Применение функций в экономике. Интерполирование функций
Применение в экономической теории функций, связывающих состояния изучаемых объектов с помощью рекуррентных соотношений в разные периоды времени. Функции исключения (упрощения) громоздких вычислений. Мультипликативные алгоритмы с несколькими переменными.
| Рубрика | Экономико-математическое моделирование |
| Вид | контрольная работа |
| Язык | русский |
| Дата добавления | 30.09.2013 |
| Размер файла | 13,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ПРИМЕНЕНИЕ ФУНКЦИЙ В ЭКОНОМИКЕ. ИНТЕРПОЛИРОВАНИЕ ФУНКЦИЙ
Функции находят широкое применение в экономической теории и практике. Спектр используемых в экономике функций весьма широк: от простейших линейных до функций, получаемых по определенному алгоритму с помощью, так называемых рекуррентных соотношений, связывающих состояния изучаемых объектов в разные периоды времени.
Наряду с линейными, используются нелинейные функции, такие, как дробно-рациональные, степенные (квадратная, кубическая и т.д.), показательные (экспоненциальные), логарифмические и другие функции. Периодичность, колеблемость ряда экономических процессов позволяет также использовать тригонометрические функции.
Наиболее часто используются в экономике следующие функции:
1. Функция полезности (функция предпочтений) - в широком смысле зависимость полезности, т.е. результата, эффекта некоторого действия от уровня (интенсивности) этого действия.
2. Производственная функция - зависимость результата производственной деятельности от обусловивших его факторов.
3. Функция выпуска (частный вид производственной функции) - зависимость объема производства от наличия или потребления ресурсов.
4. Функция издержек (частный вид производственной функции) - зависимость издержек производства от объема продукции.
5. Функции спроса, потребления и предложения - зависимость объема спроса, потребления или предложения на отдельные товары или услуги от различных факторов (например, цены, дохода и т.п.).
Учитывая, что экономические явления и процессы обусловливаются действием различных факторов, для их исследований широко используются функции нескольких переменных. Среди этих функций выделяются мультипликативные функции, позволяющие представить зависимую переменную в виде произведения факторных переменных, обращающего его в нуль при отсутствии действия хотя бы одного фактора.
Используются также сепарабельные функции, которые дают возможность выделить влияние различных факторных переменных на зависимую переменную, и в частности, аддитивные функции, представляющие одну и ту же зависимую переменную как при суммарном, но раздельном воздействии нескольких факторов, так и при одновременном их воздействии. экономическая функция рекуррентное мультипликативный
Если действием побочных факторов можно пренебречь или удается зафиксировать эти факторы на определенных уровнях, то влияние одного главного фактора изучается с помощью функции одной переменной.
Остановимся еще на одном важном аспекте использования функций в экономике применении таблиц функций, которые позволяют сделать возможными различные расчеты, исключить или упростить громоздкие вычисления.
При вычислениях с помощью таблиц мы часто сталкиваемся с ситуацией, когда аргумент функции задан с большей точностью, чем позволяет таблица. В этом случае мы должны прибегнуть к интерполированию (интерполяции), - приближенному нахождению неизвестных значений функции по известным ее значениям в заданных точках.
Наиболее простым является линейное интерполирование, при котором допускается, что приращение функции пропорционально приращению аргумента. Если заданное значение x лежит между приведенными в таблице значениями x0 и x1 = x0 + h, которым соответствуют значения функцииy0 = f(x0) и y1 = f(x1) = f(x0) + /\f, то считают, что:
f(x) = f(x0)+(x-x0)/hf.
Величины (x - x0)/\f/h называются интерполированными поправками. Эти величины вычисляются с помощью таблицы или приводятся в дополнении к таблице.
Если по заданным значениям функции необходимо найти приближенное значение аргумента, то необходимо произвести обратное интерполирование.
Задача 5.1.
Функция y = f(x) задана таблицей:
|
x |
2,00 |
2,04 |
2,08 |
|
|
y |
2,42 |
2,88 |
3,38 |
a) Используя линейное интерполирование, найти f(2,008).
