Общая характеристика теории игр и их возможное применение в институциональной экономике
Теория игр как аналитический метод, используемый для анализа ситуаций, в которых индивидуумы стратегически взаимодействуют. Понятие метода оптимального (равновесного) решения по Нэшу. Замена частных попыток координации государственным вмешательством.
Рубрика | Экономико-математическое моделирование |
Вид | реферат |
Язык | русский |
Дата добавления | 26.02.2014 |
Размер файла | 17,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Введение
Как и любая другая не полностью конвенциальная наука, институциональная экономика применяет разные методы анализа. К ним относятся традиционный микроэкономический инструментарий, эконометрические методы, анализ статистической информации и др. В данном разделе кратко рассмотрим применение теории игр, экспериментальной экономики и других методов, адаптированных к институциональному анализу.
Формальные модели в институциональной экономике строятся с помощью теории игр, развитие которой берет отсчет с момента появления книги Дж. фон Неймана и О. Моргенштерна "Теория игр и экономическое поведение" (1944). Во-первых, теория игр занимается анализом ситуаций, в которых поведение индивидов взаимообусловлено: решение каждого из них оказывает влияние на результат взаимодействия и, следовательно, на решения остальных индивидов. Решая вопрос о своих действиях, индивид вынужден ставить себя на место контрагентов. Во-вторых, теория игр не требует полной рациональности индивидов, в ней используется целый ряд моделей индивидов, от индивида как совершенного калькулятора до индивида как робота. В-третьих, теория игр не предполагает существования, единственности и Парето-оптимальности равновесия во взаимодействиях. Эти причины и обусловливают наш интерес к формальным моделям институтов, построенным с помощью теории игр. Обратимся к их анализу более подробно. Первое уточнение касается кооперативных и некооперативных игр. В кооперативных играх возможны обмен информации между участниками и формирование коалиций. В некооперативных играх, о которых и пойдет в основном речь, исходным пунктом в анализе является индивидуальный участник, причем обмен информации между участниками и формирование коалиций исключены.
1. Теория игр
Теория игр - аналитический метод, получивший развитие после второй мировой войны и используемый для анализа ситуаций, в которых индивидуумы стратегически взаимодействуют. Шахматы - это прототип стратегической игры, так как результат зависит от поведения противника, так же как и от поведения собственно игрока. Из-за аналогий, найденных между стратегическими играми и формами политического и экономического взаимодействия, теории игр уделяется повышенное внимание в общественных науках. Современная теория игр начинается с работы Д. Неймана и О. Моргенштерна «Теория игр и экономическое поведение» (1944, русский вариант - 1970). Теория исследует взаимодействие индивидуальных решений при некоторых допущениях, касающихся принятия решения в условиях риска, общего состояния окружающей среды, кооперативного или некооперативного поведения других индивидов. Очевидно, что рациональному индивиду приходится принимать решения в условиях неопределенности и взаимодействия. Если выигрыш одного индивида является проигрышем другого, то это игра с нулевой суммой. Когда каждый из индивидов может выиграть от решения одного из них, то имеет место игра с ненулевой суммой. Игра может быть кооперативной, когда возможен сговор, и некооперативной, когда преобладает антагонизм. Одним из известных примеров игры с ненулевой суммой является дилемма заключенного (ДЗ). Этот пример показывает, что, вопреки утверждениям либерализма, преследование индивидом собственного интереса ведет к решению менее удовлетворительному, чем возможные альтернативы.
Предельная теорема Ф.И. Эджуорта рассматривается как ранний пример кооперативной игры n участников. Теорема утверждает, что по мере увеличения числа участников в экономике чистого обмена сговор становится менее полезным, а множество возможных равновесных относительных цен (ядро) уменьшается. Если число участников стремится к бесконечности, то остается только одна система относительных цен, соответствующая ценам общего равновесия.
Понятие оптимального (равновесного) по Нэшу решения является одним из ключевых в теории игр. Оно было введено в 1951 г. американским экономистом-математиком Джоном Ф. Нэшем.
