Основы и цель экономико-математического моделирования
Понятие математической и экономико-математической модели. Оценка значимости коэффициентов уравнения парной линейной регрессии, построение доверительных интервалов для коэффициентов. Основные показатели межотраслевого баланса и их экономический смысл.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 26.01.2015 |
Размер файла | 422,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
СОДЕРЖАНИЕ
- ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ
- Вопрос 1
- Вопрос 21
- Вопрос 42
- ПРАКТИЧЕСКИЕ ЗАДАНИЯ
- Задача 1
- Задача 2
- ЛИТЕРАТУРА
- ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ
- Вопрос 1
- Понятие математической модели, экономико-математической модели
экономический математический регрессия линейный межотраслевой баланс
Ответ
Под математическим моделированием понимается описание реальной действительности в математической форме.
Математическая модель - это математическая система, описывающая определенными знаками и символами объекты, явления, те или иные экономические процессы.
Математические модели в экономике принято называть экономико-математическими. Экономико-математическая модель всегда является не точной копией, а некоторой схемой, абстракцией экономического процесса.
Любая математическая модель подразумевает наличие определенных количественных показателей, характеризующих объект. Например, основными экономическими показателями, характеризующими процессы землеустроительного проектирования, являются площади земельных угодий, севооборотных массивов, структура посевных площадей, площади посевов сельскохозяйственных культур, коэффициенты по уровню производства, уровню затрат и т.д. В процессе моделирования часть этих показателей фиксируется на определенном уровне, а часть считается переменными величинами модели. Цель моделирования заключается в нахождении оптимального сочетания переменных (параметров модели), дающих наилучший результат по выбранному критерию оптимизации. Целевая функция является зависимостью обобщенного показателя (стоимость валовой или товарной продукции, чистый доход, валовой доход, производственные затраты и т.д.) от параметров модели. В зависимости от выбранного критерия оптимизации направление оптимизации выражается в форме максимизации или минимизации целевой функции.
Существенную роль в разработке модели играет как субъективный фактор (разработчик модели) так и объективный - ограничения на ресурсы, плановые задания по выпуску продукции, технолого-экономические коэффициенты и т.п.
Экономико-математические модели позволяют находить оптимальные (минимальные, максимальные) значения целевых функций, которым соответствуют определенные числовые характеристики, проектные землеустроительные решения, полученные с учетом ограниченности ресурсов. Лимитируемыми (ценными) ресурсами при построении моделей являются деньги, материалы, труд, земля. Оптимизация присутствует в основном на микроуровне
Таким образом, математическая модель представляет собой систему неравенств и уравнений, связывающих параметры модели, оптимальное сочетание которых необходимо определить под определенным критерием оптимизации. Для решения таких задач применяются математические методы. Решение математической задачи является одним из основных этапов моделирования.
Экономико-математические модели отражают наиболее существенные свойства реального объекта или процесса с помощью системы уравнений. Единой классификации экономико-математических моделей не существует, хотя можно выделить наиболее значимые их группы в зависимости от признака классификации.
По целевому назначению модели делятся на:
· Теоретико-аналитические (используются в исследовании общих свойств и закономерностей экономических процессов);
· Прикладные (применяются в решении конкретных экономических задач, таких как задачи экономического анализа, прогнозирования, управления).
По учету фактора времени модели подразделяются на:
· Динамические (описывают экономическую систему в развитии);
· Статистические (экономическая система описана в статистике, применительно к одному определенному моменту времени; это как бы снимок, срез, фрагмент динамической системы в какой-то момент времени).
По длительности рассматриваемого периода времени различают модели:
· Краткосрочного прогнозирования или планирования (до года);
· Среднесрочного прогнозирования или планирования (до 5 лет);
· Долгосрочного прогнозирования или планирования (более 5 лет).
По цели создания и применения различают модели:
· Балансовые;
· Эконометрические;
· Оптимизационные;
· Сетевые;
· Систем массового обслуживания;
· Имитационные (экспертные).
В балансовых моделях отражается требование соответствия наличия ресурсов и их использования.
Параметры эконометрических моделей оцениваются с помощью методов математической статистики. Наиболее распространены модели, представляющие собой системы регрессионных уравнений. В данных уравнениях отражается зависимость эндогенных (зависимых) переменных от экзогенных (независимых) переменных. Данная зависимость в основном выражается через тренд (длительную тенденцию) основных показателей моделируемой экономической системы. Эконометрические модели используются для анализа и прогнозирования конкретных экономических процессов с использованием реальной статистической информации.
