Статистичне вивчення виробництва зернових та зернобобових
Предмет і завдання показників статистики ефективності виробництва. Статистична оцінка варіації та аналіз форми розподілу. Ряди розподілу вибіркової сукупності. Характеристика центру розподілу. Статистичні методи вивчення взаємозв’язків у виробництві.
Рубрика | Экономико-математическое моделирование |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 09.11.2015 |
Размер файла | 386,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ БІОРЕСУРСІВ І ПРИРОДОКОРИСТУВАННЯ УКРАЇНИ
Кафедра обліку, аналізу й аудиту
Курсова робота
на тему: Статистичне вивчення виробництва зернових та зернобобових"
Виконала: студентка факультету
аграрного менеджменту
спеціальності «Маркетинг»
3-го курсу, 1-ї групи
Нев'язана Алла Анатоліївна
Перевірила:Кандидат економічних наук,
доцент Чухліб Алла Василівна
Київ 2014
Зміст
Вступ
Розділ 1. Предмет, завдання і система показників статистики ефективності виробництва
1.1 Предмет і завдання статистики ефективності виробництва
1.2 Система показників статистики ефективності виробництва
Розділ 2. Статистична оцінка варіації та аналіз форми розподілу
2.1 Ряди розподілу вибіркової сукупності. Характеристика центру розподілу
2.2 Статистичне вивчення варіації та форми розподілу
2.3 Перевірка статистичної гіпотези про відповідність емпіричного розподілу нормальному
Розділ 3. Статистичні методи вивчення взаємозв'язків у виробництві
3.1 Парна лінійна кореляція
3.2 Парна криволінійна кореляція
3.3 Багатофакторний кореляційно-регресійний аналіз
3.4 Непараметричні показники тісноти зв'язку
Висновки
Список використаної літератури
Вступ
статистика виробництво варіація
Проблема забезпечення країни достатньою кількістю вітчизняних якісних продуктів харчування зумовлена головним чином, обвальним спадом виробництва сільськогосподарської продукції і, насамперед, зерна - найважливішого виду продовольчих ресурсів, цінної сировини для ряду галузей переробної промисловості, незамінного джерела створення повноцінної кормової бази для розвитку тваринництва. У переважній більшості країн світу виробництво зерна традиційно належить до провідних галузей сільського господарства. В Україні зернове виробництво має не тільки важливе соціально-економічне, а й політичне значення для розвитку національної економіки, забезпечення продовольчої безпеки держави. Українське зерно завжди належало до конкурентоспроможних продуктів на світовому ринку.
Від рівня розвитку зернопродуктового підкомплексу залежить ступінь задоволення потреб населення в найважливішому продукті - хлібові і хлібобулочних виробів. Зернові та зернобобові культури мають найвищу питому вагу в структурі посівних площ і валових зборів сільськогосподарських культур. Це пояснюється їх винятковим значенням та різнобічним використанням.
Розвиток та підвищення економічної ефективності зернового господарства є необхідна умова не тільки забезпечення населення продуктами харчування, а й підвищення ефективності виробництва інших видів продукції сільського господарства.
Концепція розвитку зернового господарства України передбачає суттєве збільшення виробництва зерна на основі неухильного підвищення урожайності зернових і зернобобових культур, структурної перебудови зернового господарства з метою забезпечення внутрішніх потреб у зернових та перетворення України з імпортера в експортера зерна.
Загострення продовольчої проблеми в Україні збіглося у часі з обмеженням можливостей держави щодо надання належної економічної допомоги товаровиробникам для стабілізації й розвитку зернової галузі. Цим зумовлюється необхідність глибокого статистичного аналізу економічної ефективності виробництва зерна й обґрунтування системи організаційно-економічних заходів підвищення його доходності.
У зв'язку з тим, що на результат впливає багато факторів керівник або спеціаліст сільськогосподарського підприємства повинен вчасно виявляти та правильно аналізувати статистичну інформацію . Групування є не тільки першим етапом статистичного аналізу, а й основою для застосування інших методів аналізу.
Отже метою курсового проекту є показати значення методу групування при економіко-статистичному аналізі даних на виробництві зернових і зернобобових культур.
Кількісне відображення взаємозв'язку через систему показників являється завданням курсового проекту.
Джерелами інформації для написання курсової роботи є Статистичний збірник «Регіони України» - 2011 рік, підручники з статистики та інтелектуальний капітал.
Розділ 1. Предмет, завдання і система показників статистики ефективності виробництва
1.1 Предмет і завдання статистики ефективності виробництва
Сільськогосподарська статистика - розділ економічної статистики, що вивчає виробничі відносини в аграрному секторі та окремі елементи і процеси сільськогосподарського виробництва, які здійснюються у соціалістичних підприємствах.
Предметом сільськогосподарської статистики є система об'єктивних статистичних показників, що характеризують стан і розвиток сільськогосподарського виробництва та взаємозв'язки між економічними явищами у цій галузі матеріального виробництва.
Статистика - це суспільна наука, яка вивчає кількісну сторону масових явищ і процесів суспільного життя у нерозривному зв'язку з їх якісним змістом, а також досліджує кількісне вираження закономірностей суспільного розвитку в конкретних умовах місця і часу, вивчає також вплив природних, технічних, соціальних та економічних факторів на умови і результати виробництва.
Особливість статистики полягає в тому, що статистичні дані повідомляються в кількісній формі, тобто статистика розмовляє мовою цифр, відображаючи суспільне життя у всьому різноманітті його форм і проявів.
Мета визначається тими функціями, які виконує статистика в системі економічних наук, а саме:
розробка програм статистичних обстежень, обробки і зведення даних;
обчислення узагальнюючих характеристик структури сукупності;
вимірювання інтенсивності динаміки та щільності зв'язку;
визначення факторів, які формують рівень, варіацію і розвиток суспільних явищ, та оцінювання сили їхнього впливу;
використання системи національних рахунків у ході розрахунків статистичних показників та їх аналізу;
Галузеві статистики (промислова, сільськогосподарська, транспортна) вивчають стан і розвиток окремих галузей народногосподарського комплексу. Так, сільськогосподарська статистика вивчає кількісну сторону масових суспільних явищ, які відбуваються у сільському господарстві, у нерозривному зв'язку з їх кількісною стороною. Вона розглядає систему об'єктивних показників, що характеризують умови, процеси і результати сільськогосподарського виробництва, виявляє і аналізує закономірності розвитку цієї галузі.
Під ефективністю розуміють звичайно відношення результату виробництва до витрат на його одержання, а збільшення цього відношення тлумачать як підвищення ефективності виробництва.
Досягнення високої ефективності діяльності в усіх сферах економіки -- важлива передумова забезпечення високих темпів економічного зростання, підвищення матеріального та культурного рівня життя народу. Ефективність є основною характеристикою функціонування народного господарства.
Система показників ефективності застосовується для постійного порівняння витрат з результатами праці. Ефективність необхідно підвищувати на всіх фазах процесу відтворення -- у виробництві, розподілі, обігу та споживанні.[3]
Реформування економічних відносин в агропромисловому комплексі України, удосконалення його господарського механізму на основі переходу до ринкових відносин спрямовані насамперед на підвищення ефективності виробництва. В зв'язку з цим найважливішим завданням статистики є визначення і динаміки ефективності сільськогосподарського виробництва.
Виробництво вважається ефективним лише тоді, коли результат виробництва перевищують витрати уречевленої і необхідної праці, тобто коли створюється так званий корисний ефект.
Вартість продукції складається з вартості споживчих засобів виробництва, що включає уречевлену працю, вартості продукту, що створюється необхідною працею, і вартості додаткового продукту, джерелом якої є додаткова праця. Ту частину продукції, яка перевищує вартість споживчих засобів виробництва, називають загальним корисним ефектом.[4]
Завдання статистики рослинництва:
1. Всебічна характеристика стану та розвитку рослинництва;
2. Вивчення масових явищ та процесів, що відбуваються в рослинництві;
3. Виявлення та дослідження впливу факторів, що визначають стан та розвиток рослинництва;
4. Встановлення невикористаних резервів збільшення обсягів
5. Характеристика місця і значення рослинництва в аграрному секторі і в народному господарстві країни.