Достаточно рассмотреть это понятие применительно к теоретико-игровой модели двух лиц. В этой модели каждый из участников располагает некоторым непустым множеством стратегий Si, i = 1, 2. При этом выбор конкретных стратегий из числа доступных игроку осуществляется таким образом, чтобы максимизировать значение собственной функции выигрыша (полезности) ui, i = 1, 2. Значения функции выигрыша заданы на множестве упорядоченных пар стратегий игроков S1 ґ S2, элементами которого выступают всевозможные сочетания стратегий игроков (s1, s2). Упорядоченность пар стратегий заключается в том, что в каждом из сочетаний на первом месте стоит стратегия первого игрока, на втором - второго), т.е.
ui = ui (s1, s2),
i = 1, 2. Иными словами, выигрыш каждого игрока зависит не только от выбираемой им самим стратегии, но и от стратегии, принятой его противником.
Оптимальным по Нэшу решением признается пара стратегий (s1*, s2*), si*О Si, i = 1, 2, обладающая следующим свойством: стратегия s1* обеспечивает игроку 1 максимальный выигрыш, когда игрок 2 выбирает стратегию s2*, и симметрично s2* доставляет максимальное значение функции выигрыша игрока 2, когда игроком 1 принимается стратегия s1*. Пара стратегий приводит к равновесию по Нэшу, если выбор, сделанный игроком 1, оптимален при данном выборе игрока 2, а выбор, сделанный игроком 2, оптимален при данном выборе игрока 1. Понятие оптимальности по Нэшу очевидным образом обобщается на случай игры n лиц. Следует заметить, что существование равновесия по Нэшу не означает его Парето-оптимальности, а Парето-оптимальный набор стратегий не обязательно должен удовлетворять равновесию по Нэшу. В 1994 г. Дж. Ф. Нэшу, Р. Зельтену и Дж. Ч. Харшани была присуждена Премия памяти А. Нобеля по экономике за их вклад в разработку теории игр и ее приложение к экономике.
Обращение к этому методу опирается на его явную силу в освещении причин и последствий институционального изменения. Способность теории игр помочь анализировать последствия изменения правил бесспорна; ее сила в раскрытии причин неоднозначна. Любой теоретико-игровой анализ должен предполагать предшествующее определение основных правил игры. Так, О. Моргенштерн в 1968 г. писал: «Игры описаны путем определения возможного поведения в пределах правил игры. Правила являются в каждом случае однозначными; например, в шахматах определенные ходы разрешены для специфических фигур, но запрещены для других. Правила также не нарушаемы. Когда социальная ситуация рассматривается как игра, правила даны физической и юридической окружающей средой, в пределах которой имеют место действия индивидуумов».
Если эта точка зрения принимается, нельзя ожидать, что теория игр объяснит причину изменения в фундаментальных правилах организации экономической, политической и социальной жизни: определение таких правил, очевидно, является предварительным условием для проведения такого анализа. Для понимания значения институтов используются модели координационной игры и дилеммы заключенных.
2. Чистые и обобщенные координационные игры
Рассмотрим проблему чистой и обобщенной координации. Чистая координационная игра показывает, что экономические агенты не могут гарантированно реализовать взаимные выгоды кооперации, даже если отсутствует конфликт интересов. Другими словами, в ситуации «чистой» координации имеется множественное равновесие, которое одинаково предпочитается каждой стороной. В этом случае нет конфликта интересов, но нет гарантии, что все будут стремиться к одному равновесному результату. Известный пример - выбор стороны дороги (правой или левой), по которой люди должны ездить. Данная игра имеет два равновесия по Нэшу, соответствующих наборам стратегий (левая, левая) и (правая, правая). Никто заранее не возражает ездить справа или слева, но достижение скоординированного результата при большом количестве участников переговоров потребует высоких трансакционных издержек. Необходим институт, который бы выполнил функцию фокальной точки, т.е. ввел согласованное решение. Таким институтом может быть результат общего знания, полученного на основе однотипного анализа ситуации, а может быть и государство, которое вмешивается, чтобы ввести правило координации и сократить трансакционные издержки. В целом институты выполняют координационную функцию, снижая неопределенность.
