Решение практических экономических задач с использованием механизма теории игр

Теория игр как раздел математики для изучения конфликтных ситуаций. Определение научно обоснованных уровней снижения розничных цен и оптимального уровня товарных запасов. Анализ конфликтной ситуации по ее математической модели. Стратегии решений.

Рубрика Экономико-математическое моделирование
Вид курсовая работа
Язык русский
Дата добавления 26.10.2014
Размер файла 64,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

Введение

1. Основные положения теории игр

1.1 Предмет и задачи теории игр

1.2 Применение теории игр. Типы игр

1.3 Стратегии теории игр

1.4 Игры с природой

2. Использование теории игр на практике в экономических исследованиях

2.1 Использование теории игр в практике управления

2.2 Применение теории игр для принятия стратегических управленческих решений

2.3 Проблемы практического применения в управлении

Заключение

Список использованной литературы

Введение

Целью данной работы является решение практических экономических задач с использованием механизма теории игр, а также создание необходимых рекомендаций к данным задачам. Данные задачи являются примером практического применения теории игр в экономике. На практике часто появляется необходимость согласования действий фирм, объединений, министерств и других участников проектов в случаях, когда их интересы не совпадают. В таких ситуациях теория игр позволяет найти лучшее решение для поведения участников, обязанных согласовывать действия при столкновении интересов.

Теория игр все шире проникает в практику экономических решений и исследований. Ее можно рассматривать как инструмент, помогающий повысить эффективность плановых и управленческих решений. Это имеет большое значение при решении задач в промышленности, сельском хозяйстве, на транспорте, в торговле, особенно при заключении договоров с иностранными партнерами на любых уровнях. Так, можно определить научно обоснованные уровни снижения розничных цен и оптимальный уровень товарных запасов, решать задачи экскурсионного обслуживания и выбора новых линий городского транспорта, задачу планирования порядка организации эксплуатации месторождений полезных ископаемых в стране и др. Классической стала задача выбора участков земли под сельскохозяйственные культуры. Метод теории игр можно применять при выборочных обследованиях конечных совокупностей, при проверке статистических гипотез.

Теория игр - математическая дисциплина, в которой рассматривается моделирование действий игроков, имеющее целью выбор оптимальных стратегий поведения в условиях конфликта.

По своему идейному существу теория игр является непосредственным продолжением такого раздела математики как исследование операций. В качестве инструментального обеспечения теория игр в основном базируется на аппарате математического программирования, весьма часто такой основой является линейное программирование.

Исходные данные в задачах теории игр могут быть в какой-то мере неопределёнными, т.е. иметь случайный характер - в таких случаях требуется применять аппарат теории вероятностей и математической статистики

Разновидности игр объединяются тем, что в каждой из них имеются следующие компоненты, характерные для классической теории игр:

· Конфликт интересов.

· Правила, определяющие регламент игры.

· Процедура определения выигрыша, имеющего численную

· Интерпретацию.

· Необходимость использования стратегии для получения наибольшего

· Выигрыша.

В данной курсовой работе будет рассматриваться игра как конфликт игроков, оптимальное разрешение которого для его участников опирается на математический инструментарий выбора оптимальных стратегий поведения.

1. Основные положения теории игр

1.1 Предмет и задачи теории игр

В процессе целенаправленной человеческой деятельности возникают ситуации, в которых интересы отдельных лиц (участников, групп, сторон) либо прямо противоположны (антагонистичны), либо, не будучи непримиримыми, все же не совпадают. Простейшими и наиболее наглядными примерами таких ситуаций являются спортивные игры, арбитражные споры, военные учения (маневры), борьба между блоками избирателей за своих кандидатов, в международных отношениях - отстаивание интересов своего государства и т.п. Здесь каждый из участников сознательно стремится добиться наилучшего результата за счет другого участника.

Подобного рода ситуации встречаются и в различных сферах производственной деятельности. Все ситуации, когда эффективность действия одного из участников зависит от действий других, можно разбить на два типа:

· интересы участников совпадают, и они могут договориться о совместных действиях;

· интересы участников не совпадают. В этих случаях может оказаться невыгодным сообщать другим участникам свои решения, так как кто-нибудь из них сможет воспользоваться знанием чужих решений и получит больший выигрыш за счет других участников. Ситуации такого типа называются конфликтными.

Для указанных ситуаций характерно, что эффективность решений, принимаемых в ходе конфликта каждой из сторон, существенно зависит от действий другой стороны. При этом ни одна из сторон не может полностью контролировать положение, так как и той и другой стороне решения приходится принимать в условиях неопределенности. Так, при определении объема выпуска продукции на одном предприятии нельзя не учитывать размеров выпуска аналогичной продукции на других предприятиях. В реальных условиях нередко возникают ситуации, в которых антагонизм отсутствует, но существуют противоположные тенденции.

Раздел математики, изучающий конфликтные ситуации на основе их математических моделей, называется теорией игр.

Таким образом, теория игр - это математическая теория конфликтных ситуаций, разрабатывающая рекомендации по наиболее рациональному образу действий каждого из участников в ходе конфликтной ситуации, т.е. таких действий, которые обеспечивали бы ему наилучший результат. Игровую схему можно придать многим ситуациям в экономике. Здесь выигрышем могут быть эффективность использования дефицитных ресурсов, производственных фондов, величина прибыли, себестоимость и т.д.