1.2 Система показників статистики ефективності виробництва
Статистичний показник - це загальна істотна ознака якого-небудь масового явища у її якісній і кількісній визначеності для конкретних умов місця і часу. Кожний статистичний показник має кількісний вираз. Разом з ним кількість в статистиці завжди має відповідну якість. Як єдність кількості і якості статистичні показники характеризують міру явища.
Будь-яка система показників дає інформацію, яка якісно відрізняється від тієї, що несуть окремі показники.
Найважливіше завдання статистичної науки - правильно визначити зміст статистичних показників і розробити методологію їх обчислення.
Величина показника визначається в результаті його вимірювання за допомогою системи одиниць вимірювання і відповідної методології.
Статистичні показники можуть бути виражені у вигляді абсолютних і відносних величин. Якщо статистичний показник стосується окремого явища (наприклад, промислового підприємства), його називають індивідуальним, якщо ж сукупності явищ (наприклад, промислових підприємств району), то узагальненим, або зведеним. Зведені статистичні показники, які стосуються складного комплексу економічних явищ або об'єктів, називають синтетичними (наприклад, виробництво за рік у країні валового внутрішнього продукту, валового національного доходу тощо).
Найважливішим результативним показником у сільському господарстві є виробництво валової продукції. Валову продукцію сільського господарства обчислюють методом валового обороту, тобто до її складу включають вартість продукції власного виробництва поточного року (насіння, корми), яка була використана на виробничі потреби у тому самому році. Її визначають у поточних і порівняльних цінах.
Важливими показниками, що характеризують обсяг сільськогосподарського виробництва, є вартість товарної і чистої продукції. Товарна продукція - це частина валової продукції, яку реалізують на сторону. Товарну продукцію сільського господарства оцінюють у поточних(фактичних) і порівняльних цінах. Вартість товарної продукції у поточних цінах характеризує розмір надходжень коштів від реалізації продукції за певний період. Товарну продукцію у порівняльних цінах визначають для аналізу динаміки її фізичного обсягу.
Економічна ефективність сільськогосподарського виробництва характеризується співвідношенням результатів із витратами і виробничими ресурсами. Рівень економічної ефективності виробництва виражають через вихід валової і чистої продукції на одиницю сукупних витрат живої і уречевленої праці у трудовому або вартісному виразі. Однак, оскільки сукупні затрати праці в сільськогосподарських підприємствах не обліковують, то замість них використовують показник собівартості продукції.
Собівартість продукції - це частина суспільних витрат виробництва і обігу, що виражає витрати підприємства у грошовому виразі на оплату праці і спожиті засоби виробництва.
Найбільш узагальнюючим показником ефективності сільськогосподарського виробництва є сума прибутку з розрахунку на одиницю витрат і рентабельність. Рентабельність характеризує прибутковість господарства, окремих його галузей або видів продукції. Вона означає що вартість виробленої і надходження коштів від її реалізації перевищують витрати на виробництво та реалізацію продукції, що забезпечує одержання прибутку.
Під час вивчення ефективності виробництва важливу роль відіграє співвідношення між результатами і факторами виробництва. При цьому визначають вихід валової, чистої продукції і прибутку на одиницю використаних або наявних ресурсів, а також використовують часткові і загальні показники ефективності використання ресурсів.
Основними джерелами даних для статистичного аналізу ефективності виробництва є фінансова і статистична звітність, дані бухгалтерського обліку, а також спеціальні статистичні спостереження.
Розділ 2. Статистична оцінка варіації та аналіз форми розподілу
2.1 Ряди розподілу вибіркової сукупності. Характеристика центру розподілу
При статистичному групуванні даних кожну групу характеризують системою показників які мають певний зв'язок і взаємозалежність з групувальною ознакою. Якщо ж виділені групи характеризують не системою показників, а лише кількістю одиниць, що відносяться до кожної групи, то дістають ряди розподілу.
Статистичний ряд розподілу - це впорядковані статистичні сукупності. Найпростішим видом статистичного ряду розподілу є ранжирований ряд , тобто ряд чисел, що знаходиться в порядку зростання або спадання варіючої ознаки [66,2].
Ряди розподілу можна утворювати за кількісною або якісною ознакою. Відповідно розрізняють два їх види: варіаційні (ряд розподілу одиниць сукупності за кількісною ознакою) та атрибутивні (вказують на склад сукупності за певними ознаками) [41,1].
Ряд розподілу складається з двох елементів: варіанти і частот. Варіантами є окремі значення групувальної ознаки, а частотами - числа, які показують, скільки разів повторюються окремі значення варіантів.
Варіаційні ряди бувають:
дискретні (перервні)- такі ряди, в яких варіанта як величина кількісної ознаки може приймати тільки певне значення
інтервальні (безперервні) - ряди, в яких значення варіанти дано у вигляді інтервалів, тобто значення ознак можуть відрізнятися одне від одного на скільки завгодно малу величину.
Варіаційні ряди залежно від виду і поставленої задачі їх аналізу графічно можуть бути зображені у вигляді:
Полігону - використовується для графічного зображення дискретних та атрибутивних рядів розподілу. Це лінійний графік, при цьому по осі абсцис(х) відкладаються значення варіант, а по осі ординат(у) - частоти. Гістограму можна перетворити у полігон, з`єднавши відрізками прямої середини верхівок стовпчиків.
Гістограми - будується для інтервальних рядів розподілу. При цьому по осі абсцис(х) відкладаються інтервали групування, а по осі ординат(у) - абсолютні або відносні частоти. В тому випадку, коли виконується групування з рівними інтервалами, ширина стовпчиків однакова, а якщо інтервали групування нерівні - різна.
Кумулята - призначена для графічного подання рядів розподілу з нагромадженими частотами. Це може бути стовпчикова діаграма (для дискретного та атрибутивного рядів розподілу - лінійний графік). Будується вона аналогічно попереднім графікам, тільки по осі ординат(у) подаються нагромаджені частоти.
Огіва - графічне зображення ранжованого ряду розподілу. На осі абсцис(х) відкладають номер господарства у ранжованому ряду, а на осі ординат(у) - значення досліджуваної ознаки (варіанти).
Середні величини - це узагальнюючі кількісні показники, які характеризують типові розміри варіюючих ознак якісно однорідних сукупностей. Кожен із видів середніх( арифметична, гармонійна, геометрична, квадратична) може бути обчислений за простою та зваженою формулами. Прості формули використовуються для не згрупованих даних, зважені - для згрупованих даних.[4]
Середня арифметична проста - застосовується тоді коли відомі індивідуальні значення усередненої ознаки у кожній одиниці сукупності.
(2.1)
Середня арифметична зважена - обчислюється тоді, коли окремі значення усередненої ознаки повторюються в досліджуваній сукупності неоднакове число разів, а також для обчислення середньої із середньої при різному обсязі сукупності.
(2.2)
Математичні властивості середньої арифметичної:
Якщо всі значення варіант збільшити або зменшити на а-число, то середня арифметична збільшиться або зменшиться на а;
Якщо всі значення частот збільшити або зменшити в k-число разів, то середня арифметична при цьому не зміниться;
Якщо всі значення варіант збільшити або зменшити в h-число разів, то сер. арифметична відповідно зміниться в h-число разів;
Алгебраїчна сума відхилень всіх значень ознаки від величини середньої завжди дорівнює 0 :
не згруповані дані (2.3)
згруповані дані (2.4)
За способом моментів (або відрахунку від умовного нуля) середню арифметичну визначають за формулою:
(2.5)
Структурних середні величини:
Мода - це варіанта, яка найчастіше зустрічається в ряді розподілу.
(2.6)
Медіана - варіанта, яка знаходиться в центрі ряду розподілу та ділить його навпіл і нараховує пів суми частот.
