Эконометрические модели динамики

Методы моделирования временных рядов, типы данных. Проверка гипотезы о существовании тренда. Моделирование тенденции временного ряда: сглаживание и аналитическое выравнивание. Определение коэффициентов автокорреляции второго и более высоких порядков.

Рубрика Экономико-математическое моделирование
Вид лекция
Язык русский
Дата добавления 14.02.2015
Размер файла 163,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Эконометрические модели динамики

Методы моделирования временных рядов

При построении эконометрической модели используются два типа данных:

данные, характеризующие совокупность различных объектов в определенный момент времени;

данные, характеризующие один объект за ряд последовательных моментов времени.

Модели, построенные по данным первого типа, называются пространственными моделями. Модели, построенные на основе второго типа данных, называются моделями временных рядов.

Временной ряд (ряд динамики) - это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

факторы, формирующие тенденцию ряда;

факторы, формирующие циклические колебания ряда;

случайные факторы.

Рассмотрим воздействие каждого фактора на временной ряд в отдельности.

Ряды, в которых уровни колеблются вокруг постоянной средней, называются стационарными. Экономические ряды, как правило, нестационарные. Для большинства из них характерна систематическая смена уровней с нерегулярными колебаниями, когда пики и впадины чередуются с разной интенсивностью. Скажем, экономические циклы (промышленные, строительные, фондового рынка и т. д) повторяются с разной продолжительностью и разной амплитудой колебаний.

Большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Все эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они формируют его возрастающую или убывающую тенденцию. На рис.1 показан гипотетический временной ряд, содержащий возрастающую тенденцию.

Рисунок 1

Также изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, поскольку экономическая деятельность ряда отраслей экономики зависит от времени года (например, цены на сельскохозяйственную продукцию в летний период выше, чем в зимний; уровень безработицы в курортных городах в зимний период выше по сравнению с летним). При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка. На рис.2 представлен гипотетический временной ряд, содержащий только сезонную компоненту.

Рисунок 2

Некоторые временные ряды не содержат тенденции и циклической компоненты, а каждый следующий их уровень образуется как сумма среднего уровня ряда и некоторой (положительной или отрицательной) случайной компоненты. Пример ряда, содержащего только случайную компоненту, приведен на рис.3.

Рисунок 3

Очевидно, что реальные данные не следуют целиком и полностью из каких-либо описанных выше моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воздействием тенденции, сезонных колебаний и случайной компоненты.

В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда. Основная задача эконометрического исследования отдельного временного ряда - выявление и придание количественного выражения каждой из перечисленных выше компонент с тем, чтобы использовать полученную информацию для прогнозирования будущих значений ряда или при построении моделей взаимосвязи двух или более временных рядов.

Проверка гипотезы о существовании тренда

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда.

Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Формула для расчета коэффициента автокорреляции имеет вид:

(19.1)

Где

(19.2)

временной ряд тренд автокорреляция

Эту величину называют коэффициентом автокорреляции уровней ряда первого порядка, так как он измеряет зависимость между соседними уровнями ряда и .

Аналогично можно определить коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями и и определяется по формуле:

(19.3)

Где

(19.4)

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Считается целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило - максимальный лаг должен быть не больше .

Свойства коэффициента автокорреляции.

Он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержат положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой.

Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т.е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка , то ряд содержит циклические колебания с периодичностью в моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты и циклической (сезонной) компоненты.

Моделирование тенденции временного ряда: сглаживание и аналитическое выравнивание

Распространенным способом моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим выравниванием временного ряда.

Поскольку зависимость от времени может принимать разные формы, для ее формализации можно использовать различные виды функций. Для построения трендов чаще всего применяются следующие функции:

линейный тренд: ;

гипербола: ;

экспоненциальный тренд: (или );

степенная функция: ;

полиномы различных степеней: .

Параметры каждого из перечисленных выше трендов можно определить обычным МНК, используя в качестве независимой переменной время , а в качестве зависимой переменной - фактические уровни временного ряда . Для нелинейных трендов предварительно проводят стандартную процедуру их линеаризации.

Существует несколько способов определения типа тенденции. К числу наиболее распространенных способов относятся качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэффициентов автокорреляции первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни и тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.

Выбор наилучшего уравнения в случае, когда ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации и средней ошибки аппроксимации. Этот метод легко реализуется при компьютерной обработке данных.

Довольно распространенным и простым методом анализа динамики является сглаживание ряда. Суть его заключается в замене фактических уровней УІ средними с определенными интервалами. Вариация средних сравнению с вариацией уровней первоначального ряда значительно меньше, а поэтому характер динамики проявляется четче. Процедуру сглаживания называют фильтрованием, а операторы, с помощью которых она осуществляется, -- фильтрами. На практике используют в основном линейные фильтры, среди которых самый простой -- скользящая средняя с интервалом сглаживания т<п. Интервалы постепенно смещаются на один элементy1, y2, …, ym;

y2, y3, …, ym+1;

y3, y4, …, ym+2 і т.д.

Для каждого из них определяется средняя , которая приходится на середину интервала. Если т - нечетное число, то т = 2р+ 1, а веса членов ряда в пределах интервала одинаковые , то , где уі - фактическое значение уровня в i-й момент; и -порядковый номер уровня в интервале.

При парном т середина интервала находится между двумя временными точками и тогда проводится дополнительная процедура центрирования (усреднения каждой пары значений).