Необходимо подчеркнуть, что методы и рекомендации теории игр разрабатываются применительно к таким специфическим конфликтным ситуациям, которые обладают свойством многократной повторяемости. Если конфликтная ситуация реализуется однократно или ограниченное число раз, то рекомендации теории игр теряют смысл. Чтобы проанализировать конфликтную ситуацию по ее математической модели, ситуацию необходимо упростить, учтя лишь важнейшие факторы, существенно влияющие на ход конфликта. математика игра конфликтный

Игрой называется упрощенная математическая модель конфликтной ситуации, отличающаяся от реального конфликта тем, что ведется по определенным правилам.

Игра - это совокупность правил, определяющих возможные действия (чистые стратегии) участников игры. Суть игры в том, что каждый из участников принимает такие решения в развивающейся конфликтной ситуации, которые, как он полагает, могут обеспечить ему наилучший исход. Исход игры - это значение некоторой функции, называемой функцией выигрыша (платежной функцией), которая может задаваться либо аналитическим выражением, либо таблично (матрицей). Величина выигрыша зависит от стратегии, применяемой игроком. Человечество издавна пользуется такими формализованными моделями конфликтных ситуаций, которые являются играми в буквальном смысле слова. Примерами могут служить шашки, шахматы, карточные игры и т.д. Все эти игры носят характер соревнования, протекающего по известным правилам и заканчивающего "победой" (выигрышем) того или иного игрока. Такие формально регламентированные, искусственно организованные игры представляют собой наиболее подходящий материал для иллюстрации и усвоения основных понятий теории игр. Терминология, заимствованная из практики таких игр, применяется и при анализе других конфликтных ситуаций: стороны, участвующие в них, условно именуются "игроками", а результат столкновения - "выигрышем" одной из сторон.

Под "правилами игры" подразумевается система условий, регламентирующая возможные варианты действий обеих сторон.

Стратегией игрока называется совокупность правил, однозначно определяющих последовательность действий игрока в каждой конкретной ситуации, складывающейся в процессе игры.

Оптимальной называется стратегия, которая при многократном повторении игры обеспечивает данному игроку максимально возможный средний выигрыш. Основное предположение, исходя, из которого находят оптимальные стратегии, состоит в том, что противник, по меньшей мере, так же разумен, как и сам игрок, и делает все для того, чтобы добиться своей цели. Количество стратегий у каждого игрока может быть конечным или бесконечным, в зависимости от этого игры подразделяются на конечные и бесконечные. Всякая игра состоит из отдельных партий.

Партией называется каждый вариант реализации игры определенным образом. В свою очередь, в партии игроки совершают конкретные ходы.

Ходом называется выбор и реализация игроком одного из допустимых вариантов поведения.

Ходы бывают личные и случайные. При личном ходе игрок самостоятельно и осознанно выбирает и реализует ту или иную чистую стратегию. Набор возможных вариантов при каждом личном ходе регламентирован правилами игры и зависит от всей совокупности предшествующих ходов обеих сторон. Например, в шахматах каждый ход является личным. При случайном ходе выбор чистой стратегии производится с использованием какого-либо механизма случайного выбора, например с применением таблицы случайных чисел. Примером могут служить бросание монеты или игральной кости. Конфликтные ситуации, встречающиеся в практике, порождают различные виды игр. Классифицировать игры можно по разным признакам. Различают, например, игры по количеству игроков. В игре может участвовать любое конечное число игроков.

Если в игре игроки объединяются в две группы, преследующие противоположные цели, то такая игра называется игрой двух лиц (парная игра). В зависимости от количества стратегий в игре они делятся на конечные или бесконечные. В зависимости от взаимоотношений участников различают игры бескоалиционные (участники не имеют права заключать соглашения), или некооперативные, и коалиционные, или кооперативные. По характеру выигрышей игры делятся на игры с нулевой суммой и ненулевой суммой.

Игрой с нулевой суммой называется игра, в которой общий капитал игроков не меняется, а лишь перераспределяется в ходе игры, в связи, с чем сумма выигрышей равна нулю (проигрыш принимается как отрицательный выигрыш).

В играх с ненулевой суммой сумма выигрышей отлична от нуля. Например, при проведении лотереи часть взноса участников идет организатору лотереи.

По виду функции выигрыша игры делятся на матричные, биматричные, непрерывные, выпуклые, сепарабельные и др.

Матричная игра - конечная игра двух игроков с нулевой суммой. В общем случае ее платежная матрица является прямоугольной. Номер строки матрицы соответствует номеру стратегии, применяемой игроком І. Номер столбца соответствует номеру стратегии игрока ІІ. Выигрыш игрока І является элементом матрицы. Выигрыш игрока ІІ равен проигрышу игрока І. Матричные игры всегда имеют решения в смешанных стратегиях. Они могут быть решены методами линейного программирования.

Биматричная игра - конечная игра двух игроков с ненулевой суммой. Выигрыши каждого игрока задаются своей матрицей, в которой строка соответствует стратегии игрока І, а столбец - стратегии игрока ІІ. Однако элемент первой матрицы показывает выигрыш игрока І, а элемент второй матрицы - выигрыш игрока ІІ. Для биматричных игр так же, как и для матричных, разработана теория оптимального поведения игроков.

Если функция выигрышей каждого игрока в зависимости от стратегий является непрерывной, игра считается непрерывной. Если функция выигрышей выпуклая, то и игра - выпуклая.

Если функция выигрышей может быть разделена на сумму произведений функций одного аргумента, то игра относится к сепарабельной.

Игры, в которых участники стремятся добиться для себя наилучшего результата, сознательно выбирая допустимые правилами игры способы действий, называются стратегическими.

