МНК в экономическом анализе

Принципы использования алгоритмов вычисления оценок для решения задач распознавания. Свойства произвольной функции по методу наименьших квадратов для разных видов уравнений множественной регрессии. Косвенный МНК и его значение для линейной функции.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 06.02.2014
Размер файла 396,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.

    контрольная работа [108,5 K], добавлен 28.03.2018

  • Понятие модели множественной регрессии. Сущность метода наименьших квадратов, который используется для определения параметров уравнения множественной линейной регрессии. Оценка качества подгонки регрессионного уравнения к данным. Коэффициент детерминации.

    курсовая работа [449,1 K], добавлен 22.01.2015

  • Оценка коэффициентов парной линейной регрессии, авторегрессионное преобразование. Трехшаговый и двухшаговый метод наименьших квадратов, его гипотеза и предпосылки. Системы одновременных уравнений в статистическом моделировании экономических ситуаций.

    курсовая работа [477,2 K], добавлен 05.12.2009

  • Оценка распределения переменной Х1. Моделирование взаимосвязи между переменными У и Х1 с помощью линейной функции и методом множественной линейной регрессии. Сравнение качества построенных моделей. Составление точечного прогноза по заданным значениям.

    курсовая работа [418,3 K], добавлен 24.06.2015

  • Оценка влияния разных факторов на среднюю ожидаемую продолжительность жизни по методу наименьших квадратов. Анализ параметров линейной двухфакторной эконометрической модели с помощью метода наименьших квадратов. Графическое изображение данной зависимости.

    практическая работа [79,4 K], добавлен 20.10.2015

  • Системы эконометрических уравнений. Структурные и приведенные системы одновременных уравнений. Проблема идентификации. Необходимое и достаточное условие идентификации. Оценивание параметров структурной модели. Косвенный метод наименьших квадратов.

    контрольная работа [900,9 K], добавлен 29.06.2015

  • Расчет зависимости товарооборота за месяц. Параметры уравнения множественной регрессии, их оценка методом наименьших квадратов. Получение системы нормальных уравнений, ее решение по методу Крамера. Экономическая интерпретация параметров уравнения.

    контрольная работа [45,6 K], добавлен 13.04.2014

  • Основные методы анализа линейной модели парной регрессии. Оценки неизвестных параметров для записанных уравнений парной регрессии по методу наименьших квадратов. Проверка значимости всех параметров модели (уравнения регрессии) по критерию Стьюдента.

    лабораторная работа [67,8 K], добавлен 26.12.2010

  • Моделирование экономических процессов с помощью однофакторной регрессии. Оценка параметров проекта методом наименьших квадратов. Расчет коэффициента линейной корреляции. Исследование множественной эконометрической линейной схемы на мультиколлинеарность.

    курсовая работа [326,5 K], добавлен 19.01.2011

  • Определение параметров уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Вычисление остатков, расчет остаточной суммы квадратов. Оценка дисперсии остатков и построение графика остатков. Проверка выполнения предпосылок МНК.

    контрольная работа [1,4 M], добавлен 25.06.2010

  • Параметры уравнения и экономическое толкование коэффициента линейной регрессии. Расчет коэффициентов детерминации и средних относительных ошибок аппроксимации. Построение структурной формы модели с использованием косвенного метода наименьших квадратов.

    контрольная работа [99,2 K], добавлен 27.04.2011

  • Эконометрические регрессионные модели и прогнозирование на их основе. Построение множественной линейной регрессии с использованием метода наименьших квадратов. Расчет минеральных удобрений сельскохозяйственной организации по полям и кормовым угодьям.

    курсовая работа [2,6 M], добавлен 29.11.2014

  • Анализ влияния основных социально-экономических показателей на результативный признак. Особенности классической линейной модели множественной регрессии, ее анализ на наличие или отсутствие гетероскедастичности в регрессионных остатках и их автокорреляции.

    лабораторная работа [573,8 K], добавлен 17.02.2014

  • Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.

    задача [142,0 K], добавлен 20.03.2010

  • Основы построения и тестирования адекватности экономических моделей множественной регрессии, проблема их спецификации и последствия ошибок. Методическое и информационное обеспечение множественной регрессии. Числовой пример модели множественной регрессии.

    курсовая работа [3,4 M], добавлен 10.02.2014

  • Особенности расчета параметров уравнений линейной, степенной, полулогарифмической, обратной, гиперболической парной и экспоненциальной регрессии. Методика определения значимости уравнений регрессии. Идентификация и оценка параметров системы уравнений.

    контрольная работа [200,1 K], добавлен 21.08.2010

  • Описание классической линейной модели множественной регрессии. Анализ матрицы парных коэффициентов корреляции на наличие мультиколлинеарности. Оценка модели парной регрессии с наиболее значимым фактором. Графическое построение интервала прогноза.

    курсовая работа [243,1 K], добавлен 17.01.2016

  • Оценка линейной, степенной и показательной моделей по F-критерию Фишера. Прогноз заработной платы у при известном значении среднедушевого прожиточного минимума х. Построение уравнения множественной регрессии в стандартизованной и естественной формах.

    контрольная работа [239,7 K], добавлен 17.01.2012

  • Исследование линейных моделей парной (ЛМПР) и множественной регрессии (ЛММР) методом наименьших квадратов. Исследование зависимости производительности труда от уровня механизации. Анализ развития товарооборота по данным о розничном товарообороте региона.

    контрольная работа [23,8 K], добавлен 08.12.2008

  • Параметры парной линейной, линейно-логарифмической функции. Оценка статистической надёжности. Ошибка положения регрессии. Расчёт бета коэффициентов, уравнение множественной регрессии в стандартизованном масштабе. Задача на определение тесноты связи рядов.

    контрольная работа [192,2 K], добавлен 23.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.