(2.7)
Додатковими характеристиками рядів розподілу є квартилі та децилі. Квартилі (Q) - це значення варіант, які ділять упорядкований ряд за обсягом на чотири рівних частини. Децилі (D) - на десять рівних частин. Отже, в ряду розподілу визначаються три квартилі та дев'ять децилів. Медіана є водночас другим квартилем та п'ятим децилем. Розрахунок квартилів та децилі грунтується на кумулятивних частотах (частках). Наприклад, перший та третій квартилі визначаються за формулами:
(2.8)
(2.9)
Перший та дев'ятий децилі обчислюються за формулами :
(2.10)
(2.11)
Результативною ознакою є виробництво зернових та зернобобових на 1 особу. Знаходимо кількість груп за формулою:
(2.12) (де - кількість груп;
- кількість одиниць сукупності.)
= 4,47
Отже, нашу загальну кількість одиниць сукупності (20) групуємо в 4 групи та визначаємо крок інтервалу за формулою:
(2.13)
(де - найбільше і найменше значення ознаки; - кількість груп.)
Таблиця 2.1. Інтервальний ряд розподілу областей за кількістю виробництва зернових та зернобових на одну особу, ц
Інтервал |
Частота (n) |
Середина ряду |
Нагромаджені частоти |
|
0,257-1,057 |
8 |
0,657 |
8 |
|
1,057-1,857 |
6 |
1,457 |
14 |
|
1,857-2,657 |
4 |
2,257 |
18 |
|
2,657-3,457 |
2 |
3,057 |
20 |
Графічно зобразимо побудований ряд розподілу:
Першою факторною ознакою є урожайність зернових та зернобобових (ц/га). Кількість груп залишається незмінною - 4. Знаходимо крок інтервалу і за формулою (2.13):
Табл. 2.2. Інтервальний ряд розподілу областей за урожайністю зернових та зернобобових, ц/га
Інтервал (урожайність) |
Частота (n) |
Середина ряду |
Нагромаджені частоти |
|
25,5-32,03 |
7 |
28,765 |
7 |
|
32,03-38,56 |
6 |
35,295 |
13 |
|
38,56-45,09 |
4 |
41,825 |
17 |
|
45,09-51,62 |
3 |
48,355 |
20 |
Графічно зобразимо побудований ряд розподілу:
Другою факторною ознакою є середня ціна реалізації зернових та зернобобових (грн./т). Кількість груп залишається4. Знаходимо крок інтервалу і за формулою (2.13):
Таблиця 2.3. Інтервальний ряд розподілу областей за середньою ціною реалізації зернових та зернобобових, грн./т
Інтервал (середня ціна реалізації) |
Частота (n) |
Середина ряду |
Нагромаджені частоти |
|
1241,2-1306,45 |
2 |
1273,825 |
2 |
|
1306,45-1371,7 |
10 |
1339,075 |
12 |
|
1371,7-1436,95 |
5 |
1404,325 |
17 |
|
1436,95-1502,2 |
3 |
1469,575 |
20 |
Графічно зобразимо побудований ряд розподілу:
Таблиця 2.4.Розрахункові дані для обчислення середньої арифметичної за результативною ознакою (виробництво на 1 особу)
Групи областей за виробництвом зернових та зернобобових |
п |
х |
|||
0,257-1,057 |
8 |
0,657 |
5,256 |
0 |
|
1,057-1,857 |
6 |
1,457 |
8,742 |
6 |
|
1,857-2,657 |
4 |
2,257 |
9,028 |
8 |
|
2,657-3,457 |
2 |
3,057 |
6,114 |
6 |
|
20 |
- |
29,14 |
20 |
і=0,8; а=0,657
а- умовний нуль, за умовний нуль доцільно приймати варіанту, яка знаходиться в центрі ряду розподілу або варіанту, якій відповідає найбільша частота.
Середня арифметична:
зважена (2.2)
способом моментів (2.5)
Мода:
(2.6)
Медіана:
(2.7)
Квартилі:
(2.8)
(2.9)
Децилі:
(2.10)
Таблиця 2.5. Розрахункові дані для перевірки математичних властивостей середньої арифметичної результативної ознаки ( виробництво зернових та зернобобових на 1 особу)
Групи областей за виробництвом зернових та зернобобових |
п |
х |
а=2 |
k=3 |
h=4 |
||
0,257-1,057 |
8 |
0,657 |
21,256 |
1,752 |
21,024 |
-6,4 |
|
1,057-1,857 |
6 |
1,457 |
20,742 |
2,914 |
34,968 |
0 |
|
1,857-2,657 |
4 |
2,257 |
17,028 |
3 |
36,112 |
3,2 |
|
2,657-3,457 |
2 |
3,057 |
10,114 |
2,038 |
24,456 |
3,2 |
|
20 |
- |
69,14 |
9,704 |
116,56 |
0,0 |
Перевіримо математичні властивості середньої арифметичної:
1) Збільшимо кожну із варіант на 2 (а=2)
Зменшимо кожну із частот в 3 рази (k=3)
Збільшимо всі значення варіант в h- число разів (h=4)
Алгебраїчна сума відхилень всіх значень ознаки від величини середньої завжди = 0. -6,4+0+3,2+3,2=0 (2.4)
Таблиця 2.6 Розрахункові дані для обчислення середньої арифметичної за першою факторною ознакою (урожайність зернових та зернобобових)
Групи областей за урожайністю зернових та зернобобових |
п |
х |
|||
25,5-32,03 |
7 |
28,765 |
201,355 |
0 |
|
32,03-38,56 |
6 |
35,295 |
211,77 |
6 |
|
38,56-45,09 |
4 |
41,825 |
167,3 |
8 |
|
45,09-51,62 |
3 |
48,355 |
145,065 |
9 |
|
20 |
- |
725,49 |
23 |
і=6,53; а=28,765
Середня арифметична:
зважена (2.2)
способом моментів (2.5)
Мода:
(2.6)
Медіана:
(2.7)
Квартилі:
(2.8)
(2.9)
Децилі:
(2.10)
Таблиця 2.7.Розрахункові дані для обчислення середньої арифметичної за другою факторною ознакою (середня ціна реалізації зернових та зернобобових)
Групи областей за сер. ціною реалізації |
п |
х |
|||
1241,2-1306,45 |
2 |
1273,825 |
2547,65 |
-2 |
|
1306,45-1371,7 |
10 |
1339,075 |
13390,75 |
0 |
|
1371,7-1436,95 |
5 |
1404,325 |
7021,625 |
5 |
|
1436,95-1502,2 |
3 |
1469,575 |
4408,725 |
6 |
|
20 |
- |
27368,75 |
9 |
і=65,25; а=1339,075
Середня арифметична:
зважена (2.2)
способом моментів (2.5)
Мода:
(2.6)
Медіана:
(2.7)
Квартилі:
(2.8)
(2.9)
Децилі:
(2.10)
2.2 Статистичне вивчення варіації та форми розподілу
Для вимірювання та оцінювання варіації використовуються абсолютні та відносні характеристики. До абсолютних належать: варіаційний розмах, середнє лінійне та середнє квадратичне відхилення, дисперсії; відносні характеристики подаються низкою коефіцієнтів варіації, локалізації, концентрації.
Варіаційний розмах R -- це різниця між максимальним і мінімальним значеннями ознаки:
(2.14)
Він характеризує діапазон варіації, наприклад родючості ґрунтів у регіоні, продуктивності праці в галузях промисловості тощо. Безперечною перевагою варіаційного розмаху як міри варіації є простота його обчислення й тлумачення.
Інші абсолютні характеристики варіації враховують усі відхилення значень ознаки від центра розподілу, поданого середньою величиною.
Узагальнюючою характеристикою варіації є середнє відхилення:
лінійне - являє собою середню з абсолютних відхилень усіх значень ознаки від величини середньої:
(2.15)
квадратичне, або стандартне :
(2.16)
дисперсія (середній квадрат відхилень) - середній квадрат відхилень всіх значень ознаки від величини середньої
(2.17)
Дисперсія посідає особливе місце у статистичному аналізі. На відміну від інших характеристик варіації завдяки своїм математичним властивостям вона є невіддільним і важливим елементом інших статистичних методів, зокрема дисперсійного аналізу.
