимосвязанных признаков.

Следовательно, отдельно взятое уравнение множественной регрессии не может характеризовать истинные влияния отдельных признаков на вариацию результирующей переменной. Именно поэтому в экономических, биометрических и социологических исследованиях важное место заняла проблема описания структуры связей между переменными системой так называемых одновременных уравнений или структурных уравнений. Например, если изучается модель спроса как соотношение цен и количества потребляемых товаров, то одновременно для прогнозирования спроса необходима модель предложения товаров, в которой рассматривается также взаимосвязь между количеством и ценой предлагаемых благ. Это позволяет достичь равновесия между спросом и предложением.

В еще большей степени возрастает потребность в использовании системы взаимосвязанных уравнений, если мы переходим от исследований на микроуровне к макроэкономическим расчетам. Модель национальной экономики включает в себя следующую систему уравнений: функции потребления, инвестиций заработной платы, тождество доходов и т.д. Это связано с тем, что макроэкономические показатели, являясь обобщающими показателями состояния экономики, чаще всего взаимозависимы. Так, расходы на конечное потребление в экономике зависят от валового национального дохода. Вместе с тем величина валового национального дохода рассматривается как функция инвестиций.

Система уравнений в эконометрических исследованиях может быть построена по-разному. Возможна система независимых уравнений, когда каждая зависимая переменная у рассматривается как функция одного и того же набора факторов х:

y1= а 11х1 + а 12 х 2 + … + а1mхm + е1

y2= а21х1 + а22х2 +…+ а2mхm + е2

…………………….

yn= аn1х1 + аn2х2 +…+ аnmхm + еn

Набор факторов xt в каждом уравнении может варьировать.

Каждое уравнение системы независимых уравнений может рассматриваться самостоятельно. Для нахождения его параметров используется метод наименьших квадратов. По существу, каждое уравнение этой системы является уравнением регрессии.

В итоге система независимых уравнений при трех зависимых переменных и четырех факторах примет вид:

Y1=a01+a11x1+a12x2+a13x3+a14x4+e1

Y2=a02+a21x1+a22x2+a23x3+a24x4+e2

Y3=a03+a31x1+a32x2+a33x3+a34x4+e3

Однако если зависимая переменная у одного уравнения выступает в виде фактора х в другом уравнении, то исследователь может строить модель в виде системы рекурсивных уравнений:

y1 =a11x1+a12x2+…+a1mxm+e1

y2=b21y1+a21x1+a22x2+…+a2mxm+e2

y3=b31y1+b32y2+a31x1+a32x1+…+a3mxm+e3

………………………………………………………..

yn=bn1y1+bn2y2+…+b nm-1 y n-1 + an2x2+…+anmxm+en.

В данной системе зависимая переменная у включает в каждое последующее уравнение в качестве факторов все зависимые переменные предшествующих уравнений наряду с набором собственно факторов х. Примером такой системы может служить модель производительности труда и фондоотдачи вида

y1=a11x1+a12x2+a13x3+e1

y2=b21y1+a21x1+a22x2+a23x3+e2

где yl - производительность труда;

У2 -- фондоотдача;

x1-- фондовооруженность труда;

х2 -- энерговооруженность труда;

х3 квалификация рабочих.

Как и в предыдущей системе, каждое уравнение может рассматриваться самостоятельно, и его параметры определяются методом наименьших квадратов.

Наибольшее распространение в эконометрических исследованиях получила система взаимозависимых уравнений. В ней одни и те же зависимые переменные в одних уравнениях входят в левую часть, а в других уравнениях -- в правую часть системы:

y1= b12 y2 + b13 y3+…+ b1n yn +a11 x1+a12 x2 +…+ a1m xm + e1

y2= b21 y1+ b23 y3+…+ b2n yn+a21 x1+a22 x2 +…+ a2m xm + e2

……………………………………………………………………………...

yn= bn1 y1 + bn2 y2+…+ b nn-1 y n-1+ an1 x1 + an2 x2+…+anm xm + en

Система взаимозависимых уравнений получила название система совместных, одновременных уравнений. Тем самым подчеркивается, что в системе одни и те же переменные у одновременно рассматриваются как зависимые в одних уравнениях и как независимые в других. В эконометрике эта система уравнений называется также структурной формой модели. В отличие от предыдущих систем каждое уравнение системы одновременных уравнений не может рассматриваться самостоятельно, и для нахождения его параметров традиционный МНК неприменим. С этой целью используются специальные приемы оценивания.