Оптимизационные модели позволяют найти из множества возможных (альтернативных) вариантов наилучший вариант производства, распределения или потребления. Ограниченные ресурсы при этом будут использованы наилучшим образом для достижения поставленной цели.
Сетевые модели наиболее широко используются в управлении проектами. Сетевая модель отображает комплекс работ (операций) и событий, и их взаимосвязь во времени. Обычно сетевая модель предназначена для выполнения работ в такой последовательности, чтобы сроки выполнения проекта были минимальными. В этом случае ставится задача нахождения критического пути. Однако существуют и такие сетевые модели, которые ориентированы не на критерий времени, а, например, на минимизацию стоимости работ.
Модели систем массового обслуживания создаются для минимизации затрат времени на ожидание в очереди и времени простоев каналов обслуживания.
Имитационная модель, наряду с машинными решениями, содержит блоки, где решения принимаются человеком (экспертом). Вместо непосредственного участия человека в принятии решений может выступать база знаний. В этом случае персональный компьютер, специализированное программное обеспечение, база данных и база знаний образуют экспертную систему. Экспертная система предназначена для решения одной или ряда задач методом имитации действий человека, эксперта в данной области.
По учету фактора неопределенности модели подразделяются на:
· Детерминированные (с однозначно определенными результатами);
· Стохастические (вероятностные; с различными, вероятностными результатами).
По типу математического аппарата различают модели:
· Линейного программирования (оптимальный план достигается в крайней точке области изменения переменных величин системы ограничений);
· Нелинейного программирования (оптимальных значений целевой функции может быть несколько);
· Корреляционно-регрессионные;
· Матричные;
· Сетевые;
· Теории игр;
· Теории массового обслуживания и т.д.
С развитием экономико-математических исследований проблема классификации применяемых моделей усложняется. Наряду с появлением новых типов моделей и новых признаков их классификации, осуществляется процесс интеграции моделей разных типов в более сложные модельные конструкции.
Вопрос 21
Оценка значимости коэффициентов уравнения парной линейной регрессии, построение доверительных интервалов для коэффициентов
Ответ
Построение поле корреляции и формулирование гипотезы о форме связи.
Пусть имеется два ряда эмпирических данных X (x1, x2, …, xn) и Y (y1, y2, …, yn), соответствующие им точки с координатами (xi, yi), где i=1,2,…,n, отобразим на координатной плоскости. Такое изображение называется полем корреляции. Пусть по расположению эмпирических точек можно предположить наличие линейной корреляционной зависимости между переменными X и Y.
В общем виде теоретическую линейную парную регрессионную модель можно представить в виде:
Y= или yi=, i=1,2,…,n;
где Y - объясняемая (результирующая, зависимая, эндогенная) переменная,
Х - объясняющая (факторная, независимая, экзогенная) переменная или регрессор;
- теоретические параметры (числовые коэффициенты) регрессии, подлежащие оцениванию;
еi - случайное отклонение (возмущение, ошибка).
Основные гипотезы:
1. yi=, i=1,2,…,n, - спецификация модели.
2. Х - детерминированная (неслучайная) величина, при этом предполагается, что среди значений xi - не все одинаковые.
3а. М еi=0, i=1,2,…,n.
3b. D еi=у2, i=1,2,…,n. Условие независимости дисперсии ошибки от номера наблюдения называется гомоскедастичностью; случай, когда условие гомоскедастичности не выполняется, называется гетероскедастичностью.
3с. М(еi еj )=0 при i ? j , некоррелированность ошибок для разных наблюдений. В случае, когда это условие не выполняется, говорят об автокорреляции ошибок.
4. Возмущения являются нормально распределенными случайными величинами: еi ? N(0, у2).
Замечание. Для получения уравнения регрессии достаточно первых трех предпосылок. Для оценки точности уравнения регрессии и его параметров необходимо выполнение четвертой предпосылки.
Задача линейного регрессионного анализа состоит в том, чтобы по имеющимся статистическим данным (xi, yi), i=1,2,…,n, для переменных X и Y получить наилучшие оценки неизвестных параметров , т. е. построить так называемое эмпирическое уравнение регрессии
,
где оценка условного математического ожидания М(Y/ X=xi); оценки неизвестных параметров , называемые эмпирическими коэффициентами регрессии. В каждом конкретном случае можно записать
, i=1,2,…,n,
где отклонения еi - ошибки (остатки) модели, которые являются оценками теоретического случайного отклонения еi.
Расчет параметров выборочного уравнения линейной регрессии с помощью метода наименьших квадратов (МНК).
Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК). В методе наименьших квадратов оценки параметров модели строятся так, чтобы минимизировать сумму квадратов ошибок модели по всем наблюдениям. Таким образом, критерий наименьших квадратов записывается в виде:
Необходимым условием существования минимума функции S(b0 ,b1) является равенство нулю её частных производных по неизвестным b0 и b1 (для краткости опустим индексы суммирования у знака суммы У ):
Данная система уравнений называется системой нормальных уравнений для коэффициентов регрессии.
Решая эту систему двух линейных уравнений с двумя неизвестными, например, методом подстановки, получим:
где выборочные средние значения переменных Х и Y.
.
С геометрической точки зрения минимизация суммы квадратов отклонений означает выбор единственной прямой (из всех прямых с параметрами), которая ближе всего «прилегает» по ординатам к системе выборочных точек (xi, yi), i=1,2,…,n.
Оценка тесноты связи с помощью показателей корреляции (выборочный коэффициент корреляции) и детерминации.
Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции rxy. Существует несколько видов формулы линейного коэффициента корреляции, основные из них:
.
Корреляционная связь между переменными называется прямой, если rxy.>0, и обратной, если rxy <0.
Для практических расчётов наиболее удобна формула
,
так как по ней коэффициент корреляции находится из данных наблюдений, и на значение rxy не оказывает влияния погрешность округления.
Коэффициент корреляции принимает значения от -1 до +1.
При значении коэффициента корреляции равном 1 связь представлена линейной функциональной зависимостью. При этом все наблюдаемые значения располагаются на линии регрессии.
При rxy=0 корреляционная связь между признаками в линейной форме отсутствует. При этом линия регрессии параллельна оси Ох.
При rxy > 0 - корреляционная связь между переменными называется прямой, а при rxy < 0 - обратной.
Для характеристики силы связи можно использовать шкалу Чеддока.
Показатель тесноты связи |
0,1 - 0,3 |
0,3 - 0,5 |
0,5 - 0,7 |
0,7 - 0,9 |
0,9 - 0,99 |
|
Характеристика силы связи |
Слабая |
Умеренная |
Заметная |
Высокая |
Весьма высокая |
Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции rxy2, называемый коэффициентом детерминации. Коэффициент детерминации обозначим R2, т. о. имеем
R2 = rxy2.
Коэффициент детерминации характеризует долю дисперсии результативного признака Y, объясняемую регрессией, в общей дисперсии результативного признака. Соответственно величина 1- R2 характеризует долю дисперсии Y, вызванную влиянием остальных, не учтенных в модели факторов.
Замечание. Вычисление R2 корректно, если константа включена в уравнение регрессии.
Применение критерия Стьюдента для оценки статистической значимости коэффициентов регрессии и корреляции.
Эмпирическое уравнение регрессии определяется на основе конечного числа статистических данных. Очевидно, что коэффициенты эмпирического уравнения регрессии являются случайными величинами, изменяющимися от выборки к выборке. При проведении статистического анализа возникает необходимость сравнения эмпирических коэффициентов регрессии b0 и b1 с некоторыми теоретически ожидаемыми значениями этих коэффициентов. Данный анализ осуществляется по схеме статистической проверки гипотез.
Для проверки гипотезы
Н 0 : b1 = в1,
Н 1: b1 ? в1
используется статистика , которая при справедливости гипотезы Н0 имеет распределение Стьюдента с числом степеней свободы
df = n - 2,
где - стандартная ошибка коэффициента регрессии b1, .
Наиболее важной на начальном этапе статистического анализа построенной модели является задача установления наличия линейной зависимости между Y и X. Эта проблема может быть решена проверкой гипотезы
Н 0 : b1 = 0,
Н 1: b1 ? 0.
Гипотеза в такой постановке обычно называется гипотезой о статистической значимости коэффициента регрессии. При этом если принимается нулевая гипотеза, то есть основания считать, что величина Y не зависит от Х - коэффициент b1 статистически незначим (он слишком близок к нулю). При отклонении Н 0 коэффициент считается статистически значимым, что указывает на наличие определённой линейной зависимости между Y и X.
Используемая в этом случае t - статистика имеет вид:
и при нулевой гипотезе имеет распределение Стьюдента с (n -2) степенями свободы.
Если вычисленное значение t - статистики - |tфакт| при заданном уровне значимости б больше критического (табличного) t табл , т.е.
|tфакт| > t табл = t(б ; n-2),
то гипотеза Н 0 : b1 = 0, отвергается в пользу альтернативной при выбранном уровне значимости. Это подтверждает статистическую значимость коэффициента регрессии b1.
Если |tфакт| < tтабл = t(б; n-2), то гипотеза Н0 не отвергается. Критическое значение t табл = t(б;n-2), при заданном уровне значимости б и числе степеней свободы n -2 находится по таблицам 2 Приложения.