Дисперсія має певні математичні властивості:
1.Якщо всі значення варіант x зменшити на сталу величину А, то дисперсія не зміниться:
(2.18)
2.Якщо всі значення варіант x змінити в А раз, то дисперсія зміниться в A2 раз:
(2.19)
3.Якщо частоти замінити частками, дисперсія не зміниться.
4.Нескладними алгебраїчними перетвореннями можна довести, що дисперсія -- це різниця квадратів .
(2.20)
(де -- квадрат середньої величини; -- середній квадрат значень ознаки.)
Для визначення дисперсії способом моментів використовують формулу:
(2.21)
коефіцієнт варіації - обчислюють як відношення середнього квадратичного до величини середньої:
(2.22)
Чим більшою є величина коефіцієнта варіації, тим менш однорідною вважається статистична сукупність та менш типовою є середня для даної сукупності. Для невеликих вибірок сукупність вважається однорідною, якщо < 33%.
Характеристики форми розподілу.
Аналіз закономірностей розподілу передбачає оцінювання ступеня однорідності сукупності, асиметрії та ексцесу розподілу.
Однорідними вважаються такі сукупності, елементи яких мають спільні властивості і належать до одного типу, класу. При цьому однорідність означає не повну тотожність властивостей елементів, а лише наявність у них спільного в істотному, головному.В однорідних сукупностях розподіли одновершинні (одномодальні). Багатовершинність свідчить про неоднорідний склад сукупності, про різнотиповість окремих складових. У такому разі необхідно перегрупувати дані, виокремити однорідні групи.
У одновершинних розподілах виділяють симетричні та асиметричні (скошені), гостро- та плосковершинні розподіли.
Ш симетричний розподіл - рівновіддалені від центра значення ознаки мають однакові частоти
Ш асиметричному -- вершина розподілу зміщена.
Напрям асиметрії протилежний напряму зміщення вершини. Якщо вершина зміщена ліворуч, маємо правосторонню асиметрію, і навпаки. Зазначимо, що асиметрія виникає внаслідок обмеженої варіації в одному напрямі або під впливом домінуючої причини розвитку, яка призводить до зміщення центра розподілу. Ступінь асиметрії різний -- від помірного до значного.
Усиметричному розподілі характеристики центра -- середня, мода, медіана -- мають однакові значення, в асиметричному - різні. У разі правосторонньої асиметрії: ,
а в разі лівосторонньої: .
Чим більша асиметрія, тим більше відхилення (). Очевидно, найпростішою мірою асиметрії є відносне відхилення
(2.23),
яке характеризує напрям і міру скошеності в середині розподілу; при правосторонній асиметрії , при лівосторонній -- .
Іншою властивістю одновершинних розподілів є ексцес розподілу (ступінь зосередженості елементів сукупності навколо центра розподілу).
Асиметрія та ексцес -- дві пов'язані з варіацією властивості форми розподілу. Комплексне їх оцінювання виконується на базі центральних моментів розподілу. Алгебраїчно центральний момент розподілу -- це середня арифметична k-го ступеня відхилення індивідуальних значень ознаки від середньої:
(2.24)
Очевидно, що момент 2-го порядку є дисперсією, яка характеризує варіацію. Моменти 3-го і 4-го порядків характеризують відповідно асиметрію та ексцес. У симетричному розподілі . Чим більша скошеність ряду, тим більше значення . Для того щоб характеристика скошеності не залежала від масштабу вимірювання ознаки, для порівняння ступеня асиметрії різних розподілів використовується стандартизований момент (коефіцієнт асиметрії):
(2.25)
Коефіцієнтасиметрії на відміну від коефіцієнта скошеності залежить від крайніх значень ознаки. При правосторонній асиметрії коефіцієнт , при лівосторонній . Звідси правостороння асиметрія називається додатною, а лівостороння -- від'ємною. Уважається, що при асиметрія низька, якщо не перевищує 0,5 -- середня, при -- висока.
Для вимірювання ексцесу використовується стандартизований момент 4-го порядку
(2.26)
У симетричному, близькому до нормального розподілі . Очевидно, при гостровершинному розподілі , при плосковершинному .[3]
Таблиця 2.8. Інтервальний ряд розподілу областей за кількістю виробництва зернових та зернобобових на одну особу, ц
Групи областей за вир-вом зернових та зернобобових |
п |
х |
|||||||
0,257-1,057 |
8 |
0,657 |
6,4 |
5,12 |
3,453 |
0 |
-4,096 |
3,2768 |
|
1,057-1,857 |
6 |
1,457 |
0 |
0 |
12,737 |
6 |
0 |
0 |
|
1,857-2,657 |
4 |
2,257 |
3,2 |
2,56 |
20,376 |
16 |
2,048 |
1,6384 |
|
2,657-3,457 |
2 |
3,057 |
3,2 |
3,2 |
18,69 |
18 |
8,192 |
13,1072 |
|
20 |
- |
12,8 |
10,88 |
55,256 |
40 |
6,144 |
18,0224 |
=1,457
Обчислюємо показники варіації:
R= 3,457-0,257=3,2 (2.14)
(2.15)
(2.17)
Дисперсія способом моментів:
(2.21)
(2.20)
=0,8 (2.16)
- варіація дуже велика (2.22)
Коефіцієнт асиметрії:
= (2.25)
0,6>0 - розподіл має правосторонню асиметрію, 0,6>0,5 - асиметрія висока;
Коефіцієнт ексцесу:
= (2.26)
2,2<3 - розподіл плосковершинний;
Таблиця 2.9. Інтервальний ряд розподілу областей за урожайністю зернових та зернобобових, ц/га
Групи областей за урожайністю зернових та зернобобових |
п |
х |
|||||||
25,5-32,03 |
7 |
28,765 |
52,5665 |
394,748 |
5791,98 |
0 |
-2964,36 |
22260,87 |
|
32,03-38,56 |
6 |
35,295 |
5,877 |
5,757 |
7474,42 |
6 |
-5,639 |
5,52 |
|
38,56-45,09 |
4 |
41,825 |
22,202 |
123,232 |
6997,32 |
16 |
648 |
3796,54 |
|
45,09-51,62 |
3 |
48,355 |
36,2415 |
437,815 |
7014,62 |
27 |
5289,03 |
63894,12 |
|
20 |
- |
116,887 |
961,552 |
27278,34 |
49 |
2967,031 |
89957,05 |
і= 6,53; а=28,756;
Обчислюємо показники варіації:
R= 51,6- 25,5= 21,6 (2.14)
(2.15)
(2.17)
=6,93 (2.16)
Дисперсія способом моментів:
(2.21)
(2.20)
- варіація значна (2.22)
Коефіцієнт асиметрії:
= (2.25)
0,446>0 - розподіл має правосторонню асиметрію, асиметрія середня;
Коефіцієнт ексцесу:
= (2.26)
1,95<3 - розподіл плосковершинний;
Інтервальний ряд розподілу областей за сер. ціною реалізації зернових та зернобобових, ц/га (Табл. 2.10)
Групи областей за сер. ціною реалізації |
п |
х |
|||||||
1241,2-1306,45 |
2 |
1273,825 |
189,225 |
17903,05 |
3245260,26 |
2 |
-1693852,35 |
160259605,24 |
|
1306,45-1371,7 |
10 |
1339,075 |
293,625 |
8621,56 |
17931218,56 |
0 |
-25315,08 |
743316,69 |
|
1371,7-1436,95 |
5 |
1404,325 |
179,438 |
6439,56 |
9860643,53 |
5 |
231099,83 |
8293595,05 |
|
1436,95-1502,2 |
3 |
1469,575 |
303,41 |
30685,47 |
6478952,04 |
12 |
3103543,93 |
104628224,78 |
|
20 |
- |
965,7 |
63649,64 |
37516074,39 |
19 |
1615476,33 |
273924741,76 |
і=65,25; а=1339,075;
Обчислюємо показники варіації:
R= 1502,2-1241,2=261 (2.14)
(2.15)
(2.17)
Дисперсія способом моментів:
(2.21)
(2.20)
=56,4 (2.16)
- варіація велика (2.22)
Коефіцієнт асиметрії:
= (2.25)
0,45>0 - розподіл має правосторонню асиметрію, асиметрія середня;
Коефіцієнт ексцесу:
= (2.26)
1,35<3 - розподіл плосковершинний;
2.3 Перевірка статистичної гіпотези про відповідність емпіричного розподілу нормальному
Статистична гіпотеза - це деяке наукове припущення, що підлягає перевірці і на підстав вибіркового методу може бути прийнятим або відхиленим. Як правило, статистичні гіпотези перевіряють на невеликих вибірках. Розрізняють 2 види помилок:
Но - нульова гіпотеза, що підлягає перевірці
На - альтернативна гіпотеза, яка протиставляється Но і заперечує її.