Однако в экономической практике нередко приходится формализовать (моделировать) ситуации, придавая им игровую схему, в которых один из участников безразличен к результату игры. Такие игры называют играми с природой, понимая под термином "природа" всю совокупность внешних обстоятельств, в которых сознательному игроку (его называют иногда статистиком, а соответствующую игру - статистической) приходится принимать решение.

1.2 Применение теории игр. Типы игр

Теория игр, как один из подходов в прикладной математике, применяется для изучения поведения человека и животных в различных ситуациях. Первоначально теория игр начала развиваться в рамках экономической науки, позволив понять и объяснить поведение экономических агентов в различных ситуациях. Позднее область применения теории игр была расширена на другие социальные науки; в настоящее время теория игр используется для объяснения поведения людей в политологии, социологии и психологии.

Теоретико-игровой анализ был впервые использован для описания поведения животных Рональдом Фишером в 30-х годах XX века (хотя даже Чарльз Дарвин использовал идеи теории игр без формального обоснования). В работе Рональда Фишера не появляется термин "теория игр". Тем не менее, работа по существу выполнена в русле теоретико-игрового анализа. Разработки, сделанные в экономике, были применены Джоном Майнардом Смитом в книге "Эволюция и теория игр". Теория игр используется не только для предсказания и объяснения поведения; были предприняты попытки использовать теорию игр для разработки теорий этичного или эталонного поведения. Экономисты и философы применяли теорию игр для лучшего понимания хорошего (достойного) поведения. Вообще говоря, первые теоретико-игровые аргументы, объясняющие правильное поведение, высказывались ещё Платоном.

Первоначально теория игр использовалась для описания и моделирования поведения человеческих популяций. Некоторые исследователи считают, что с помощью определения равновесия в соответствующих играх они могут предсказать поведение человеческих популяций в ситуации реальной конфронтации. Такой подход к теории игр в последнее время подвергается критике по нескольким причинам. Во-первых, предположения, используемые при моделировании, зачастую нарушаются в реальной жизни. Исследователи могут предполагать, что игроки выбирают поведения, максимизирующее их суммарную выгоду (модель экономического человека), однако на практике человеческое поведение часто не соответствует этой предпосылке. Существует множество объяснений этого феномена - нерациональность, моделирование обсуждения, и даже различные мотивы игроков (включая альтруизм). Авторы теоретико-игровых моделей возражают на это, говоря, что их предположения аналогичны подобным предположениям в физике.

Поэтому даже если их предположения не всегда выполняются, теория игр может использовать как разумная идеальная модель, по аналогии с такими же моделями в физике. Однако, на теорию игр обрушился новый вал критики, когда в результате экспериментов было выявлено, что люди не следуют равновесным стратегиям на практике. Например, в играх "Сороконожка", "Диктатор" участники часто не используют профиль стратегий, составляющий равновесие по Нэшу. Продолжаются споры о значении подобных экспериментов. Согласно другой точке зрения, равновесие по Нэшу не является предсказанием ожидаемого поведения, оно лишь объясняет, почему популяции, уже находящиеся в равновесии по Нэшу, остаются в этом состоянии. Однако вопрос о том, как эти популяции приходят к равновесию Нэша, остается открытым.

Некоторые исследователи в поисках ответа на этот вопрос переключились на изучение эволюционной теории игр. Модели эволюционной теории игр предполагают ограниченную рациональность или нерациональность игроков. Несмотря на название, эволюционная теория игр занимается не только и не столько вопросами естественного отбора биологических видов. Этот раздел теории игр изучает модели биологической и культурной эволюции, а также модели процесса обучения.

С другой стороны, многие исследователи рассматривают теорию игр не как инструмент предсказания поведения, но как инструмент анализа ситуаций с целью выявления наилучшего поведения для рационального игрока. Поскольку равновесие Нэша включает стратегии, являющиеся наилучшим откликом на поведение другого игрока, использование концепции равновесия Нэша для выбора поведения выглядит вполне обоснованным. Однако, и такое использование теоретико-игровых моделей подверглось критике. Во-первых, в некоторых случаях игроку выгодно выбрать стратегию, не входящую в равновесие, если он ожидает, что другие игроки также не будут следовать равновесным стратегиям. Во-вторых, знаменитая игра "Дилемма заключенного" позволяет привести ещё один контрпример. В "Дилемме заключенного" следование личным интересам приводит к тому, что оба игрока оказываются в худшей ситуации в сравнении с той, в которой они пожертвовали бы личными интересами.

Типы игр:

· Кооперативные и некооперативные. Игра называется кооперативной, или коалиционной, если игроки могут объединяться в группы, взяв на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни.

Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. В общем случае это неверно. Существуют игры, где коммуникация разрешена, но игроки преследуют личные цели, и наоборот.

Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом. Попытки объединить два подхода дали немалые результаты. Так называемая "программа Нэша" уже нашла решения некоторых кооперативных игр как ситуации равновесия некооперативных игр.