Обобщенная проблема координации существует, если матрица выигрышей такова, что в любой точке равновесия никто из игроков не имеет стимула изменить свое поведение при данном поведении других игроков, но и никто из игроков не желает, чтобы какой-либо другой игрок изменил его. В этом случае каждый предпочел бы скоординированный результат не скоординированному, но, возможно, каждый захочет предпочесть особый скоординированный результат. Например, два производителя А и Б используют различную технологию X и Y, но хотят ввести национальный стандарт изделия, который вызовет сетевые внешние эффекты. Производитель А больше выиграет, если стандартом станет технология Х, а производитель Б - технология Y. Выигрыш оказывается распределенным асимметрично. Итак, производитель А(Б) предпочтет, чтобы стандартом стала X(Y)-технология, но оба предпочтут любой из скоординированных результатов не скоординированному. Трансакционные издержки в этой модели будут выше, чем в предыдущей (особенно при участии большого количества сторон), так как налицо столкновение интересов. Замена частных попыток координации государственным вмешательством позволила бы уменьшить трансакционные издержки в экономике. Примерами являются государственное введение технологических стандартов, стандартов измерения и качества и т.д. Обобщенная координационная модель иллюстрирует важность не только координационной функции институтов, но и распределительной, от которой зависит способ, ограничивающий возможные альтернативы игроков, и в конечном счете результативность взаимодействия.
Дилемма заключенного часто приводится как пример проблемы установления кооперации между индивидами. В игре участвуют два игрока, два заключенных, которые разделены своими надзирателями. У каждого есть два выбора: кооперироваться, т.е. хранить молчание. Или отказаться от кооперации, т.е. предать другого. Каждый должен действовать, не зная, что предпримет другой. Каждому говорят, что признание, если другой молчит, ведет к свободе. Отказ от признания в случае предательства другого означает смерть. Если оба признаются, то проведут вместе несколько лет в тюрьме. Если каждый из них откажется от признания, то будет на короткое время арестован и затем освобожден. Предполагая, что тюрьма предпочтительнее смерти, а свобода - наиболее желаемое состояние, заключенные сталкиваются с парадоксом: хотя они оба предпочли бы не предавать друг друга и провести недолгое время в тюрьме, каждый окажется в лучшем положении, предав другого, не считаясь с тем, что предпримет другой. Аналитически способность заключенных установить связь находится на заднем плане, так как стимулы к предательству остаются одинаково сильными при наличии или без наличия связи. Предательство остается доминирующей стратегией. Этот анализ помогает объяснить, почему эгоистично-максимизирующие агенты не могут рационально приходить к кооперативному результату или поддерживать его (парадокс индивидуальной рациональности). Он полезен в объяснении ex post распада картеля или другого кооперативного соглашения, но не объясняет, каким способом сформирован картель или кооперативное соглашение. Если заключенные способны достичь соглашения, то проблема исчезает: они договариваются не предавать друг друга и прийти к тому, чтобы максимизировать совместные выигрыши. Итак, достаточно вступить в соглашение, которое совместно желательно, но делает каждого в отдельности потенциально более уязвимым к ущербу, чем в отсутствие такого соглашения. Этот анализ обращает внимание на институты, которые с индивидуальной точки зрения могут превратить такие соглашения в менее рискованные.
3. Игра дилемма заключенного (ДЗ)
В теоретической литературе дается различие между анализом кооперативных и некооперативных игр. Как уже описано, игроки способны заключать связывающие их соглашения. Гарант таких соглашений - неявный. Многие теоретики игр настаивают на том, что обман и разрыв соглашений - общие черты человеческих взаимоотношений, поэтому такое поведение должно оставаться внутри стратегического пространства. Они пытаются объяснить возникновение и сохранение кооперации в модели некооперативных игр, особенно в модели, бесконечно повторяющейся последовательности игр ДЗ. Конечная последовательность игр не даст результата, потому что с момента, когда доминирующая стратегия в последней игре станет явно отступнической, и с момента, когда она станет ожидаемой, то же самое будет верно для предпоследней игры и так далее, до первой игры. В бесконечных сериях игр при определенных предположениях о дисконтировании выигрышей может появиться кооперация как равновесная стратегия. Таким образом, некооперативный анализ не избегает потребности принять основные правила игры как часть описания стратегического пространства. Он просто предполагает отличный и менее ограничительный набор правил. В отличие от кооперативного анализа соглашения могут быть разорваны по желанию. С другой стороны, выход из непрерывной игры ограничен. Ни один подход не избегает потребности определять правила игры, перед тем как начать анализ. Одним из наиболее интересных недавних достижений в исследовании ДЗ была организация турниров между предопределенными стратегиями для проведения конечно повторяющихся игр ДЗ с двумя участниками. Первый из них был организован Робертом Аксельродом (описан в 1984 г.) и включал игру последовательностью в 200 партий. Опытными в ДЗ участниками были предложены компьютерные программы, и которые затем состязались друг с другом. Р. Аксельрод сообщил игрокам, что стратегии будут оценены не по числу побед, а согласно сумме очков против всех других стратегий, причем три очка каждый получает за взаимную кооперацию, одно очко за взаимное отступничество и выигрыш 5 к 0 за отступничество/кооперацию. Как отмечено ранее, аналитически ясно, что отступничество - доминирующая стратегия последней игры и, следовательно, каждой предыдущей игры. Рассмотрим матрицу выигрышей в ДЗ, анализируемую Р. Аксельродом Независимо оттого, что делает другой игрок, предательство дает более высокое вознаграждение, чем кооперация. Если первый игрок думает, что другой игрок будет молчать, то ему выгоднее предать ($5>$3). С другой стороны, если первый игрок думает, что другой предаст, ему все равно выгоднее предать самому ($1 лучше, чем ничего). Следовательно, искушение склоняет к предательству. Но если оба предают, то оба получают меньше, чем в ситуации кооперации ($1+$1<$3+$3).