По аналогичной схеме на основе t - статистики проверяется гипотеза о статистической значимости коэффициента b0 :
,
где
и - стандартная ошибка коэффициента регрессии b0 .
Построение интервальных оценок параметров регрессии. Проверка согласования полученных результатов с выводами, полученными в предыдущем пункте.
Формулы для расчета доверительных интервалов имеют следующий вид:
,
,
которые с надёжностью (1 - б) накрывают определяемые параметры .
Если в границы доверительных интервалов попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр признается статистически незначимым.
Вопрос 42
Основные показатели межотраслевого баланса и их экономический смысл
Ответ
Предположим, что народное хозяйство представлено совокупностью п отраслей. Будем считать, что каждая отрасль производит только один продукт и каждый продукт производится только одной отраслью, т. е. между отраслями и продукцией существует взаимно однозначное соответствие. В действительности это не так, поэтому в МОБ фигурируют не реальные, а так называемые "чистые", или "технологические", отрасли.
Общий вид межотраслевого баланса представлен в таблице. Она состоит из четырех разделов. Первый раздел образуется перечнем "чистых" отраслей. Каждая отрасль представлена в МОБ дважды: как производящая и как потребляющая. Отрасли как производителю соответствует строка таблицы, отрасли как потребителю соответствует столбец. На пересечении i-й строки и j-го столбца находится величина xij - количество продукции i-й отрасли (в денежном выражении), израсходованной на производственные нужды j-й отрасли. Таким образом, первый раздел характеризует межотраслевые потоки сырья, материалов, энергии и т. д., обусловленные производственной деятельностью отраслей.
1 |
2 |
… |
n |
У |
Х |
||
1 |
x11 |
x12 |
… |
x1n |
y1 |
x1 |
|
2 |
х21 |
x22 |
x2n |
y2 |
x2 |
||
… |
… |
… |
… |
… |
… |
… |
|
n |
xn1 |
xn2 |
… |
xnn |
yn |
xn |
|
V |
v 1 |
v2 |
… |
vn |
|||
Х |
x1 |
x2 |
. . . |
xn |
Второй раздел МОБ состоит из двух столбцов. Столбец Y - это конечная продукция отраслей. Конечная продукция включает в себя непроизводственное потребление (личное и общественное), возмещение выбытия основных фондов и накопление. Столбец Х содержит величины валового производства отраслей.
Третий раздел представлен двумя нижними строками. Строка Х содержит те же самые величины, что и соответствующий столбец второго раздела. Строка V содержит величины условно-чистой продукции отраслей. Условно-чистая продукция включает в себя амортизационные отчисления и вновь созданную стоимость (заработную плату и прибыль).
Четвертый раздел МОБ не имеет непосредственного отношения к анализу межотраслевых связей. Он характеризует перераспределительные отношения в народном хозяйстве и здесь рассматриваться не будет.
Строки показывают распределение продукции. Для любой i-й строки первого раздела справедливо соотношение
т.е. вся произведенная i-й отраслью продукция хi (валовая продукция в денежном выражении) делится на промежуточную и конечную. Промежуточная продукция - это та часть валовой продукции i-й отрасли, которая расходуется другими отраслями в процессе осуществления ими собственных производственных функций.
Столбцы МОБ показывают структуру затрат. Для любого j-го столбца можно записать:
т.е. стоимость всей произведенной j-й отраслью продукции хj состоит из текущих производственных затрат и условно-чистой продукции vj.
Суммарный конечный продукт равен суммарной условно-чистой продукции. Действительно,
Сравнивая правые части этих соотношений, видим, что
Зная суммарный конечный продукт или, что то же, суммарную условно-чистую продукцию, можно определить национальный доход. Он равен разности суммарного конечного продукта и амортизационных отчислений, направляемых на возмещение выбытия основных фондов.
Рассмотренная таблица МОБ всего лишь форма представления статистической информации о взаимосвязи отраслей. Перейдем теперь к построению математической модели. Для этого введем понятие коэффициентов прямых материальных затрат:
(1)
Коэффициент aij показывает, какое количество i-го продукта затрачивается на производство единицы j-го продукта.
Поскольку продукция измеряется в стоимостных единицах, коэффициенты прямых затрат являются величинами безразмерными. Кроме того, из (1) следует, что
(2)
Считая коэффициенты прямых материальных затрат постоянными, запишем систему балансовых соотношений
следующим образом:
Перенося yi в правую часть, а xi в левую и меняя знаки на противоположные, получаем
В матричной форме эта система уравнений выглядит следующим образом:
X - AX = Y или (E - A) X = Y,
где Е - единичная матрица n-го порядка;
- матрица коэффициентов прямых материальных затрат.