Гибридные игры включают в себя элементы кооперативных и некооперативных игр. Например, игроки могут образовывать группы, но игра будет вестись в некооперативном стиле. Это значит, что каждый игрок будет преследовать интересы своей группы, вместе с тем стараясь достичь личной выгоды;

· Симметричные и несимметричные. Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут равны, то есть иметь одинаковые платежи. Иначе говоря, если игроки могут поменяться местами и при этом их выигрыши за одни и те же ходы не изменятся. Многие изучаемые игры для двух игроков - симметричные. В частности, таковыми являются: "Дилемма заключённого" - фундаментальная проблема в теории игр, согласно которой игроки не всегда будут сотрудничать друг с другом, даже если это в их интересах. Предполагается, что игрок ("заключённый") максимизирует свой собственный выигрыш, не заботясь о выгоде других; "Охота на оленя" кооперативная симметричная игра из теории игр, описывающая конфликт между личными интересами и общественными интересами. Игра была впервые описана Жан-Жаком Руссо в 1755 году;

"Ястребы и голуби"- одна из простейших моделей теории игр, описывающая конкурентные отношения в некоторой популяции животных и выработку эволюционно стабильной стратегии. В качестве несимметричных игр можно привести "Ультиматум" или "Диктатор".

В таблице 1.1 "Симметричность игр" игра на первый взгляд может показаться симметричной из-за похожих стратегий, но это не так - ведь выигрыш второго игрока при профилях стратегий (А, А) и (Б, Б) будет больше, чем у первого:

Таблица 1.1. "Симметричность игр"

А

Б

А

2,1

0,0

Б

0,0

2,1

· Параллельные и последовательные

В параллельных играх игроки ходят одновременно, или, по крайней мере, они не осведомлены о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических, играх участники могут делать ходы в заранее установленном либо случайном порядке, но при этом они получают некоторую информацию о предшествующих действиях других. Эта информация может быть даже не совсем полной, например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других;

· С полной или неполной информацией

Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация не доступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр - с неполной информацией.

Часто понятие полной информации путают с похожим - совершенной информации. Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно;

· Игры с бесконечным числом шагов

Игры в реальном мире или изучаемые в экономике игры, как правило, делятся конечное число ходов. Математика не так ограничена, и в частности, в теории множеств рассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов.

Задача, которая обычно ставится в этом случае, состоит не в поиске оптимального решения, а в поиске хотя бы выигрышной стратегии. Используя аксиому выбора, можно доказать, что иногда даже для игр с полной информацией и двумя исходами - "выиграл" или "проиграл" - ни один из игроков не имеет такой стратегии. Существование выигрышных стратегий для некоторых особенным образом сконструированных игр имеет важную роль в дескриптивной теории множеств;

· Дискретные и непрерывные игры

Большинство изучаемых игр дискретны: в них конечное число игроков, ходов, событий, исходов и т. п. Однако эти составляющие могут быть расширены на множество вещественных чисел. Игры, включающие такие элементы, часто называются дифференциальными. Они связаны с какой-то вещественной шкалой (обычно - шкалой времени), хотя происходящие в них события могут быть дискретными по природе. Дифференциальные игры также рассматриваются в теории оптимизации, находят своё применение в технике и технологиях, физике;

· Метаигры

Это игры, результатом которых является набор правил для другой игры (называемой целевой или игрой-объектом). Цель метаигр - увеличить полезность выдаваемого набора правил. Теория метаигр связана с теорией оптимальных механизмов (англ. Mechanism design);

1.3 Стратегии теории игр

Стратегия игрока - совокупность правил, определяющих выбор действий при каждом личном ходе этого игрока в зависимости от ситуации, сложившейся в процессе игры. В зависимости от числа возможных стратегий игры делятся на конечные и бесконечные.

Бесконечная игра - игра, в которой хотя бы у одного из игроков имеется бесконечное число стратегий.

Конечная игра - игра, в которой у каждого игрока имеется только конечное число стратегий. Число последовательных ходов у любого из игроков определяет под - разделение игр на одноходовые и многоходовые, или позиционные.

Различают два основных вида стратегий теории игр:

· Чистые стратегии. Первый игрок пытается максимизировать свой выигрыш, а второй - минимизировать проигрыш. Решение игры заключается в определении лучшей стратегии для каждого игрока.

- нижняя цена игры

- верхняя цена игры

Если называется седловой точкой, то игра решается в чистых стратегиях.

· Смешанные стратегии. Если в матричной игре отсутствует седловая точка в чистых стратегиях, то находят верхнюю и нижнюю цены игры. Они показывают, что игрок I не получит выигрыша, превосходящего верхнюю цену игры, и что игроку I гарантирован выигрыш, не меньший нижней цены игры.

Смешанная стратегия игрока - это полный набор его чистых стратегий при многократном повторении игры в одних и тех же условиях с заданными вероятностями. Подведем итоги сказанного и перечислим условия применения смешанных стратегий:

* игра без седловой точки;

* игроки используют случайную смесь чистых стратегий с заданными вероятностями;

* игра многократно повторяется в сходных условиях;

* при каждом из ходов ни один игрок не информирован о выборе стратегии другим игроком;

* допускается осреднение результатов игр.

Применяются следующие обозначения смешанных стратегий.

Для игрока I смешанная стратегия, заключающаяся в применении чистых стратегий А 1, А 2, ..., Аn с соответствующими вероятностями р 1, р 2, ..., рn.

S1=

Для игрока II

S2=

qj - вероятность применения чистой стратегии Bj.

Чистые стратегии игрока являются единственно возможными несовместными событиями. В матричной игре, зная матрицу А (она относится и к игроку I, и к игроку II), можно определить при заданных векторах и средний выигрыш (математическое ожидание эффекта) игрока 1:

где и - векторы;

pi и qi - компоненты векторов.

Путем применения своих смешанных стратегий игрок I стремится максимально увеличить свой средний выигрыш, а игрок II - довести этот эффект до минимально возможного значения.

Цена игры - средний выигрыш игрока I при использовании обоими игроками смешанных стратегий.