Примером системы одновременных уравнений может служить модель динамики цены и заработной платы вида

где y1 --темп изменения месячной заработной платы;

У2 -- темп изменения цен;

х1 -- процент безработных;

х2 -- темп изменения постоянного капитала;

х3 - темп изменения цен на импорт сырья.

В рассмотренных классах систем эконометрических уравнений структура матрицы коэффициентов при зависимых переменных различна.

5. Временные ряды и прогнозирование

Временные ряды реализуют широкий набор методов описания, построения моделей, декомпозиции и прогнозирования временных рядов как во временной, так и в частотной области. Все процедуры полностью интегрированы и результаты анализа одной модели. Имеются самые разнообразные возможности для просмотра и графического представления одномерных и многомерных рядов. Можно анализировать очень длинные ряды (более 100 тыс. наблюдений для компьютера с 8 Mb оперативной памяти). С многомерными рядами (в случае многомерных исходных данных или с рядами, полученными на различных этапах анализа) можно работать в активной рабочей области; здесь их можно просматривать и сопоставлять друг с другом. Информация о последовательных преобразованиях хранится в виде длинных меток переменных, поэтому при сохранении вновь полученных рядов в файле данных автоматически сохраняется вся "история" каждого из рядов.

С помощью различных преобразований исходного временного ряда можно понять его структуру и имеющиеся в нем закономерности; реализованы такие часто используемые преобразования, как: удаление тренда, удаление автокорреляций, сглаживание скользящими средними (невзвешенными или взвешенными - с весами, заданными пользователем или вычисленными по методам Даниеля, Тьюки, Хэмминга, Парзена и Бартлета), медианное сглаживание (среднее заменено медианой), простое экспоненциальное сглаживание (подробное описание его вариантов см. далее), взятие разностей, суммирование, вычисление остатков, сдвиг, 4253H-сглаживание, косинус-сглаживание, преобразование Фурье, а также обратное преобразование Фурье и др. Можно выполнить анализ автокорреляций, частных автокорреляций и кросскорреляций.

Временные ряды включают полную реализацию модели авторегрессии и проинтегрированного скользящего среднего. Модель может включать константу. Перед построением модели ряд может быть подвергнут преобразованию, которое автоматически будет отменено после построения прогноза по АРПСС, при этом предсказанные значения и их стандартные ошибки будут выражены через значения исходного (а не преобразованного) ряда. Могут быть вычислены приближенные и точные суммы квадратов из условия максимума правдоподобия; уникальной особенностью является способность анализировать модели с длинными периодами сезонности (с лагом до 30).

Стандартный набор результатов содержит оценки параметров, стандартные ошибки и корреляции. Предсказанные значения могут быть представлены в числовой и графической форме и добавлены к исходному ряду. Имеются многочисленные дополнительные функции для исследования остатков, в том числе большой набор графических средств. Реализация модели позволяет проводить анализ прерванных временных рядов (рядов с интервенциями). Имеется возможность использовать одновременно несколько различных интервенций (до 6). Доступны следующие виды интервенций: однопараметрические скачкообразные, двупараметрические постепенные, временные (характер воздействия можно просмотреть на графике). Для всех прерванных моделей могут быть построены прогнозы, которые можно вывести на график (вместе с исходным рядом) и, если требуется, добавить прогнозы к исходному ряду.