б) Чему равен x, если f(x) = 3,1?
Решение 5.1.
а) Имеем:
x0 = 2,00; f(x0) = 2,42;
x1 = 2,04; f(x1) = 2,88;
h = x1 - x0 = 2,04-2,00 = 0,04;
/\f = f(x1) - f(x0) = 2,88-2,42 = 0,46.
Теперь по интерполяционной формуле получим:
y = f(2,008) = 2,42 + (2,008-2,00) * 0,46 / 0,04 = 2,512.
б) Обратное интерполирование можно провести по той же формуле, в которой поменять местами переменные x и y:
g(y) = g(y0) + (y - y0)/hg
где x = g(y) - неизвестное значение обратной функции.
Имеем:
y0 = 2,88; g(y0) = 2,04;
y1 = 3,38; g(y1) = 2,08;
h = y1 - y0 = 3,38-2,88 = 0,50;
/\g = g(y1) - g(y0) = 2,08-2,04 = 0,04.
Теперь по интерполяционной формуле получим:
x = g(3,1) = 2,04 + (3,1-2,88) * 0,04 / 0,50 = 2,058.
В ряде случаев точность нахождения неизвестных значений с помощью линейного интерполирования оказывается недостаточной и используются другие методы интерполирования, например, квадратичное интерполирование.
Размещено на Allbest.ru
Подобные документы
Определение понятия производной функции. Рассмотрение геометрического смысла производной. Изучение дифференциала функции. Применение производной к исследованию функций. Маржинализм в современной экономической науке. Эластичность спроса и предложения.
контрольная работа [51,5 K], добавлен 02.03.2015Основы теории производственных функций, аддитивные и мультипликативные виды. Показатели эффективности использования ресурсов. Комплекснозначная производственная функция ООО "Квант". Анализ производства предприятия с помощью производственных функций.
дипломная работа [1,1 M], добавлен 29.06.2011Основные свойства и виды функций. Общая схема исследования функций, признак возрастания и убывания. Применение функций при рассмотрении зависимостей экономических величин от различных факторов. Пример построения графика спроса и предложения на мороженое.
реферат [358,6 K], добавлен 10.04.2011Определение производной, геометрический смысл ее понятия и дифференциал функции, применение производной к исследованию функций. Экономическое содержание понятия производной, предельные величины, эластичность спроса и предложения в экономической теории.
реферат [116,7 K], добавлен 10.02.2010Понятие полезности: общая и предельная полезность. Понятие производственной функции. Применение математических функций. Теория принятия решений. Понятия функции потребления, спроса и предложения. Обобщенные формы зависимости между доходами и спросом.
курсовая работа [345,3 K], добавлен 14.10.2014Математические методы как инструмент анализа экономических явлений и процессов, построения теоретических моделей. Числовые функции и их свойства, практические примеры их использования в экономике. Производственные функции, функция спроса и предложения.
курсовая работа [974,5 K], добавлен 11.10.2014Анализ вопросов теории дифференциальных уравнений. Применение дифференциальных уравнений в экономике. Геометрический и экономический смысл производной, ее использование для решения задач по экономической теории. Определение числовой последовательности.
контрольная работа [456,9 K], добавлен 19.06.2015Описание основных характеристик модели трехсекторной экономики. Вывод дифференциальных уравнений для функций удельного капитала. Определение аналитической структуры функций оптимального управления на полученном условии максимума функции Понтрягина.
курсовая работа [146,2 K], добавлен 22.01.2016Решения, связанные с рисками. Снижение риска с помощью статистической теории принятия решений. Применение модели платежной матрицы и различных ее вариантов. Направленность изменений соотношений темпов роста показателей, формирующих динамические модели.
контрольная работа [41,2 K], добавлен 28.03.2013Рассмотрение решения задач с помощью методов: динамического программирования, теории игр, сетевого планирования и управления и моделирование систем массового обслуживания. Прикладные задачи маркетинга, менеджмента и других областей управления в экономике.
реферат [315,8 K], добавлен 15.06.2009