Следует отметить, что при выборе оптимальных стратегий игроку I всегда будет гарантирован средний выигрыш, не меньший чем цена игры, при любой фиксированной стратегии игрока II (и, наоборот, для игрока II). Активными стратегиями игроков I и II называют стратегии, входящие в состав оптимальных смешанных стратегий соответствующих игроков с вероятностями, отличными от нуля. Значит, в состав оптимальных смешанных стратегий игроков могут входить не все априори заданные их стратегии.

Решить игру - означает найти цену игры и оптимальные стратегии. Рассмотрение методов нахождения оптимальных смешанных стратегий для матричных игр начнем с простейшей игры, описываемой матрицей 22. Игры с седловой точкой специально рассматриваться не будут. Если получена седловая точка, то это означает, что имеются невыгодные стратегии, от которых следует отказываться. При отсутствии седловой точки можно получить две оптимальные смешанные стратегии.

1.4 Игры с природой

Модели в виде стратегических игр, в экономической практике могут не в полной мере оказаться адекватными действительности, поскольку реализация модели предполагает многократность повторения действий (решений), предпринимаемых в похожих условиях. В реальности количество принимаемых экономических решений в неизменных условиях жестко ограничено. Нередко экономическая ситуация является уникальной, и решение в условиях неопределенности должно приниматься однократно. Это порождает необходимость развития методов моделирования принятия решений в условиях неопределенности и риска.

Традиционно следующим этапом такого развития являются так называемые игры с природой. Формально изучение "игр с природой", так же как и стратегических, должно начинаться с построения платежной матрицы, что является, по существу, наиболее трудоемким этапом подготовки принятия решения. Ошибки в платежной матрице не могут быть компенсированы никакими вычислительными методами и приведут к неверному итоговому результату.

Отличительная особенность игры с природой состоит в том, что в ней сознательно действует только один из участников, в большинстве случаев называемый игроком І. Игрок ІІ (природа) сознательно против игрока І не действует, а выступает как не имеющий конкретной цели и случайным образом выбирающий очередные "ходы" партнер по игре. Поэтому термин "природа" характеризует некую объективную действительность, которую не следует понимать буквально, хотя вполне могут встретиться ситуации, в которых "игроком" ІІ действительно может быть природа (например, обстоятельства, связанные с погодными условиями или с природными стихийными силами).

Рассмотрим такой пример экономической задачи, где игроком I выступает предприятие, а игроком II природа:

Швейное предприятие, выпускающее детские платья и костюмы, реализует свою продукцию через фирменный магазин. Сбыт продукции зависит от состояния погоды. По данным прошлых наблюдений предприятие в течении апреля - мая в условиях теплой погоды может реализовать 600 костюмов и 1975 платьев, а при прохладной погоде 1000 костюмов и 625 платьев. Известно, что затраты на единицу продукции в течение указанных месяцев составили для костюмов 270 руб., для платьев 80 руб., а цена реализации равна соответственно 480 руб. и 160 руб. (цифры условные).

Задача заключается в максимизации средней величины прибыли от реализации выпущенной продукции с учетом неопределенности погоды в рассматриваемые месяцы. Таким образом, служба маркетинга предприятия должна в этих условиях определить оптимальную стратегию предприятия, обеспечивающую при любой погоде определенный средний доход.

Предприятие располагает в этих условиях двумя чистыми стратегиями: стратегия А - в расчете на теплую погоду и стратегия Б - в расчете на холодную погоду. Природу будем рассматривать как второго игрока также с двумя стратегиями: прохладная погода (стратегия В) и теплая погода (стратегия Г).

Выводы к первому разделу

Экономисты с течением времени очень часто сталкиваются с такой проблемой, как неэффективность применения теоретических основ экономики без их проверки практической деятельностью. Но данный факт вовсе не означает, что экономическая теория не имеет смысла вообще. Для того, чтобы теоретические аспекты или институты экономической науки были эффективны на практике, необходимо максимально представлять ситуации, в которых они могут быть применены.

Главный аргумент в пользу того, чтобы строить модели институтов с помощью теории игр, заключается в интересе теории игр к ситуациям взаимозависимости действий индивидов, проблемам координации и согласования действий. Ведь именно институты призваны решить эти проблемы.

Необходимость в социальных институтах возникает в тех ситуациях, когда имеется несколько равновесий (проблема координации), неэффективность равновесия (дилемма заключенных) или несправедливость равновесия (ситуация неравенства) в тех типах взаимодействий людей, которые ведут к их возникновению.

2. Использование теории игр на практике в экономических исследованиях

2.1 Использование теории игр в практике управления

Значение теории игр как одного из подходов в управленческой аналитике, на мой взгляд, пока недооценено. Общеизвестно, что теория игр дает прекрасные результаты в прикладной математике, применяется для изучения поведения человека и животных в различных ситуациях. Первоначально теория игр развивалась в рамках экономической науки, изучая поведение экономических агентов в различных ситуациях. Позднее область применения теории игр была расширена на другие социальные науки; в настоящее время теория игр используется для объяснения поведения людей в политологии, социологии и психологии. Теоретикоигровой анализ может быть использован также в управленческом учете, при анализе коммуникативных практик, поведения экономических агентов в системах внутренних и внешних коммуникаций крупных компаний, игроков рынков.

Первые работы по теории игр отличались упрощенностью предположений и высокой степенью формальной абстракции, что делало их малопригодными для практического использования в менеджменте. За последние 25 лет положение изменилось. Бурный прогресс в промышленности и третьем секторе экономики доказал плодотворность методов теории игр в прикладной сфере, в частности, в менеджменте.