Полностью реализованы все 12 классических моделей экспоненциального сглаживания. Задание модели может включать аддитивную или мультипликативную сезонную составляющую и/или линейный, экспоненциальный или демпфированый тренд; в частности, доступны популярные модели с линейным трендом Холта-Винтера. Пользователь может задавать начальное значение параметров сглаживания, начальное значение тренда и (если требуется) сезонные факторы. Для тренда и сезонной составляющей могут быть заданы независимые параметры сглаживания. Для определения лучшей комбинации параметров используется метод поиска на сетке; в таблицах результатов для всех комбинаций значений параметров сглаживания вычисляется средняя ошибка, средняя абсолютная ошибка, сумма квадратов ошибок, среднеквадратическая ошибка, средняя относительная ошибка и средняя абсолютная относительная ошибка. Наименьшие значения этих ошибок выделяются цветом. Имеется возможность автоматического поиска лучшего набора параметров в смысле среднеквадратической, средней абсолютной или средней абсолютной относительной ошибки (для этого используется общая процедура минимизации). Все результаты преобразования экспоненциальным сглаживанием, остатки и прогноз на требуемое число шагов доступны для дальнейшего анализа и вывода на график. Для оценки адекватности модели используются графики, на которых вместе с исходным рядом в подходящем масштабе по оси Y изображаются его сглаженный вариант, прогноз и ряд остатков.

Имеется возможность задать произвольный сезонный лаг и выбрать либо аддитивную, либо мультипликативную сезонную модель. Программа вычисляет скользящие средние, отношения или разности, сезонные компоненты, ряд с сезонной поправкой, сглаженную тренд-циклическую и нерегулярную компоненты. Все эти составляющие ряда доступны для дальнейшего анализа; например, для проверки адекватности можно построить гистограммы, графики на нормальной вероятностной бумаге и т.д.

Структура всех функций и диалоговых окон соответствует требованиям и соглашениям, описанным в документации Bureau of the Census. Можно выбрать либо аддитивные, либо мультипликативные модели. Пользователь может дополнительно вычислить априорные поправки на число рабочих дней и сезонные поправки. Колебания числа рабочих дней оцениваются регрессионными методами (с правильной обработкой крайних членов ряда) и затем (по желанию) используются для корректировки ряда. Реализованы стандартные средства для градуировки выбросов, вычисления сезонных факторов и вычисления тренд-циклической компоненты (имеется возможность выбирать несколько типов взвешенного скользящего среднего; кроме того, программа может сама находить оптимальную длину и тип скользящего среднего). Итоговые компоненты ряда (сезонная, тренд-циклическая, нерегулярная) и ряд с внесенной сезонной поправкой всегда доступны для дальнейшего анализа и вывода на график; кроме того, все они могут быть сохранены для дальнейшего исследования другими методами и/или в других программах. Все компоненты выводятся на графики в различной форме, включая категоризованные графики по месяцам (кварталам).

С помощью реализованных методов полиномиальных распределенных лагов можно выполнять оценку моделей с обычными лагами и лагами Алмона. Для анализа распределений переменных модели имеется ряд графических средств.

Преимущества реализации спектрального анализа в STATISTICA особенно отчетливо проявляются при анализе очень длинных временных рядов (с более чем 250 тыс. наблюдений) и не предполагают каких-либо ограничений на длину ряда (в частности, длина исходного ряда не обязана быть четной). Вместе с тем, иногда бывает разумно предварительно увеличить или уменьшить длину ряда. Стандартные методы предварительной обработки ряда включают косинус-сглаживание, вычитание среднего и удаление тренда. Результаты обычного спектрального анализа содержат коэффициенты частоты, периода, коэфициенты при синусах и косинусах, периодограмма и оценка спектральной плотности. Оценка плотности может быть вычислена с помощью весов Даниеля, Хэмминга, Бартлетта, Тьюки, Парзена или с весами и шириной, заданными пользователем. Очень полезно, особенно при работе с длинными рядами, иметь возможность выводить в убывающем порядке заранее заданное число точек периодограммы или спектральной плотности; таким образом можно легко обнаружить резкие пики периодограммы и спектральной плотности для длинных рядов.

Имеется возможность вычислить d-критерий Колмогорова-Смирнова для значений периодограммы чтобы проверить, подчиняются ли они экспоненциальному распределению (является ряд белым шумом или нет). Для представления результатов анализа имеются различные типы графиков; можно отобразить коэффициенты при синусах и косинусах, периодограмму, лог- периодограмму, спектральную и лог-спектральную плотность по отношению к частотам, периодам и лог-периодам. В случае длинного исходного ряда имеется возможность выбрать конкретный сегмент (период), для которого будут изображаться соответствующие периодограмма и график спектральной плотности, тем самым будет улучшено их "разрешение".