Итак, мы получили систему уравнений межотраслевого баланса, которую называют моделью Леонтьева. Используя эту модель, можно ответить на основной вопрос межотраслевого анализа - каким должно быть валовое производство каждой отрасли для того, чтобы экономическая система в целом произвела заданное количество конечной продукции?
Следует отметить одно важное свойство матрицы А - сумма элементов любого ее столбца меньше единицы:
(3)
Для доказательства разделим обе части балансового соотношения
на хj и, выполнив простейшие преобразования, получим
где vj / xj= - доля условно-чистой продукции в единице валового выпуска.
Очевидно, что >0, так как в процессе производства не может не создаваться новой стоимости. Из этого следует справедливость соотношения (3).
Свойства (2) и (3) матрицы А играют ключевую роль в доказательстве ее продуктивности, т. е. в доказательстве того, что при любом неотрицательном Y система
X - AX = Y или (E - A) X = Y,
имеет единственное и неотрицательное решение Х=(Е-А)-1Y. Матрицу (Е-А)-1 обозначают через В и называют матрицей коэффициентов полных материальных затрат, или обратной матрицей Леонтьева. Коэффициент bij этой матрицы показывает, каким должен быть валовой выпуск i-й отрасли для того, чтобы обеспечить производство единицы конечного продукта j-й отрасли. Используя матрицу В, можем записать
Х = ВY
или в развернутом виде
Преимущество такой формы записи балансовой модели состоит в том, что, вычислив матрицу В лишь однажды, мы можем многократно использовать ее для вычисления Х прямым счетом, т.е. умножением В на Y. Это гораздо проще, чем каждый раз решать систему линейных уравнений.
Обратную матрицу В можно вычислить, используя метод обращения с применением формулы разложения ее в матричный ряд:
В=Е+А+А2+...+Аk+... (4)
Число членов ряда, необходимое для получения достаточно точного приближения, зависит от матрицы А, но в любом случае приемлемый результат достигается при kі 30.
Формула (4) имеет строгое математическое доказательство. Но мы ограничимся тем, что попытаемся осмыслить ее, рассматривая Х как результат некоторого гипотетического процесса последовательного уточнения промежуточной продукции, необходимой для создания заданного конечного продукта.
Итак, вектор конечной продукции, которую должна произвести экономическая система, равен Y. Будем считать, что это и есть первоначальное задание отраслям, т. е. Х0 =Y. Для выполнения собственного задания каждая отрасль нуждается в продукции других отраслей. Если бы все отрасли подсчитали потребности и подали заявки в некоторый центр, то оказалось бы, что суммарная потребность составляет X1 =АХ0=АY. Вектор X1 можно рассматривать как промежуточную продукцию, необходимую для производства Х0. Но под обеспечение производства X1 тоже нужна промежуточная продукция: X2 =АХ1 =А2Y. Рассуждая так и далее, мы приходим к выводу, что
Х=Х0+Х1+Х2+...+Хk+... = Y+АY+А2Y+...+AkY+... =
= (е+а+а2+…+аk+...)Y.
Полные затраты можно разложить на прямую и косвенную составляющие. Прямые затраты осуществляются непосредственно при производстве данного продукта, а косвенные А2+А3+…+Аk+... относятся к предшествующим стадиям производства. Они осуществляются не прямо, а через посредство других ингредиентов, входящих в данный продукт. Элементы матрицы А2 представляют собой косвенные затраты первого порядка, элементы матрицы А3 - косвенные затраты второго порядка и т. д.
ПРАКТИЧЕСКИЕ ЗАДАНИЯ
Задача 1
Оптимизация работы систем массового обслуживания
Решение
ПОСТАНОВКА ЗАДАЧИ
На шоссе проверяет скорость пост ГИБДД. На посту в течении дня работает 5 инспекторов. Рабочий день инспектора равен 10 часам. Режим работы - раз в трое суток. Затраты на одного инспектора равны 35000 рублей в месяц (зарплата, налоги, спецобмундирование и др.). Инспектор оформляет протокол примерно за 12 минут. В течение часа скоростной режим нарушают в среднем 35 водителей. Инспекторы останавливают машину, если ожидают оформления не более четырех машин. Средний размер штрафа равен 250 рублям.