Отметим, что теория игр - это математический метод изучения оптимальных решений в рамках построения стратегий и тактик в т.н. "игровых ситуациях". Под игрой мы понимаем конкурентный процесс, в котором участвуют две и более стороны, ведущих борьбу за реализацию своих интересов. Каждая из сторон (игроков) имеет собственную, ясно определенную цель (т.н. "победа в игре") и использует некоторый набор стабильных, вариативных и нестабильных (включая стохастические) тактик и стратегий, которые может вести к победе или проигрышу в игре - в зависимости от поведения других игроков. Теория игр способна, на наш взгляд, помочь в выстраивании эффективных стратегий и тактик в менеджменте, управленческом учете, прикладном маркетинге, позволяя выбрать лучшие стратегии с учетом представлений о других игроках-участниках, их ресурсных возможностях и потенциале и их возможных поступках с учетом существующих рисков.

В данном аспекте теория игр может быть использована в принятии решений управленцами. При этом необходимо отличать теорию игр от теории принятия решений, т.к. теория игр - это раздел исследования операций. Очень важное значение теория игр имеет для изучения поведения (и его моделирования) искусственных интеллектуальных агентов и в изучении кибернетических систем, процессов и особенностей коммуницирования.

Эта область математики нашла некоторое (хотя и довольно слабое пока) отражение и в коммуникативной практике и корпоративной культуре. Дж. Нэш, в 1949 г. написавший диссертацию по теории игр, а через 45 лет получивший Нобелевскую премию по экономике, в Принстонском университете посещал лекции Джона фон Неймана - одного из "отцов" теории игр. В своих трудах Дж. Нэш разработал принципы "управленческой динамики".

Фактор устойчивого равновесия очень важен в рыночной экономике. Игрокам выгодно сохранять это равновесие, т.к. любое изменение ухудшит их положение. Эти работы Дж. Нэша сделали серьезный вклад в развитие теории игр, были пересмотрены математические инструменты экономического моделирования. Дж. Нэш показывает, что классический подход к конкуренции А. Смита, когда каждый преследует исключительно эгоистические интересы (действует сам за себя), не оптимален. Более подходящие стратегии, когда каждый старается сделать лучше для себя, делая лучше для других.

Существует гипотеза, что с помощью определения равновесия в соответствующих играх можно предсказать поведение человеческих популяций в ситуации реальной конфронтации. Такой подход к теории игр в последнее время подвергается критике: предположения, используемые при моделировании, нередко нарушаются в реальной экономической ситуации.

Предполагается, что игроки выбирают поведение, максимизирующее их суммарную выгоду (модель поведения "экономического человека"), однако на практике реальное поведение часто не соответствует этой предпосылке по причинам иррациональности, элементов "двойного послания" в системе управления, моделирования обсуждения, иных иррациональных мотивов игроков (включая альтруизм). Однако теория игр может использоваться как разумная идеальная модель по аналогии с такими же моделями в физике.

2.2 Применение теории игр для принятия стратегических управленческих решений

В качестве примеров здесь можно назвать решения по поводу проведения принципиальной ценовой политики, вступления на новые рынки, кооперации и создания совместных предприятий, определения лидеров и исполнителей в области инноваций, вертикальной интеграции и т.д. Положения данной теории в принципе можно использовать для всех видов решений, если на их принятие влияют другие действующие лица. Этими лицами, или игроками, необязательно должны быть рыночные конкуренты; в их роли могут выступать субпоставщики, ведущие клиенты, сотрудники организаций, а также коллеги по работе.

Инструментарий теории игр особенно целесообразно применять, когда между участниками процесса существуют важные зависимости в области платежей.

В качестве примера можно привести решения о вхождении в рыночную нишу: при определенных обстоятельствах у крупных конкурентов нет оснований реагировать на подобное решение небольшой фирмы.

Бывают ситуации, когда одна стратегия, безусловно, доминирует над всеми другими независимо от того, какие действия предпримет конкурент. Если взять, например, рынок лекарственных препаратов, то для фирмы часто бывает важно первой заявить новый товар на рынке: прибыль "первопроходца" оказывается столь значительной, что всем другим "игрокам" остается только быстрее активизировать инновационную деятельность.

Тривиальным с позиций теории игр примером "доминирующей стратегии" является решение относительно проникновения на новый рынок. Возьмем предприятие, которое выступает в качестве монополиста на каком-либо рынке (например, IВМ на рынке персональных компьютеров в начале 80-х годов). Другое предприятие, действующее, к примеру, на рынке периферийного оборудования для IВМ, обдумывает вопрос о проникновении на рынок персональных компьютеров с переналадкой своего производства. Компания-аутсайдер может принять решение о вступлении или невступлении на рынок. Компания-монополист может отреагировать на появление нового конкурента агрессивно или дружественно. Оба предприятия вступают в двухэтапную игру, в которой первый ход делает компания-аутсайдер. Компания-аутсайдер к тому же знает, что для монополиста не рационально начинать действия по ее вытеснению, и поэтому она принимает решение о вступлении на рынок. Грозившие потери в размере компания-аутсайдер не понесет.

Подобное рациональное равновесие характерно для "частично усовершенствованной" игры, которая заведомо исключает абсурдные ходы. Такие равновесные состояния на практике в принципе довольно просто найти. Равновесные конфигурации могут быть выявлены с помощью специального алгоритма из области исследования операций для любой конечной игры. Игрок, принимающий решение, поступает следующим образом: вначале делается выбор "лучшего" хода на последнем этапе игры, затем выбирается "лучший" ход на предшествующем этапе с учетом выбора на последнем этапе и так далее, до тех пор пока не будет достигнут начальный узел дерева игры.