При кросс-спектральном анализе, в дополнение к результатам обычного спектрального анализа каждого отдельного ряда, вычисляется кросс- периодограмма (вещественная и мнимая часть), ко-спектральная плотность, квадратурный спектр, кросс-амплитуда, значения когерентности, усиления и фазовый спектр. Все эти величины могут быть выведены на график, где по горизонтальной оси будет откладываться частота, период или лог-период либо для всего интервала периодов (соответственно, частот), либо для выбранного пользователем диапазона. Указанное пользователем количество наибольших значений кросс-периодограммы (вещественных или мнимых) может быть выведено в убывающем порядке в виде таблицы результатов, что позволяет легко выявлять на ней резкие пики для длинных исходных рядов. Как и во всех других процедурах модуля Временные ряды, все полученные ряды могут быть добавлены в активную рабочую область и затем подвергнуты дальнейшему исследованию с помощью других методов анализа временных рядов или средствами других модулей системы STATISTICA.

Наконец, в системе STATISTICA реализованы регрессионные методы анализа временных рядов для переменных с запаздыванием (лагом) или без него, в том числе - регрессия, проходящая через начало координат, нелинейная регрессия и интерактивное "что-если" прогнозирование.

6. Анализ взаимосвязи по временным рядам

Для того чтобы получить коэффициенты корреляции, характеризующие причинно-следственную связь между изучаемыми рядами, следует избавиться от так называемой ложной корреляции, вызванной наличием тенденции в каждом ряду.

Методы исключения:

Методы, основанные на преобразовании уровней исходного ряда в новые переменные, не содержащие тенденции. Эти методы предполагают непосредственное устранение трендовой компоненты Т из каждого уровня временного ряда. Два основных метода в данной группе - метод последовательной разности и метод отклонения от трендов;

Методы, основанные на изучении взаимосвязи исходных уровней временных рядов при элиминировании воздействия фактора времени на зависимую и независимые переменные модели. В первую очередь это метод включения в модель регрессии по временным рядам фактора времени.

Методы автокорреляции остатков:

Первый метод - построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции.

Второй метод - использование критерия Дарбина - Уотсона и расчет величины.

Модель регрессии по скользящим средним - модель, где определяемые средние за два периода уровни каждого ряда, а затем по полученным усредненным уровням обычным МНК рассчитываем параметры а и b:

(yt+yt-1)/2=a+b(xt+xt-1)/2+ut/2

Коинтеграция - причинно-следственная зависимость в уровнях двух (или более) временных рядов, которая выражается в совпадении или противоположенной направленности их тенденции и случайной колеблемости.

Кроме сезонных и циклических колебаний весьма важную роль играют единовременные изменения характера тенденции временного ряда. Эти (относительно) быстрые однократные изменения тренда (его характера) вызываются структурными изменениями в экономике либо мощными глобальными (внешними) факторами.

После построения двух таких моделей (подмоделей) линейной регрессии получают уравнения двух соответствующих прямых. Если структурные изменения незначительно повлияли на характер тенденции ряда, то вместо построения точной кусочно-линейной модели вполне можно использовать единую аппроксимирующую модель, т.е. одну общую линейную зависимость (одну прямую), тоже вполне приемлемо представляющую данные в целом. Незначительное ухудшение в отдельных данных при этом непринципиально.

Если строится кусочно-линейная модель, то снижается остаточная сумма квадратов по сравнению с единым для всей совокупности уравнением тренда. В то же время разделение исходной совокупности на две части ведет к потере числа наблюдений и тем самым к снижению числа степеней свободы в каждом уравнении кусочно-линейной модели. Единое уравнение для всей совокупности данных позволяет сохранить число наблюдений исходной совокупности. Остаточная сумма квадратов по этому уравнению в то же время выше, чем такая же сумма для кусочно-линейной модели. Выбор конкретной -- кусочно-линейной или просто линейной -- модели, т.е. единого уравнения тренда, зависит от соотношения между снижением остаточной дисперсии и потерей числа степеней свободы при переходе от единого уравнения регрессии к кусочно-линейной модели.