Определить параметры работы системы. Найти процент оштрафованных нарушителей. Каково среднее время, которое тратит водитель в ожидании оформления протокола? Сколько, в среднем, машин ожидает оформления? Какова средняя сумма от штрафов за месяц? Каковы месячные затраты на пост ДПС? Определить «прибыль» поста за месяц. (Ознакомительная задача).
Определить оптимальное (с точки зрения прибыли) число инспекторов на посту при сохранении остальных условий задачи.
Имеется возможность арендовать оборудование, позволяющее ускорить процесс оформления протокола. Стоимость аренды оборудования для одного инспектора линейно зависит от его эффективности и изображения на графике. Максимально возможная скорость - 10 протоколов в час. Определить оптимальные затраты на оборудование при неизменных остальных условиях задачи (число инспекторов равно пяти) и при числе инспекторов, полученных в п. 2. Определить параметры работы системы при этих затратах.
Рис. 1.
Провести оптимизацию по двум параметрам: числу инспекторов и затратам на ускоряющее оборудование. Определить параметры работы системы при паре оптимальных параметров. Сравнить с оптимизацией по каждому отдельному параметру.
РЕШЕНИЕ ЗАДАЧИ
Формализуем задачу.
Данную задачу можно отнести к задачам СМО с ограниченной очередью. Максимальная длина очереди равна m=5. Интенсивность потока требований (в качестве которого выступает поток нарушителей) равна водителей в час. Исходно имеется пять каналов обслуживания (пять инспекторов находятся на посту единовременно): n=5. Среднее время обслуживания одним каналом (среднее время, которое тратит инспектор на один автомобиль) равно , тогда авт./мин авт./час.
Найдем параметры работы исходной задачи.
30,4 % нарушителей не будет оштрафовано.
Процент оштрафованных нарушителей равен 69,6 %.
В среднем 24,35 автомобилей будет оштрафовано в час.
Почти все инспекторы (4,8 из 5)заняты.
Найдем среднюю длину очереди:
В среднем ожидает оформления 3 машины.
Время в очереди и системе:
часа = 7,2 мин.
Таким образом, среднее время, которое тратит водитель в ожидании оформления протокола, равно 7,2 мин.
Найдем среднюю сумму штрафов за месяц . Так как авт./час., сумма штрафа в среднем равна 250 руб., в месяце 30 дней по 10 рабочих часов, то:
тыс.руб.
Так как затраты на одного инспектора равны f=35000 руб./мес., а инспекторов по трижды по 5 человек, то месячные затраты на пост ДПС равны:
руб. = 525 тыс. руб.
«Прибыль» поста складывается из суммы штрафов («дохода») минус затраты на инспекторов («расхода»). Таким образом, месячная «прибыль» поста равна:
тыс.руб.
Определить оптимальное число инспекторов можно двумя способами. Во-первых, вручную вычислить все интересующие величины. Во-вторых, все величины можно вычислить в пакете MS Excel.
Составим таблицу 1. В строках 1-5 записаны исходные данные задачи. В столбце А с 10-й по 24-ую строку введены числа инспекторов.
Таблица 1.
В последнем столбце получено значение прибыли поста за месяц. Построим график этой величины в зависимости от числа инспекторов (рис.2). Тип диаграммы - точечная.
Рис. 2.
Из графика и по значениям в таблице 1 видно, что максимальная прибыль достигается при значении n=8 и равна 1635431 руб. в месяц.
Вывод: При прочих постоянных параметрах, выгоднее нанять 24 инспектора (по 8 инспекторов одновременно).
Определим оптимальные капиталовложения на ускорение оформления протоколов при пяти инспекторах. Требуется формализовать задачу.
Как видно из графика (рис.1), стоимость аренды оборудования для одного инспектора (будем ее обозначать R) линейно зависит от скорости оформления протокола (интенсивности ), т.е.
.
Найдем значения параметров R0 и R1. При авт./час R=0. При авт./час R=2000 руб./день. Тогда:
Откуда получаем:
Т.о.
.
При этом
Оказывается удобнее выразить затраты на аренду через , потому что все формулы содержат именно этот параметр. Так как авт./час, то
и следовательно
. (1)
При этом
Месячная «прибыль» поста в этом случае будет вычисляться по формуле:
(2)
При n=5 получаем:
(руб./мес.). (3)
Подставляя (1) в (3) получаем:
(4) (тыс. руб./мес.) при
Определив, при каком достигается максимум функции прибыли , мы определим по формуле (1) оптимальные затраты на аренду оборудования.
Распишем функцию :
Однако, анализировать такие громоздкие формулы неудобно. Анализ проведем в MS Excel. В табл. 2 показаны проведенные расчеты.
В строках 1-4 приведены данные задачи.