Скользящая средняя с одинаковыми весами аг при сглаживании динамического ряда погашает не только случайные, но и присущие конкретному процессу периодические колебания. Предполагая наличие таких колебаний, используют взвешенную скользящую среднюю, то есть каждому уровню в пределах интервала сглаживания придают определенный вес. Способы формирования весовой функции разные. В одних случаях весы соответствуют членам разложения бинома , при m=3, скажем . В других случаях в данных интервала сглаживания подбирается определенный поленом, например, парабола Тогда весовая функция такая:

Как видно из формул, веса симметричны относительно центра интервала сглаживания, сумма с учетом вынесенного за скобки множителя равна .

Основное преимущество скользящей средней - наглядность и простота толкования тенденции. Однако не следует забывать, что ряд скользящих средних короче первичный ряд на 2р уровней, а следовательно, теряется информация о крайние члены ряда. И чем шире интервал сглаживания, тем более ощутимые потери, особенно новой информации. Кроме того, имея общую основу расчета, скользящие средние оказываются зависимыми, что при сглаживании значительным колебаниям даже при отсутствии циклов в первичном ряду может указывать на цикличность процесса (эффект Слуцкого).

В фильтрах симметричных старая и новая информация рівновагомі, а при прогнозировании важнее новая информация. В таком случае используют асимметричные фильтры. Самый простой из них - скользящая средняя, которая заменяет не центральный, а последний член ряда (адаптивная средняя):

.

В приведенной формуле первый элемент характеризует инерцию развития, второй - адаптирует среднюю к новым условиям. Таким образом средняя с каждым шагом будто обновляется. Степень обновления определяется постоянным весом - .

Моделирование сезонных колебаний

Простейший подход к моделированию сезонных колебаний - это расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда.

Общий вид аддитивной модели следующий:

.(19.5)

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (), сезонной () и случайной () компонент.

Общий вид мультипликативной модели выглядит так:

.(19.6)

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (), сезонной () и случайной () компонент.

Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений , и для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

Выравнивание исходного ряда методом скользящей средней.

Расчет значений сезонной компоненты .

Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных () в аддитивной или () в мультипликативной модели.

Аналитическое выравнивание уровней () или () и расчет значений с использованием полученного уравнения тренда.

Расчет полученных по модели значений () или ().

Расчет абсолютных и/или относительных ошибок. Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.

Размещено на Allbest.ru


Подобные документы

  • Теория и анализ временных рядов. Построение линии тренда и прогнозирование развития случайного процесса на основе временного ряда. Сглаживание временного ряда, задача выделения тренда, определение вида тенденции. Выделение тригонометрической составляющей.

    курсовая работа [722,6 K], добавлен 09.07.2019

  • Основные элементы эконометрического анализа временных рядов. Задачи анализа и их первоначальная обработка. Решение задач кратко- и среднесрочного прогноза значений временного ряда. Методы нахождения параметров уравнения тренда. Метод наименьших квадратов.

    контрольная работа [37,6 K], добавлен 03.06.2009

  • Временные ряды и их характеристики. Факторы, влияющие на значения временного ряда. Тренд и сезонные составляющие. Декомпозиция временных рядов. Метод экспоненциального сглаживания. Построение регрессионной модели. Числовые характеристики переменных.

    контрольная работа [1,6 M], добавлен 18.06.2012

  • Статистические методы анализа одномерных временных рядов, решение задач по анализу и прогнозированию, построение графика исследуемого показателя. Критерии выявления компонент рядов, проверка гипотезы о случайности ряда и значения стандартных ошибок.

    контрольная работа [325,2 K], добавлен 13.08.2010

  • Вычисление парных коэффициентов корреляции и построение их матрицы. Нахождение линейного уравнения связи, коэффициентов детерминации и эластичности. Аналитическое выравнивание ряда динамики методом наименьших квадратов. Фактические уровни вокруг тренда.

    контрольная работа [121,1 K], добавлен 01.05.2011

  • Анализ временных рядов с помощью статистического пакета "Minitab". Механизм изменения уровней ряда. Trend Analysis – анализ линии тренда с аппроксимирующими кривыми (линейная, квадратическая, экспоненциальная, логистическая). Декомпозиция временного ряда.

    методичка [1,2 M], добавлен 21.01.2011

  • Классические подходы к анализу финансовых рынков, алгоритмы машинного обучения. Модель ансамблей классификационных деревьев для прогнозирования динамики финансовых временных рядов. Выбор алгоритма для анализа данных. Практическая реализация модели.

    дипломная работа [1,5 M], добавлен 21.09.2016

  • Тесты, с помощью которых можно построить эконометрические модели. Эконометрическое моделирование денежного агрегата М0, в зависимости от валового внутреннего продукта и индекса потребительских цен. Проверка рядов на стационарность и гетероскедастичность.

    курсовая работа [814,0 K], добавлен 24.09.2012

  • Изучение особенностей стационарных временных рядов и их применения. Параметрические тесты стационарности. Тестирование математического ожидания, дисперсии и коэффициентов автокорреляции. Проведение тестов Манна-Уитни, Сиджела-Тьюки, Вальда-Вольфовитца.

    курсовая работа [451,7 K], добавлен 06.12.2014

  • Изучение понятия имитационного моделирования. Имитационная модель временного ряда. Анализ показателей динамики развития экономических процессов. Аномальные уровни ряда. Автокорреляция и временной лаг. Оценка адекватности и точности трендовых моделей.

    курсовая работа [148,3 K], добавлен 26.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.