Какую пользу могут извлечь компании из анализа на базе теории игр? Известен, например, случай столкновения интересов компаний IВМ и Telex. В связи с объявлением о подготовительных планах последней к вступлению на рынок состоялось "кризисное" совещание руководства IВМ, на котором были проанализированы мероприятия, направленные на то, чтобы заставить нового конкурента отказаться от намерения проникнуть на новый рынок.

Компании Telex, видимо, стало известно об этих мероприятиях. Анализ на базе теории игр показал, что угрозы IВМ из-за высоких затрат безосновательны.

Это свидетельствует, что компаниям полезно в эксплицитном виде обдумывать возможные реакции партнеров по игре. Изолированные хозяйственные расчеты, даже опирающиеся на теорию принятия решений, часто носят, как в изложенной ситуации, ограниченный характер. Так, компания-аутсайдер могла бы и выбрать ход "невступление", если бы предварительный анализ убедил ее в том, что проникновение на рынок вызовет агрессивную реакцию монополиста. В этом случае в соответствии с критерием ожидаемой стоимости разумно выбрать ход "невступление" при вероятности агрессивного ответа 0,5.

2.3 Проблемы практического применения в управлении

Следует, однако, указать и на наличие определенных границ применения аналитического инструментария теории игр. В следующих случаях он может быть использован лишь при условии получения дополнительной информации.

Во-первых, это тот случай, когда у предприятий сложились разные представления об игре, в которой они участвуют, или когда они недостаточно информированы о возможностях друг друга. Например, может иметь место неясная информация о платежах конкурента (структуре издержек). Если неполнотой характеризуется не слишком сложная информация, то можно оперировать сопоставлением подобных случаев с учетом определенных различий.

Во-вторых, теорию игр трудно применять при множестве ситуаций равновесия. Эта проблема может возникнуть даже в ходе простых игр с одновременным выбором стратегических решений.

В-третьих, если ситуация принятия стратегических решений очень сложна, то игроки часто не могут выбрать лучшие для себя варианты. Легко представить более сложную ситуацию проникновения на рынок, чем та, которая рассмотрена выше. Например, на рынок в разные сроки могут вступить несколько предприятий или реакция уже действующих там предприятий может оказаться более сложной, нежели быть агрессивной или дружественной.

Экспериментально доказано, что при расширении игры до десяти и более этапов игроки уже не в состоянии пользоваться соответствующими алгоритмами и продолжать игру с равновесными стратегиями.

Отнюдь не бесспорно и принципиальное, лежащее в основе теории игр предположение о так называемом "общем знании". Оно гласит: игра со всеми правилами известна игрокам и каждый из них знает, что все игроки осведомлены о том, что известно остальным партнерам по игре. И такое положение сохраняется до конца игры.

Но чтобы предприятие в конкретном случае приняло предпочтительное для себя решение, данное условие требуется не всегда. Для этого часто достаточны менее жесткие предпосылки, например "взаимное знание" или "рационализируемые стратегии".

В заключение следует особо подчеркнуть, что теория игр является очень сложной областью знания. При обращении к ней надо соблюдать известную осторожность и четко знать границы применения. Слишком простые толкования, принимаемые фирмой самостоятельно или с помощью консультантов, таят в себе скрытую опасность. Анализ и консультации на основе теории игр из-за их сложности рекомендуются лишь для особо важных проблемных областей. Опыт фирм показывает, что использование соответствующего инструментария предпочтительно при принятии однократных, принципиально важных плановых стратегических решений, в том числе при подготовке крупных кооперационных договоров.

Выводы ко второму разделу

В условиях альтернативы (выбора) очень часто нелегко принять решение и выбрать ту или иную стратегию. Исследование операций позволяет с помощью использования соответствующих математических методов принять обоснованное решение о целесообразности той или иной стратегии. Теория игр, имеющая в запасе арсенал методов решения матричных игр, позволяет эффективно решать указанные задачи несколькими методами и из их множества выбрать наиболее эффективные, а также упрощать исходные матрицы игр.

Важный вклад в использование теории игр вносят экспериментальные работы. Многие теоретические выкладки отрабатываются в лабораторных условиях, а полученные результаты служат импульсом для практиков. Теоретически было выяснено, при каких условиях двум эгоистически настроенным партнерам целесообразно сотрудничать и добиваться лучших для себя результатов.

Эти знания можно использовать в практике предприятий, чтобы помочь двум фирмам достичь ситуации "выигрыш/выигрыш". Сегодня консультанты с подготовкой в области игр быстро и однозначно выявляют возможности, которыми предприятия могут воспользоваться для заключения стабильных и долгосрочных договоров с клиентами, субпоставщиками, партнерами по разработкам и т.п.

Заключение

Теория игр - наука, изучающая поведение многих участников, когда достигаемые каждым результаты зависят от действий остальных.

"Есть в современной математике одна область, она носит безобидное название теории игр, но ей, несомненно, суждено сыграть очень важную роль в человековедении самого ближайшего будущего, - говорил Джон фон Нейман, один из основоположников кибернетики. - Она занимается вопросами оптимального поведения людей при наличии противодействующего противника. Для ученого противник - это природа со всеми ее явлениями; экспериментатор борется со средой; математик - с загадками математического мира; инженер - с сопротивлением материалов".