В столбце А с 7 по 42 строки протабулирован параметр
Таблица 2.
Построим график прибыли (рис.3):
Рис. 3.
Уточним оптимальное значение параметра , дополнительно разбив промежуток на более мелкие интервалы. График функции на этом промежутке приведен на рис.4.
Рис. 4.
Фрагмент уточненной таблицы приведен в таблице 3.
Таблица 3.
Из графиков и по таблице 3 с высокой степенью точности можем принять в качестве оптимального значения , а оптимальная прибыль равна примерно 1764 тысячи 17 рублей в месяц.
Определим, при каких затратах на аренду мы получим такую прибыль. Из (1):
руб./день.
Это позволит оформлять протоколы с интенсивностью
маш./час.
Вывод: если на посту работает одновременно 5 инспекторов, то наиболее выгодно вложить 1581 рубль в день в аренду техники для каждого инспектора. Тогда прибыль за месяц будет оптимальной и равной примерно 1764 тыс. 17 рублей.
Необходимо провести оптимизацию по двум параметрам n и .
Имеем функцию от двух переменных. Будем использовать формулу
. (1)
Определив, при каких и n достигается максимум функции прибыли , мы определим по формуле (1) оптимальные затраты на аренду оборудования.
Составим таблицы 4 - 5. В таблице 4 - n=3, n=4, n=5,n=6, в таблице 5 - n=7, n=8, n=9, n=10 . Рассмотрим промежуток
Таблица 4.
Таблица 5.
Рис. 5.
Из значений таблицы и графика, оптимальное число инспекторов равно 4. Построим для n=4 уточненный график (рис.6).
Рис. 6.
Из значений таблицы можно определить, что оптимальная интенсивность нагрузки равна . Тогда оптимальные затраты на аренду равны:
руб./день.
Интенсивность работы инспектора равна:
маш./час.
Вывод: имея возможность менять число инспекторов на посту и арендовать ускоряющую технику, нужно организовать работу так, чтобы на посту одновременно находилось 4 инспектора, и для каждого из них арендовать техники на 2000 рублей в день. Это позволит получить прибыль 1779337 рублей в месяц.
Задача 2
Применение методов свертывания критериев в моделях многокритериальной оптимизации
Решение
Решение задачи векторной оптимизации представляет собой сложный процесс, в ходе которого могут применяться различные расчетные схемы и алгоритмы. Перечислим некоторые из наиболее употребительных:
· методы, основанные на свертывании системы показателей эффективности;
· методы, использующие ограничения на критерии;
· методы целевого программирования;
· методы, основанные на отыскании компромиссного решения;
· методы, в основе которых лежат человеко-машинные процедуры принятия решений (интерактивное программирование).
Для ряда из вышеперечисленных методов вводится понятие функции предпочтения (полезности). С помощью функции предпочтения проблема сравнения совокупности чисел-значений, принимаемых показателями эффективности, сводится к сравнению чисел-значений, принимаемых функцией предпочтения. При этом ЛПР считает, что один набор значений локальных критериев предпочтительнее другого, если ему соответствует большее значение функции предпочтения. Кратко охарактеризуем первый из вышеупомянутых методов векторной оптимизации.
В методах, основанных на свертывании системы показателей эффективности, из локальных критериев формируется один. Наиболее распространенным является метод линейной комбинации локальных (частных) критериев.
Пусть рассматриваемая экономическая система характеризуется набором локальных критериев (целевых функций) и известен вектор весовых коэффициентов (вектор приоритетов) критериев , характеризующий важности соответствующих критериев, причем:
.
В этом случае функция предпочтения выбирается в виде:
(1)
и задача векторной оптимизации сводится к задаче скалярной оптимизации. При решении данной задачи учитывается система функций-ограничений для каждой из целевых функций . К недостаткам данного метода можно отнести то, что решение, оптимизирующее функцию предпочтения, может оказаться неудовлетворительным по одному или сразу нескольким частным показателям. Это объясняется тем, что при достижении максимума функции предпочтения недопустимо малые значения некоторых показателей компенсируются большими значениями остальных.
К этой же группе методов относятся методы, в которых используется среднестепенная функция предпочтения вида:
,
где параметр .
Пример. Свертывание системы показателей эффективности.
Рассмотрим следующую задачу векторной оптимизации:
,
где целевые функции и соответствующие им ограничения имеют вид:
Решим задачу в Excel и проанализируем зависимость получаемого решения от значения коэффициентов .
Внесем данные на рабочий лист в соответствии с Рис. 1. Под значения переменных отведем ячейки A16:C16. В ячейки A6:A8 и A10:A12 введем формулы, определяющие ограничения на значения переменных, в ячейки E16 и G16 - формулы для расчета соответствующих целевых функций, в ячейку F20 - формулу для расчета функции .