Для оценки этого соотношения был предложен статистический тест Грегори -- Чоу. В этом тесте рассчитываются параметры уравнений трендов, вводится гипотеза о структурной стабильности тенденции исследуемого ряда динамики. Ясно, что остаточную сумму квадратов кусочно-линейной модели можно найти как сумму соответствующих сумм квадратов для обеих линейных компонент модели. Сумма числа степеней свободы этих компонент дает число степеней свободы всей модели в целом. Тогда сокращение остаточной дисперсии при переходе от единого уравнения тренда к кусочно-линейной модели -- это просто остаточная сумма квадратов, из которой вычтены соответствующие суммы для обеих компонент кусочно-линейной модели. Столь же просто определяется и соответствующее число степеней свободы.

После этого рассчитывается фактическое значение F-критерия по дисперсиям на одну степень свободы. Это значение сравнивают с табличным, полученным по таблицам распределения Фишера для требуемого уровня значимости и соответствующего числа степеней свободы. Как всегда, если расчетное (фактическое) значение больше табличного (критического), то гипотеза о структурной стабильности (незначимости структурных изменений) отклоняется. Влияние же структурных изменений на динамику изучаемого показателя признается значимым.

7. Содержание и классификация динамических эконометрических моделей


Подобные документы

  • Разработка и исследование эконометрических методов с учетом специфики экономических данных и в соответствии с потребностями экономической науки и практики. Применение эконометрических методов и моделей для статистического анализа экономических данных.

    реферат [43,1 K], добавлен 10.01.2009

  • Современная экономическая теория. Экономические процессы. Использование моделирования и количественного анализа. Выражение взаимосвязи экономических явлений и процессов. Определение, объект исследования, основные принципы, цели и задачи эконометрики.

    реферат [19,3 K], добавлен 04.12.2008

  • Эконометрика как наука, позволяющая анализировать связи между различными экономическими показателями на основании реальных статистических данных. Структурная форма эконометрической модели. Метод наименьших квадратов: общее понятие, главные функции.

    курсовая работа [135,1 K], добавлен 05.12.2014

  • Определение, цели и задачи эконометрики. Этапы построения модели. Типы данных при моделировании экономических процессов. Примеры, формы и моделей. Эндогенные и экзогенные переменные. Построение спецификации неоклассической производственной функции.

    презентация [1010,6 K], добавлен 18.03.2014

  • Изучение экономических приложений математических дисциплин для решения экономических задач: использование математических моделей в экономике и менеджменте. Примеры моделей линейного и динамического программирования как инструмента моделирования экономики.

    курсовая работа [2,0 M], добавлен 21.12.2010

  • Анализ основных способов построения математической модели. Математическое моделирование социально-экономических процессов как неотъемлемая часть методов экономики, особенности. Общая характеристика примеров построения линейных математических моделей.

    курсовая работа [1,3 M], добавлен 23.06.2013

  • Потребность в прогнозировании в современном бизнесе, выявление объективных альтернатив исследуемых экономических процессов и тенденций. Группа статистических методов прогностики, проверка адекватности и точности математических моделей прогнозирования.

    курсовая работа [98,7 K], добавлен 13.09.2015

  • Изучение и отработка навыков математического моделирования стохастических процессов; исследование реальных моделей и систем с помощью двух типов моделей: аналитических и имитационных. Основные методы анализа: дисперсионный, корреляционный, регрессионный.

    курсовая работа [701,2 K], добавлен 19.01.2016

  • Модели стационарных и нестационарных рядов, их идентификация. Системы эконометрических уравнений, оценка длины периода. Определение и свойства индексов инфляции. Использование потребительской корзины и индексов инфляции в экономических расчетах.

    книга [5,0 M], добавлен 19.05.2010

  • Сущность и содержание метода моделирования, понятие модели. Применение математических методов для прогноза и анализа экономических явлений, создания теоретических моделей. Принципиальные черты, характерные для построения экономико-математической модели.

    контрольная работа [141,5 K], добавлен 02.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.