В последние годы значение теории игр существенно возросло во многих областях экономических и социальных наук. В экономике она применима не только для решения общехозяйственных задач, но и для анализа стратегических проблем предприятий, разработок организационных структур и систем стимулирования.

В заключение следует особо подчеркнуть, что теория игр является очень сложной областью знания. При обращении к ней надо соблюдать известную осторожность и четко знать границы применения. Слишком простые толкования, принимаемые фирмой самостоятельно или с помощью консультантов, таят в себе скрытую опасность. Анализ и консультации на основе теории игр из-за их сложности рекомендуются лишь для особо важных проблемных областей. Опыт фирм показывает, что использование соответствующего инструментария предпочтительно при принятии однократных, принципиально важных плановых стратегических решений, в том числе при подготовке крупных кооперационных договоров.

Список использованной литературы

1. Дубина, И.Н. Основы теории экономических игр: учеб. пособие / И.Н. Дубина. - М.: КноРус, 2010. - С. 10.

2. Нейман, Дж. фон. Теория игр и экономическое поведение /Дж. фон Нейман, О. Моргенштерн. - М.: Наука, 1970. - 983 с.

3. Тихомиров, С.А. Гипербола и феномен преувеличения: Лингвистика и политическая коммуникация (градуальный аспект) /С.А. Тихомиров. - Саарбрюккен: LAP, 2012. - 346 с.

4. Щедровицкий, Г.П. Избранные труды /Г.П. Щедровицкий. - М., 1995. - 759 с.

5. Тернер Д. Вероятность, статистика, исследование операций /Д. Тернер - М.; пер. с англ.: Высш.шк., 1971.

6. Мак Киси Дж. Введение в теорию игр /Дж. Мак Киси.; пер. с англ. - М.: Физматгиз, 1960.

7. Замков О.О., Математические методы в экономике. / Замков О.О., Толстопятенко А.В., Черемных Ю.Н. - М.: ДИС, 1997.

8. Крушевский А.В. Теория игр. /А.В. Крушевский. - Киев, 1977.

9. Меньшиков И.С. Лекции по теории игр и экономическому моделированию. - М.: МЗ Пресс, 2006. - 208 с.

10. Петросян Л.А. Теория игр. /Петросян Л.А., Зенкевич Н.А., Семина Е.А. - М., 1998.

11. Вальд А. Последовательный анализ: пер. с англ. - М.: Физматгиз, 1960.

12. Берж К. Общая теория игр нескольких лиц. /К. Берж - М.: Физматлит, 1961. - 127 с.

13. Гермейер Ю.Б. Игры с непротивоположными интересами. /Ю.Б. Гермейер - М., 1976;

14. Смольяков Э.Р. Равновесные модели при несовпадающих интересах участников. /Э.Р. Смольяков - М.: Наука, 1986. - 223 с.

Размещено на Allbest.ru


Подобные документы

  • Основные понятия и критерии теории игр. Решение практических экономических задач с использованием механизма теории игр, а также создание необходимых рекомендаций к данным задачам. Научное обоснование снижения розничных цен и уровня товарных запасов.

    научная работа [184,7 K], добавлен 12.10.2011

  • Теория игр как раздел математики для изучения конфликтных ситуаций. Основные понятия и критерии теории игр, количество стратегий. Увеличение среднего выигрыша путем применения смешанных стратегий. Мажорирование (доминирование) стратегий, алгоритм решения.

    курсовая работа [207,8 K], добавлен 27.05.2009

  • Построение математической модели и решение задачи математического программирования в средах MathCad и MS Excel. Решение систем с произвольными векторами свободных коэффициентов. Определение вектора невязки. Минимизация и максимизация целевой функции.

    отчет по практике [323,5 K], добавлен 01.10.2013

  • Роль экономико-математических методов в оптимизации экономических решений. Этапы построения математической модели и решение общей задачи симплекс-методом. Составление экономико-математической модели предприятия по производству хлебобулочных изделий.

    курсовая работа [1,3 M], добавлен 09.07.2015

  • Сферы применения имитационного моделирования для выбора оптимальных стратегий. Оптимизация уровня запасов и построение модели управления. Построение имитационной модели и анализ при стратегии оптимального размера заказа и периодической проверки.

    контрольная работа [57,5 K], добавлен 23.11.2012

  • Применение методов оптимизации для решения конкретных производственных, экономических и управленческих задач с использованием количественного экономико-математического моделирования. Решение математической модели изучаемого объекта средствами Excel.

    курсовая работа [3,8 M], добавлен 29.07.2013

  • Исследование методики построения модели и решения на ЭВМ с ее помощью оптимизационных экономико-математических задач. Характеристика программных средств, позволяющих решать такие задачи на ЭВМ. Определение оптимального варианта производства продукции.

    лабораторная работа [79,3 K], добавлен 07.12.2013

  • Цель математического моделирования экономических систем: использование методов математики для эффективного решения задач в сфере экономики. Разработка или выбор программного обеспечения. Расчет экономико-математической модели межотраслевого баланса.

    курсовая работа [1,3 M], добавлен 02.10.2009

  • Составление математической модели, целевой функции, построение системы ограничений и симплекс-таблиц для решения задач линейного программирования. Решение транспортной задачи: определение опорного и оптимального плана, проверка методом потенциалов.

    курсовая работа [54,1 K], добавлен 05.03.2010

  • Решение задач линейного программирования с применением алгоритма графического определения показателей и значений, с использованием симплекс-метода. Использование аппарата теории двойственности для экономико-математического анализа оптимального плана ЗЛП.

    контрольная работа [94,6 K], добавлен 23.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.