Чрезвычайно важным является использование в данном методе общей для всех функций системы ограничений.
Рис. 1. Данные для решения примера
Вызовем Поиск решения и зададим область изменения переменных, целевую ячейку и систему ограничений стандартным образом. В результате получим ответ: (для данных значений параметров (Рис. 1)) Полагая значения параметров равными, например, получим другое оптимальное значение исследуемой функции Таким образом, можно сделать вывод о весьма существенной чувствительности значений данной оптимизируемой функции к вариациям весовых коэффициентов.
ЛИТЕРАТУРА
Основная литература
1. Кузнецов, А. В. Экономико-математические методы и модели / А. В. Кузнецов, Н. И Холод, Я.Н. Жихар. - Минск: БГЭУ, 2009. - 413 с.
2. Таха, Хэмди. Введение в исследование операций / Х. А. Таха, - М.: Вильямс, 2001.-- 912 с.
3. Минюк, М.А. Математические методы и модели в экономике / М. А. Минюк, Е. А. Ровба, Кузьмич К.К. - Минск: Тетра-Системс, 2002. - 432 с
4. Замков, О.О. Математические методы в экономике / О. О. Замков, А. В Толстопятенко, Ю.Н. Черемных. - М.: ДИС, 1997. - 368 с.
Дополнительные информационные источники
5. Горчаков, А.А. Компьютерные экономико-математические модели / А.А. Горчаков, И.В. Орлова - М.: Компьютер, 1995. - 231 с.
6. Доугерти, К. Эконометрика / К. Доугерти - М.: ИНФРА, 2007
7. Колемаев, В.А. Математическая экономика / В. А. Колемаев - М.: ЮНИТИ-ДАНА, 2005. - 399 с.
8. Магнус Я.Р., Катышев П.К., Персецкий А.А. Эконометрика (Начальный курс). - М.: Дело, 1997.
9. Практикум по эконометрике: Учебное пособие / И.И. Елисеева [и др.]; под ред. И.И. Елисеевой - М.: Финансы и статистика, 2006. - 192 с.
Размещено на Allbest.ru
Подобные документы
Сущность экономико-математической модели, ее идентификация и определение достаточной структуры для моделирования. Построение уравнения регрессии. Синтез и построение модели с учетом ее особенностей и математической спецификации. Верификация модели.
контрольная работа [73,9 K], добавлен 23.01.2009Понятие и типы моделей. Этапы построения математической модели. Основы математического моделирования взаимосвязи экономических переменных. Определение параметров линейного однофакторного уравнения регрессии. Оптимизационные методы математики в экономике.
реферат [431,4 K], добавлен 11.02.2011Цель математического моделирования экономических систем: использование методов математики для эффективного решения задач в сфере экономики. Разработка или выбор программного обеспечения. Расчет экономико-математической модели межотраслевого баланса.
курсовая работа [1,3 M], добавлен 02.10.2009Критерий оптимальности и матрица ЭММ распределения и использования удобрений. Расчет технико-экономических коэффициентов и констант. Основные переменные в экономико-математической задаче. Математическая запись системы ограничений и системы переменных.
контрольная работа [402,9 K], добавлен 18.11.2012Ознакомление с основами модели простой регрессии. Рассмотрение основных элементов эконометрической модели. Характеристика оценок коэффициентов уравнения регрессии. Построение доверительных интервалов. Автокорреляция и гетероскедастичность остатков.
лекция [347,3 K], добавлен 23.12.2014Построение экономико-математической модели равновесия, ее экономический анализ. ЭММ распределения кредитных средств между филиалами торговой фирмы, конфликтной ситуации игры с природой, межотраслевого баланса трехотраслевой экономической системы.
контрольная работа [6,1 M], добавлен 16.02.2011Построение уравнения регрессии, учитывающего взаимодействия факторов, проверка полученной модели на адекватность. Построение математической модели и нахождение численных значений параметров этой модели. Вычисление коэффициентов линейной модели.
курсовая работа [1005,0 K], добавлен 07.08.2013Понятие регрессии. Оценка параметров модели. Показатели качества регрессии. Проверка статистической значимости в парной линейной регрессии. Реализация регрессионного анализа в программе MS Excel. Условия Гаусса-Маркова. Свойства коэффициента детерминации.
курсовая работа [233,1 K], добавлен 21.03.2015Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.
контрольная работа [1,6 M], добавлен 14.05.2008Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.
задача [142,0 K], добавлен 20.03.2010