Кожній нульовій гіпотезі можна протиставити альтернативну гіпотезу. За формою побудови розрізняють:
Прості (гіпотеза, яка стосується тільки першого припущення)
Складні гіпотези (яка стосується 2 і більше припущень).
Перевірка статистичних гіпотез пов'язана з можливістю допущення помилок. Є помилки 1-го і 2-го порядку. Помилка 1-го порядку полягає в тому, що відхиляється Но, хоч вона є правильною. Помилка 2-го порядку - приймається Но хоч правильною є На.
Запис змісту гіпотез має такий вигляд:
Н0 : х= а; Нa : х ? а.
Для перевірки Но використовують статистичний критерій - показник, на підставі якого приймається чи відхиляється Но.
Залежно від виду перевірюваної гіпотези використовують спеціально розроблені критерії. Найчастіше застосовують:
u t - критерій Стьюдента
u F- критерій Фішера-Спеденора
u Критерій Пірсона
u Критерій Вілконсона, тощо.
Перевірка статистичних гіпотез відносно рядів розподілу передбачає розгляд слідуючих задач:
перевірка статистичних гіпотез відносно узгодження 2 емпіричних рядів розподілу;
перевірка статистичних гіпотез про відповідність емпіричного ряду розподілу щодо нормального;
перевірка статистичної гіпотези за результативною ознакою (рентабельність);
перевірка статистичної гіпотези відносно рядів розподілу
Статистична перевірка гіпотези здійснюється в такій послідовності:
формулюється нульова гіпотеза;
вибір критерію, за допомогою якого здійснюється перевірка гіпотези;
обчислення фактичного значення критерію;
вибір рівня значущості;
визначення критичної точки;
співставлення фактичного значення критерію з його критичною точкою та формулювання висновків щодо прийняття або відхилення нульової гіпотези.
Для перевірки статистичної гіпотези про відповідність двох порівнюваних рядів розподілу частот (емпіричного і нормального), використовують критерій Пірсона.
Величину визначають за формулою:
(2.27)
(де - фактичні (емпіричні) частоти розподілу ;
- очікувані (теоретично обчислені) частоти розподілу.)
Теоретичні частоти обчислюють за формулою:
(2.28)
(де N чисельність сукупності;
і крок інтервалу;
t- нормоване відхилення.)
Нормоване відхилення обчислюють за формулою:
(2.29)
Величина є середньою зваженою квадратів відхилень фактичних і (нормальних)теоретичних частот. При цьому вагами є величини, обернені теоретичним частотам. Чим більшою є розбіжність між фактичними і теоретичними частотами, тим більшою є величина . Вона може приймати значення від 0 до ?. Якщо фактичні і теоретичні частоти однакові, значення дорівнює нулю.
Відхилення фактичних частот від теоретичних може бути зумовлене випадковими причинами або відображати існуючі розбіжності між емпіричним і теоретичним розподілом. Щоб визначити істотне або випадкове відхилення, одержані значення порівнюють з табличним.
При розрахунку числа ступенів вільності досліджуваних частот враховують кількість обчислюваних статистичних характеристик теоретичної функції розподілу, яка дорівнює 3 ( х, у і N ), звідки н = n ? 3.
Якщо фактичне значення обчисленого за даними вибірки критерію дорівнює табличному або менше за нього, то це означає, що розбіжності між фактичними і теоретичними частотами випадкові, тобто нульова гіпотеза про відповідність емпіричного розподілу теоретичному приймається. Якщо фактичне значення більше за табличне, то це означає, що розбіжності між емпіричними і теоретичними частотами зумовлені не випадковими, а істотними причинами ( нульова гіпотеза відхиляється ).
Перевіримо чи суттєво відрізняється емпіричний ряд розподілу виробництва зернових та зернобобових на 1 особу від нормального, дані наведені в таблиці.
Таблиця 2.11. Перевірка гіпотези за допомогою - критерія Пірсона за виробництвом зернових та зернобобових на 1 особу, ц
Групи областей за виробництвом зернових та зернобобових на 1 особу,ц |
п |
х |
(2.28) |
= |
||||
0,257-1,057 |
8 |
0,657 |
0,8 |
1 |
0,2420 |
4,84 |
2,063 |
|
1,057-1,857 |
6 |
1,457 |
0 |
0 |
0,3989 |
0 |
0 |
|
1,857-2,657 |
4 |
2,257 |
0,8 |
1 |
0,2420 |
4,84 |
0,146 |
|
2,657-3,457 |
2 |
3,057 |
1,6 |
2 |
0,0540 |
1,08 |
0,784 |
|
20 |
- |
3,2 |
х |
Х |
18,1 |
2,993 |
; і=0,8; .
Фактичне значення значення критерію узгодження =2,993
Якщо з ймовірністю Р табличне перевищує фактичне, то Н0 приймається ; якщо фактичне більше за табличне то Н0 не приймається.
Кількість ступенів вільності варіації визначають як кількість груп у ряді n=4 мінус кількість показників емпіричного ряду, використаних при обчисленні теоретичних частот. У нашому прикладі таких показників три: N, звідки н = 4 - 3 =1. Нехай рівень ймовірності становить Р = 0,95. При 1 ступені вільності і рівні значущості 0,05 табличне значення дорівнює 3,841. Оскільки фактичне дорівнює 2,993 ,а табличне дорівнює 3,841, то нульова гіпотеза приймається, тобто ряд розподілу областей за виробництвом зернових та зеробобових на 1 особу суттєво не відрізняється від нормального.
Таблиця 2.12.Перевірка гіпотези за допомогою - критерія Пірсона за урожайністю зернових та зернобобових
Групи областей за урожайністю зернових та зернобобових |
п |
х |
(2.28) |
= |
||||
25,5-32,03 |
7 |
28,765 |
7,51 |
1,084 |
0,2227 |
4,197 |
1,872 |
|
32,03-38,56 |
6 |
35,295 |
0,98 |
0,141 |
0,2083 |
3,926 |
1,096 |
|
38,56-45,09 |
4 |
41,825 |
5,55 |
0,8 |
0,2897 |
5,46 |
0,39 |
|
45,09-51,62 |
3 |
48,355 |
12,08 |
1,743 |
0,0878 |
1,655 |
1,094 |
|
20 |
- |
26,12 |
х |
Х |
15,238 |
4,452 |
Фактичне значення значення критерію узгодження =4,452
н = 4 - 3 =1. Нехай рівень ймовірності становить Р = 0,95. При 1 ступені вільності і рівні значущості 0,05 табличне значення дорівнює 3,841. Оскільки фактичне дорівнює 4,452,а табличне дорівнює 3,841, то нульова гіпотеза приймається, тобто ряд розподілу областей за урожайністю зернових та зернобобових суттєво не відрізняється від нормального.