Дилемма заключенного - знаменитая проблема в экономике - показывает: то, что рационально или оптимально для одного агента, может не быть рациональным или оптимальным для группы индивидов, рассматриваемых совместно. Эгоистичное поведение индивида может быть вредным или разрушительным для группы. В повторяющихся играх ДЗ соответствующая стратегия неочевидна. Чтобы найти хорошую стратегию, и были организованы турниры. Если выигрыш был бы получен строго на основе победа-проигрыш, то каждый участник турнира должен был предложить непрерывное отступничество. Однако правила выигрыша дали понять, что организация некоторой кооперации могла бы привести к более высоким общим результатам. К удивлению многих, победила простая стратегия «зуб за зуб», предложенная А. Рапопортом: игрок кооперируется на первом шаге и затем делает тот ход, который другой игрок делал на предыдущем шаге. Во втором турнире участвовало гораздо больше игроков, в том числе профессионалов, а также тех, кто знал о результатах первого раунда. Итогом была еще одна победа стратегии копирования («зуб за зуб»). Анализ результатов турниров выявил четыре свойства, приводящие к успешной стратегии:
1) стремление избежать ненужного конфликта и кооперироваться так долго, как это делает другой;
2) способность к вызову перед лицом ничем не вызванного предательства другого;
3) прощение после ответа на вызов;
4) ясность поведения, чтобы другой игрок мог распознать и адаптироваться к образу действия первого.
Р. Аксельрод показал, что кооперация может начаться, развиваться и стабилизироваться в ситуациях, которые в противном случае являются экстраординарными, не обещая ничего хорошего. Можно согласиться с тем, что стратегия «зуб за зуб» в аналитическом смысле иррациональна в конечно повторяющейся игре, но эмпирически, очевидно, нет. Если бы стратегия «зуб за зуб» состязалась с другими аналитическими стратегиями, все из которых состояли из непрерывных отступничеств, она не смогла бы победить в турнире.
Заключение
Теория игр может быть важным инструментом для изучения человеческого взаимодействия в ограниченных правилами обстоятельствах. Благодаря своим возможностям изучать последствия разных институциональных соглашений она также может быть полезна с точки зрения государственной политики при проектировании новых институциональных соглашений. Теория игр использовалась в анализе общественных благ, олигополии, картеля и сговоров на рынках товаров и труда. При всех своих достоинствах теория игр обладает и относительными слабостями. Некоторые авторы высказали сомнения относительно применения модели дилеммы заключенного в социальной науке. Например, М. Тейлор в 1987 г. предположил, что такие игры соответствуют обстоятельствам обеспечения общественными благами. В 1985 г. Н. Шофилд утверждал, что агенты должны формировать согласованные понятия об убеждениях и желаниях других агентов, включая проблемы познания и интерпретации, которые не просты для моделирования. Заключается глубокое расхождение теории с реальностью, а это расхождение ограничивает ее применение»игры от партию. Многие экономисты отмечали, что использование теории игр без оговорок может свести экономическую деятельность к слишком статичной схеме. В частности, нобелевский лауреат Р. Стоун в 1948 г. писал: «Главная черта, благодаря которой теория игр впадает в противоречие с живой действительностью, заключается в том, что объект исследования ограничен во времени - игра имеет начало и конец. Об экономической действительности этого не скажешь. Именно в возможности обособить. Однако с тех пор неоценимо много сделано для сглаживания этого расхождения и расширения применения теории игр в экономике.