Таблиця 2.13.Перевірка гіпотези за допомогою - критерія Пірсона за середньою ціною реалізації зернових та зернобобових
Групи областей за сер. ціною реалізації зернових та зернобобових |
п |
х |
(2.28) |
= |
||||
1241,2-1306,45 |
2 |
1273,825 |
94,61 |
1,68 |
0,0973 |
2,251 |
0,028 |
|
1306,45-1371,7 |
10 |
1339,075 |
29,36 |
0,52 |
0,3485 |
8,064 |
0,465 |
|
1371,7-1436,95 |
5 |
1404,325 |
35,89 |
0,64 |
0,3251 |
7,522 |
0,846 |
|
1436,95-1502,2 |
3 |
1469,575 |
101,14 |
1,79 |
0,0804 |
1,86 |
0,698 |
|
20 |
- |
261 |
х |
х |
19,697 |
2,037 |
Фактичне значення значення критерію узгодження =2,037
н = 4 - 3 =1. Нехай рівень ймовірності становить Р = 0,95. При 1 ступені вільності і рівні значущості 0,05 табличне значення дорівнює 3,841. Оскільки фактичне дорівнює 2,037, а табличне дорівнює 3,841, то нульова гіпотеза не приймається, тобто ряд розподілу областей за середньою ціною реалізації зернових та зернобобових суттєво відрізняється від нормального.
Розділ 3. Статистичні методи вивчення взаємозв'язків у виробництві
Кореляційно-регресійний аналіз - це побудова та аналіз економіко-математичної моделі у вигляді рівняння регресії (рівняння кореляційного зв'язку), що виражає залежність результативної ознаки від однієї або кількох ознак-факторів і дає оцінку міри щільності зв'язку.
Правильне застосування кореляційних методів дає змогу зрозуміти глибинну сутність процесів взаємозв'язків. Кореляційні зв'язки виявляються не в кожному окремому випадку, а в середньому для багатьох випадків. У цих зв'язках між причиною і наслідком немає повної відповідності, а спостерігається лише певне співвідношення. Особливості кореляційних зв'язків породжують у теорії кореляції два завдання - визначити теоретичну форму зв'язку (регресійний аналіз) і виміряти щільність зв'язку (кореляційний аналіз). Перше полягає в тому, щоб знайти форму функціонального зв'язку, яка найбільшою мірою відповідає суті кореляційної залежності. Друге - виміряти за допомогою спеціальних показників, якою мірою кореляційний зв'язок наближається до зв'язку функціонального.
Кореляційно-регресійний аналіз складається з таких етапів:
попередній (апріорний) аналіз,
збирання інформації та її первинна обробка,
побудова моделі (рівняння регресії),
оцінка й аналіз моделі.[5]
Кореляційний аналіз вирішує такі завдання:
с оцінка параметрів нормально розподіленої генеральної сукупності (генеральних середніх, дисперсій, парних коефіцієнтів кореляції, множинних і окремих коефіцієнтів кореляції);
с перевірка істотності оцінюваних параметрів та одержання інтервальних оцінок для визначення істотних серед них;
с виявлення структури взаємозалежності ознак.
Крім завдань існує декілька передумов кореляційного аналізу:
1) чітке уявлення про причинно-наслідкові зв'язки досліджуваних ознак;
2) достатня варіація досліджуваних ознак, оскільки без варіації не можна виявити зв'язків;
3) однорідність досліджуваної сукупності;
4) ознаки повинні мати кількісний або числовий вираз, навіть для атрибутивних ознак.
3.1 Парна лінійна кореляція
Під час побудови кореляційно-регресійної моделі (рівняння регресії) передусім виникає питання про тип функції, яка найкраще відображає взаємозв'язок між результативною ознакою та ознаками-факторами, тобто вибір форми зв'язку. За формою розрізняють кореляційні зв'язки прямі й обернені, лінійні й криволінійні (нелінійні), одно- й багатофакторні. Прямі й обернені зв'язки розрізняють залежно від напряму зміни результативної ознаки. Якщо вона змінюється в тому самому напрямі, що й факторна (із збільшенням и результативна ознака збільшується, а із зменшенням - зменшується), то це - прямий зв'язок, якщо в іншому напрямі, - зв'язок обернений. Залежно від характеру зміни у із зміною х виділяють лінійні та нелінійні зв'язки. Якщо досліджується зв'язок між результативною ознакою та однією факторною - це одно факторна кореляційно-регресійна модель. Зв'язок між результативною ознакою і кількома факторами відображається багатофакторною моделлю (множинна кореляція).[5]
Найпростішим видом кореляційного зв'язку є зв'язок між двома ознаками: результативною і факторною. Такий зв'язок називають парною кореляцією або простою кореляцією.
В економічних дослідженнях взаємозв'язку двох факторів серед множини функцій часто розглядається прямолінійна форма зв'язку, яка виражається рівнянням прямої лінії:
(3.1)
де - вирівняне значення результативної ознаки (залежна змінна);
х - значення факторної ознаки (незалежна змінна);
- початок відліку, або значення у при х = 0 (економічного змісту не має);
- коефіцієнт регресії, який показує, як змінюється при кожній зміні х на одиницю.
Якщо > 0, то зв'язок прямий, якщо < 0, то зв'язок обернений, якщо = 0, то зв'язок відсутній(економічний зміст ).
Параметри і рівняння регресії обчислюють способом найменших квадратів. Суть цього способу в знаходженні таких параметрів рівняння зв'язку, за яких залишкова сума квадратів відхилень фактичних значень результативної ознаки (y) від її теоретичних (обчислених за рівнянням зв'язку) значень () буде мінімальною:
(3.2)
Спосіб найменших квадратів зводиться до складання і розв'язання системи двох рівнянь з двома невідомими:
(3.3)
де п - кількість спостережень;
Розв'язавши цю систему рівнянь у загальному вигляді, матимемо формули для визначення параметрів і :
(3.4)
Для оцінки тісноти зв'язку між досліджуваними ознаками обчислюють:
1) індекс кореляції - це універсальний показник, який використовується як при прямолінійних так і при криволінійних формах зв'язку. Індекс кореляції може приймати значення від 0 до 1.
= (3.5)
2) коефіцієнт кореляції, який використовується тільки при прямолінійних формах зв'язку
(3.6)
Коефіцієнт кореляції знаходиться в межах від 0 до +1 при прямому зв'язку і від 1 до 0 при зворотному зв'язку. Чим ближче коефіцієнт кореляції до ± 1, тим тісніший зв'язок між досліджуваними ознаками, чим ближче коефіцієнт кореляції до 0, тим слабший зв'язок між ознаками.
3) коефіцієнт детермінації показує, на скільки відсотків варіація результативної ознаки зумовлена варіацією факторної ознаки:
(3. 7)
Перевірку істотності коефіцієнта кореляції здійснюють за допомогою F- критерія Фішера. Фактичне значення критерію визначають за формулою:
F = (3. 8)
Для перевірки суттєвості коефіцієнта регресії використовують критерій t- Ст'юдента. Критерій Ст'юдента обчислюють за формулою:
(3.9 ) [4]
Таблиця 3.1.Розрахункові дані для побудови рівняння регресії та оцінки тісноти зв'язку між результативною і першою факторною ознакою(у і х1)
№ |
Виробництво зернових та зернобобових на 1 особу, у |
Урожайність зернових та зернобобових, х1 |
Х2 |
у2 |
ху |
|
1 |
2,597 |
49,3 |
2430,49 |
6,744409 |
128,0321 |
|
2 |
0,72 |
29,7 |
882,09 |
0,5184 |
21,384 |
|
3 |
1,04 |
30,8 |
948,64 |
1,0816 |
32,032 |
|
4 |
0,519 |
29,5 |
870,25 |
0,269361 |
15,3105 |
|
5 |
1,184 |
39,3 |
1544,49 |
1,401856 |
46,5312 |
|
6 |
0,257 |
37,6 |
1413,76 |
0,066049 |
9,6632 |
|
7 |
1,24 |
26 |
676 |
1,5376 |
32,24 |
|
8 |
0,389 |
39,6 |
1568,16 |
0,151321 |
15,4044 |
|
9 |
1,62 |
45,2 |
2043,04 |
2,6244 |
73,224 |
|
10 |
3,457 |
40,9 |
1672,81 |
11,95085 |
141,3913 |
|
11 |
0,558 |
25,5 |
650,25 |
0,311364 |
14,229 |
|
12 |
0,378 |
36,5 |
1332,25 |
0,142884 |
13,797 |
|
13 |
2,23 |
28,4 |
806,56 |
4,9729 |
63,332 |
|
14 |
1,337 |
29,2 |
852,64 |
1,787569 |
39,0404 |
|
15 |
3,422 |
51,6 |
2662,56 |
11,71008 |
176,5752 |
|
16 |
0,685 |
32,6 |
1062,76 |
0,469225 |
22,331 |
|
17 |
2,189 |
38,3 |
1466,89 |
4,791721 |
83,8387 |
|
18 |
1,743 |
41 |
1681 |
3,038049 |
71,463 |
|
19 |
1,267 |
37 |
1369 |
1,605289 |
46,879 |
|
20 |
2,29 |
32,4 |
1049,76 |
5,2441 |
74,196 |
|
29,122 |
720,4 |
26983,4 |
60,41903 |
1120,894 |
Обчислюємо середнє значення за результативною ознакою:
Середнє значення факторної ознаки:
Середнє квадратичне відхилення за результативною ознакою:
=3,02-2,12=0,9
Середнє квадратичне відхилення за першою факторною ознакою:
Перевіримо сукупності:
- на однорідність:
(3.12)
- сукупності є однорідними.
- на достатність варіації:
, варіація достатня
Рівняння регресії:
(3.3)
(3.4)
=-1,05
= -37,92
Коефіцієнт регресії = -37,92 ц/га-характеризує пропорцію впливу чинника на результат. <0 свідчить, що зв'язок між досліджуваними ознаками обернений.
Оцінка тісноти зв'язку:
1) коефіцієнт кореляції:
(3.6)
-зв'язок прямий тісний;
2) коефіцієнт детермінації:
(3.7)
-варіація виробництва на 1 особу зумовлена варіацією урожайності на 27,98%
Для перевірки суттєвості коефіцієнта кореляції(коефіцієнта детермінації) використовуємо F-критерія Фішера:
(3.8)
Число ступенів вільності: V1=p-1=2-1=1
V2=n-p=20-2=18
Табличне значення F-критерія при рівні значимості 0,05 та числі ступенів волі 18 і 1 дорівнює 4,41. Таким чином, F>Fтабл. (6,99>4,41), а зв'язок між ознаками не випадковий (суттєвий).
Для перевірки суттєвості коефіцієнта регресії використовують критерій t- Ст'юдента:
Критичнее значення критерію Стьюдента при рівні значущості 0,05 та k= n-1=19 становить 2.0930.
Оскільки розрахованt значення критерію Стьюдента для коефіцієнта кореляції більше за критичне, можна стверджувати, що числові значення коефіцієнта не являються випадковими.
Таблиця 3.2. Розрахункові дані для побудови рівняння регресії та оцінки тісноти зв'язку між результативною і другою факторною ознакою(у і х2)
№ |
Виробництво зернових та зернобобових на 1 особу, У |
Ціна реалізації зернових та зернобобових, грн./т х2 |
Х2 |
у2 |
Ху |
|
1 |
2,597 |
1344,5 |
1807680 |
6,744409 |
3491,667 |
|
2 |
0,72 |
1426,6 |
2035188 |
0,5184 |
1027,152 |
|
3 |
1,04 |
1327,2 |
1761460 |
1,0816 |
1380,288 |
|
4 |
0,519 |
1314,9 |
1728962 |
0,269361 |
682,4331 |
|
5 |
1,184 |
1431,5 |
2049192 |
1,401856 |
1694,896 |
|
6 |
0,257 |
1241,2 |
1540577 |
0,066049 |
318,9884 |
|
7 |
1,24 |
1270,6 |
1614424 |
1,5376 |
1575,544 |
|
8 |
0,389 |
1428,6 |
2040898 |
0,151321 |
555,7254 |
|
9 |
1,62 |
1368,7 |
1873340 |
2,6244 |
2217,294 |
|
10 |
3,457 |
1322,1 |
1747948 |
11,95085 |
4570,5 |
|
11 |
0,558 |
1318,4 |
1738179 |
0,311364 |
735,6672 |
|
12 |
0,378 |
1502,2 |
2256605 |
0,142884 |
567,8316 |
|
13 |
2,23 |
1446,1 |
2091205 |
4,9729 |
3224,803 |
|
14 |
1,337 |
1320,3 |
1743192 |
1,787569 |
1765,241 |
|
15 |
3,422 |
1448,1 |
2096994 |
11,71008 |
4955,398 |
|
16 |
0,685 |
1378,9 |
1901365 |
0,469225 |
944,5465 |
|
17 |
2,189 |
1367,7 |
1870603 |
4,791721 |
2993,895 |
|
18 |
1,743 |
1408,5 |
1983872 |
3,03804 |
2455,016 |
|
19 |
1,267 |
1349,4 |
1820880 |
1,605289 |
1709,69 |
|
20 |
2,29 |
1325,4 |
1756685 |
5,2441 |
3035,166 |
|
29,122 |
27340,9 |
37459250 |
60,41903 |
39901,74 |
Обчислюємо середнє значення за результативною ознакою:
Середнє значення факторної ознаки:
Середнє квадратичне відхилення за результативною ознакою:
=3,02-2,12=0,9
Середнє квадратичне відхилення за другою факторною ознакою:
Перевіримо сукупності:
- на однорідність:
(3.12)
- сукупності є однорідними.
- на достатність варіації:
, варіація достатня
Рівняння регресії:
(3.3)
(3.4)
=-0,04
= -656,6
Коефіцієнт регресії =-656,6 ц/га-характеризує пропорцію впливу чинника на результат. <0 свідчить, що зв'язок між досліджуваними ознаками обернений. При збільшенні ціни реалізації на 1, виробництво на 1 особу зменшується на 656,6 ц.
Оцінка тісноти зв'язку:
1) коефіцієнт кореляції:
(3.6)
-зв'язок прямий слабкий;
2) коефіцієнт детермінації:
(3.7)
-варіація виробництва на 1 особу зумовлена варіацією ціни реалізації на 0,58%
Для перевірки суттєвості коефіцієнта кореляції(коефіцієнта детермінації) використовуємо F-критерія Фішера:
(3.8)
Число ступенів вільності: V1=p-1=2-1=1
V2=n-p=20-2=18
Табличне значення F-критерія при рівні значимості 0,05 та числі ступенів волі 18 і 1 дорівнює 4,41. Таким чином, F<Fтабл. (0,105<4,41), а зв'язок між ознаками випадковий (не суттєвий).
Для перевірки суттєвості коефіцієнта регресії використовують критерій t- Ст'юдента:
3,234 (3.9)
Критичнее значення критерію Стьюдента при рівні значущості 0,05 та k= n-1=19 становить 2.0930.
Оскільки розраховане значення критерію Стьюдента для коефіцієнта кореляції більше за критичне, можна стверджувати, що числові значення коефіцієнта не являються випадковими.
3.2 Парна криволінійна кореляція
Дослідження форми зв'язку інколи зумовлює потребу використання нелінійних (криволінійних) рівнянь регресії. Це пояснюється тим, що взаємодія між ознаками, що характеризують окремі явища і процеси, нерідко має більш складний характер, ніж просто пропорційні залежності.
Криволінійний - зв'язок, при якому рівномірна зміна факторної ознаки призвонить до не рівномірної зміни факторної ознаки.
При дослідженні криволінійних зв'язків, так само як і при вивченні лінійних зв'язків, принципове значення має вибір форми і рівняння зв'язку, яке найточніше відобразить наявний зв'язок. Для розв'язання цього завдання використовуються ті самі прийоми, що й при обґрунтуванні лінійного зв'язку. При цьому особлива увага належить графічному методу.[4]
Криволінійні форми зв'язку досить різноманітні. В статистичному аналізі найчастіше використовують параболу другого порядку, гіперболу і степеневу функцію.