игра нэш государственный равновесный
Список использованной литературы
1. Алле М. Экономика как наука / Пер. с франц. И.А. Егорова. - М.: Наука для общества, РГГУ, 1995. - С. 32, 34.
2. Шаститко А.Е. Новая институциональная экономическая теория: особенности предмета и метода. - М.: ТЕИС, 2003. - С. 26-27.
3. Введение в институциональный анализ: Учеб. пособие / Под. ред. В.Л. Тамбовцева. - М.: Экон. фак. МГУ, ТЕИС, 1996. - С. 38.
4. Введение в институциональный анализ. - С. 44.
5. Вольчик В.В. Курс лекций по институциональной экономике. - Ростов-на-Дону: Изд-во Рост. ун-та, 2000.
6. Уильямсон О.И. Поведенческие предпосылки современного экономического анализа // THESIS. - 1993. - Т. 1. - Вып. 3. - С. 39-49.
7. Олейник А.Н. Институциональная экономика: Учеб. пособие. - М.: ИНФРА-М, 2000. - С. 21-24.
8. Тевено Л. Множественность способов координации: равновесие и рациональность в сложном мире // Вопросы экономики. - 1997. - № 10. - С. 74-75.
9. Институциональная экономика: Учеб. пособие / Под рук. Д.С. Львова. - М.: ИНФРА-М, 2001. - С. 162.
10. Яковлева Т. Экспериментальная экономика (критический обзор) // Вопр. экон. - 1995. - № 7. - С. 137-141.
Размещено на Allbest.ru
Подобные документы
Линейное программирование. Геометрическая интерпретация и графический метод решения ЗЛП. Симплексный метод решения ЗЛП. Метод искусственного базиса. Алгоритм метода минимального элемента. Алгоритм метода потенциалов. Метод Гомори. Алгоритм метода Фогеля.
реферат [109,3 K], добавлен 03.02.2009Графический метод решения задачи оптимизации производственных процессов. Применение симплекс-алгоритма для решения экономической оптимизированной задачи управления производством. Метод динамического программирования для выбора оптимального профиля пути.
контрольная работа [158,7 K], добавлен 15.10.2010Общая характеристика математических методов анализа, их классификация и типы, условия и возможности использования. Экономико-математическое моделирование как способ изучения хозяйственной деятельности, их применение в решении аналитических задач.
контрольная работа [1,6 M], добавлен 26.05.2013Анализ вопросов теории дифференциальных уравнений. Применение дифференциальных уравнений в экономике. Геометрический и экономический смысл производной, ее использование для решения задач по экономической теории. Определение числовой последовательности.
контрольная работа [456,9 K], добавлен 19.06.2015Применение математических методов в решении экономических задач. Понятие производственной функции, изокванты, взаимозаменяемость ресурсов. Определение малоэластичных, среднеэластичных и высокоэластичных товаров. Принципы оптимального управления запасами.
контрольная работа [83,3 K], добавлен 13.03.2010Теория игр как раздел математики для изучения конфликтных ситуаций. Основные понятия и критерии теории игр, количество стратегий. Увеличение среднего выигрыша путем применения смешанных стратегий. Мажорирование (доминирование) стратегий, алгоритм решения.
курсовая работа [207,8 K], добавлен 27.05.2009Численные методы решения трансцедентных уравнений. Решение с помощью метода жордановых исключений системы линейных алгебраических уравнений. Симплексный метод решения задачи линейного программирования. Транспортная задача, применение метода потенциалов.
методичка [955,1 K], добавлен 19.06.2015Геометрический способ решения стандартных задач линейного программирования с двумя переменными. Универсальный метод решения канонической задачи. Основная идея симплекс-метода, реализация на примере. Табличная реализация простого симплекс-метода.
реферат [583,3 K], добавлен 15.06.2010Пример решения типовой задачи оптимизации графическим методом. Получение оптимального плана выпуска продукции при помощи теории двойственности. Применение метода Леонтьева для построения баланса производства и распределения продукции предприятий.
контрольная работа [2,2 M], добавлен 23.04.2013Сущность и сферы применения аппарата теории игр. Понятие олигополии и дуополии. Стратегии олигополий и теория игр. Ценовая война и ее последствия в условиях олигополии. Поведение компаний в ценовой войне. Применение теории игр в экономическом анализе.
реферат [114,5 K], добавлен 17.07.2014