Для визначення зв'язку між ознаками, взаємовідношення яких передбачає можливість існування оптимальних розмірів операцій, використовують рівняння параболи:
(3.10)
де - теоретичні значення результативної ознаки,
параметри рівняння,
- значення факторної ознаки
Параметри визначають складанням та розв'язанням системи трьох рівнянь:
(3.11)
Щоб спростити розв'язання рівнянь замість значення х введемо відхилення від середньої . Оскільки і дорівнюють нулю, то після відповідних спрощень дістанемо:
(3.12)
Тісноту зв'язку за криволінійних форм залежності визначають за індексом кореляції (кореляційного відношення). Індекс кореляції змінюється у межах від 0 до +1, тобто завжди є додатною величиною. Він показує, яку частку у загальному середньоквадратичному відхиленні результативної ознаки становить середньоквадратичне відхилення факторної ознаки.
(3.13)
Таблиця 3.3.Вихідні та розрахункові дані для кореляційного аналізу залежності виробництва зернових та зернобобових на 1 особу від урожайності
№ |
Вир-во на 1 особу, у |
Урож-сть, х1 |
|||||||
1 |
2,597 |
49,3 |
13,28 |
176,3584 |
34,48816 |
458,0027648 |
31102,28525 |
2,593 |
|
2 |
0,72 |
29,7 |
-6,32 |
39,9424 |
-4,5504 |
28,758528 |
1595,395318 |
7,925 |
|
3 |
1,04 |
30,8 |
-5,22 |
27,2484 |
-5,4288 |
28,338336 |
742,4753026 |
8,399 |
|
4 |
0,519 |
29,5 |
-6,52 |
42,5104 |
-3,38388 |
22,0628976 |
1807,134108 |
7,84 |
|
5 |
1,184 |
39,3 |
3,28 |
10,7584 |
3,88352 |
12,7379456 |
115,7431706 |
12,547 |
|
6 |
0,257 |
37,6 |
1,58 |
2,4964 |
0,40606 |
0,6415748 |
6,23201296 |
11,647 |
|
7 |
1,24 |
26 |
-10,02 |
100,4004 |
-12,4248 |
124,496496 |
10080,24032 |
6,44 |
|
8 |
0,389 |
39,6 |
3,58 |
12,8164 |
1,39262 |
4,9855796 |
164,260109 |
12,709 |
|
9 |
1,62 |
45,2 |
9,18 |
84,2724 |
14,8716 |
136,521288 |
7101,837402 |
15,88 |
|
10 |
3,457 |
40,9 |
4,88 |
23,8144 |
16,87016 |
82,3263808 |
567,1256474 |
13,394 |
|
11 |
0,558 |
25,5 |
-10,52 |
110,6704 |
-5,87016 |
61,7540832 |
12247,93744 |
6,245 |
|
12 |
0,378 |
36,5 |
0,48 |
0,2304 |
0,18144 |
0,0870912 |
0,05308416 |
11,057 |
|
13 |
2,23 |
28,4 |
-7,62 |
58,0644 |
-16,9926 |
129,483612 |
3371,474547 |
7,294 |
|
14 |
1,337 |
29,2 |
-6,82 |
46,5124 |
-9,11834 |
62,1870788 |
2163,403354 |
7,715 |
|
15 |
3,422 |
51,6 |
15,58 |
242,7364 |
53,31476 |
830,6439608 |
58920,95988 |
20,089 |
|
16 |
0,685 |
32,6 |
-3,42 |
11,6964 |
-2,3427 |
8,012034 |
136,805773 |
9,204 |
|
17 |
2,189 |
38,3 |
2,28 |
5,1984 |
4,99092 |
11,3792976 |
27,02336256 |
12,013 |
|
18 |
1,743 |
41 |
4,98 |
24,8004 |
8,68014 |
43,2270972 |
615,0598402 |
13,468 |
|
19 |
1,267 |
37 |
0,98 |
0,9604 |
1,24166 |
1,2168268 |
0,92236816 |
11,317 |
|
20 |
2,29 |
32,4 |
-3,62 |
13,1044 |
-8,2898 |
30,009076 |
171,7252994 |
9,097 |
|
29,122 |
720,4 |
х |
1034,592 |
71,91956 |
2076,871949 |
130938,0936 |
206,873 |
табл.(3.3)
№ |
Вир-во на 1 особу, у |
||||||
1 |
2,597 |
2,593 |
1,137 |
1,292769 |
1,141 |
1,301881 |
|
2 |
0,72 |
7,925 |
6,469 |
41,847961 |
-0,736 |
0,541696 |
|
3 |
1,04 |
8,399 |
6,943 |
48,205249 |
-0,416 |
0,173056 |
|
4 |
0,519 |
7,84 |
6,384 |
40,755456 |
-0,937 |
0,877969 |
|
5 |
1,184 |
12,547 |
11,091 |
123,010281 |
-0,272 |
Подобные документы
Інвестиційні проекти як об'єкт розподілу ресурсів. Місце інвестиційної діяльності в діяльності підприємства. Методи та моделі оцінки та розподілу інвестиційних ресурсів. Вибір прибуткового інвестиційного проекту, комплексний аналіз його ефективності.
дипломная работа [393,6 K], добавлен 09.11.2013Особливості розподілу населення за обсягом інвестицій в основний капітал. Основи побудови інтегрального ряду розподілу. Методи розрахунку моди, медіани, середнього лінійного і квадратичного відхилень, дисперсії, коефіцієнтів варіації, асиметрії, ексцесу.
практическая работа [115,0 K], добавлен 06.10.2010Статистичні показники, що характеризують вхідні спостереження над факторами. Результати аналізу нормальності розподілу. Перевірка статистичної незалежності факторів. Присутність взаємозв’язку між факторами. Парна та групова оцінки взаємозв’язку факторів.
контрольная работа [268,5 K], добавлен 27.12.2012Розгляд організаційної структури МКВП "Дніпроводоканал". Аналіз ліквідності, рентабельності і ділової активності підприємства. Розробка економіко-математичних моделей оптимального розподілу коштів та платоспроможного попиту споживачів комунальних послуг.
дипломная работа [390,5 K], добавлен 28.02.2010Економіко-математичні моделі оптимізації плану використання добрив. Методи розподілу добрив. Моделювання процесу використання добрив на сільськогосподарському підприємстві, обґрунтування базової моделі. Оптимізація використання фондів ресурсів добрив.
курсовая работа [46,3 K], добавлен 31.03.2010Поняття дискретної випадкової величини (біноміального розподілу), її опис схемою Бернуллі. Граничний випадок біноміального розподілу. Параметричні та непараметричні критерії для перевірки гіпотези про відмінність (або схожість) між середніми значеннями.
курсовая работа [33,6 K], добавлен 27.11.2010Методи одержання стійких статистичних оцінок. Агломеративні методи кластерного аналізу. Грубі помилки та методи їх виявлення. Множинна нелінійна регресія. Метод головних компонент. Сутність завдання факторного аналізу. Робастне статистичне оцінювання.
курсовая работа [1,2 M], добавлен 28.04.2014Статистичні методи аналізу та обробки спостережень. Характерні ознаки типової і спеціалізованої звітності підприємств. Оцінка параметрів простої лінійної моделі методом найменших квадратів. Аналіз показників багатофакторної лінійної і нелінійної регресії.
контрольная работа [327,1 K], добавлен 23.02.2014Перевірка адекватності і точності Гаусової і квадратної моделей. Незалежність коливань рівнів залишкової послідовності. Оцінка нормальності закону розподілу випадкової величини методом RS-критерію. Рівність математичного очікування випадкового компонента.
курсовая работа [114,7 K], добавлен 17.12.2014Вивчення сутності лінійної моделі виробництва та лінійного програмування. Статична схема міжгалузевого балансу. Властивості невід’ємних матриць. Зв'язок між коефіцієнтами прямих і повних витрат. Коефіцієнти трудових витрат. Баланс трудових ресурсів.
реферат [134,7 K], добавлен 07.12.2010