Производственные организации с точки зрения кибернетики

Система как целое, созданное из элементов для целенаправленной деятельности. Критерии классификации систем, оценка степени их целостности и аддитивности. Управление с точки зрения кибернетики, производственная организация как кибернетическая система.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 05.03.2013
Размер файла 19,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

1. Понятие системы

2. Классификация систем

3. Закономерности систем

4. Управление с точки зрения кибернетики

5. Принципы кибернетики

6. Производственная организация как кибернетическая система

7. Системный анализ, теория систем

1. Понятие системы

Основой теории организации является теория систем.

Система - это целое, созданное из частей и элементов, для целенаправленной деятельности.

Признаки системы: множество элементов, единство главной цели для всех элементов, наличие связей между ними, целостность и единство элементов, структура и иерархичность, относительная самостоятельность, четко выраженное управление.

Система может быть большой и ее целесообразно разделить на ряд подсистем. Подсистема - это набор элементов, представляющих автономную внутри системы область (например, экономическая, организационная, техническая подсистема).

2. Классификация систем

система целостность аддитивность кибернетика

Классификацию систем можно осуществить по разным критериям. Проводить ее жестко - невозможно, она зависит от цели и ресурсов. Приведем основные способы классификации (возможны и другие критерии классификации систем).

1. По отношению системы к окружающей среде:

· открытые (есть обмен ресурсами с окружающей средой);

· закрытые (нет обмена ресурсами с окружающей средой).

2. По происхождению системы (элементов, связей, подсистем):

· искусственные (орудия, механизмы, машины, автоматы, роботы и т.д.);

· естественные (живые, неживые, экологические, социальные и т.д.);

· виртуальные (воображаемые и, хотя реально не существующие, но функционирующие так же, как и в случае, если бы они существовали);

· смешанные (экономические, биотехнические, организационные и т.д.).

3. По описанию переменных системы:

· с качественными переменными (имеющие лишь содержательное описание);

· с количественными переменными (имеющие дискретно или непрерывно описываемые количественным образом переменные);

· смешанного (количественно-качественное) описания.

4. По типу описания закона (законов) функционирования системы:

· типа "Черный ящик" (неизвестен полностью закон функционирования системы; известны только входные и выходные сообщения);

· не параметризованные (закон не описан; описываем с помощью хотя бы неизвестных параметров; известны лишь некоторые априорные свойства закона);

· параметризованные (закон известен с точностью до параметров и его возможно отнести к некоторому классу зависимостей);

· типа "Белый (прозрачный) ящик" (полностью известен закон).

5. По способу управления системой (в системе):

· управляемые извне системы (без обратной связи, регулируемые, управляемые структурно, информационно или функционально);

· управляемые изнутри (самоуправляемые или саморегулируемые - программно управляемые, регулируемые автоматически, адаптируемые - приспосабливаемые с помощью управляемых изменений состояний, и самоорганизующиеся - изменяющие во времени и в пространстве свою структуру наиболее оптимально, упорядочивающие свою структуру под воздействием внутренних и внешних факторов);

· с комбинированным управлением (автоматические, полуавтоматические, автоматизированные, организационные).

3. Закономерности систем

Целостность. Закономерность целостности проявляется в системе в возникновении новых интегративных качеств, не свойственных образующим ее компонентам. Чтобы глубже понять закономерность целостности, необходимо рассмотреть две ее стороны:

1. свойства системы (целого) не являются суммой свойств элементов или частей (несводимость целого к простой сумме частей);

2. свойства системы (целого) зависят от свойств элементов, частей (изменение в одной части вызывает изменение во всех остальных частях и во всей системе).

Весьма актуальным является оценка степени целостности системы при переходе из одного состояния в другое. В связи с этим возникает двойственное отношение к закономерности целостности. Ее называют физической аддитивностью, независимостью, суммативностью, обособленностью. Свойство физической аддитивности проявляется у системы, как бы распавшейся на независимые элементы. Строго говоря, любая система находится всегда между крайними точками как бы условной шкалы: абсолютная целостность - абсолютная аддитивность, и рассматриваемый этап развития системы можно охарактеризовать степенью проявления в ней одного или другого свойства и тенденцией к его нарастанию или уменьшению.

4. Управление с точки зрения кибернетики

Появление кибернетики - науки об общих закономерностях в процессах управления, осуществляемых в живых существах, машинах и их комплексах, - позволило собрать и обобщить огромное количество фактов, которые показали, что процесс управления во всех организованных системах сходен. Различие в управлении объектами касаются критериев цели, задач и содержания управления. Однако структура и построение процессов управления в организованных системах любых рангов имеют черты глубокого сходства, общности. Это обстоятельство объясняется тем, что процесс управления всегда представляет собой информационный процесс.

Кибернетика изучает процессы получения и передачи, накопления и преобразования, переработки и использования информации в машинах, живых организмах и их объединениях. Установление связи между управлением и информационными процессами - важнейшее достижение кибернетики. Оно позволяет понять технологию процесса управления и, главное, подвергнуть его изучению количественными методами. Отличительная черта кибернетического подхода к познанию и совершенствованию процессов управления - использование их аналогов в живой и неживой природе и моделирование. Основная задача кибернетики - достижение на основе присущих ей методов и средств оптимального уровня управления, т. е. принятие наилучших управленческих решений. Таким образом, кибернетическим называется такое управление, которое:

§ рассматривает организацию как некоторую большую систему, каждый элемент которой берется не только сам по себе, но и как часть большой совокупности, в которую он входит;

§ обеспечивает оптимальное решение многовариантных динамических задач организации;

§ использует специфические методы, выдвинутые кибернетикой (обратную связь, саморегулирование и самоорганизацию и т. п.);

§ широко применяет механизацию и автоматизацию управленческих работ на основе использования вычислительной и управляющей техники и компьютерных технологий.

5. Принципы кибернетики

К общим принципам кибернетики как науки о единстве процессов управления, независимо от объекта их приложения, относят: обратную связь, черный ящик, внешнее дополнение, преобразование информации, целенаправленность управления и эквифинальность. Определения принципов даются по материалам книги С. Бира "Кибернетика и управление производством" с сохранением авторских фрагментов текста из работ:

1) обратная связь - поток информации, поступающий после измерения результатов функционирования системы или ее части в систему управления для выработки воздействия на алгоритм управления;

2) "черный ящик" - система (объект), в которой внешнему наблюдателю доступны лишь входные и выходные параметры, а внутреннее устройство и протекающие в ней процессы, по "причине недоступности для изучения или в связи с абстрагированием, не являются предметом исследований";

3) внешнее дополнение - включение "черного ящика" в цепь управления в условиях, когда используемый язык формализации недостаточен для описания реальной ситуации системы и этот недостаток устраняется путем процедуры внешнего дополнения;

4) преобразование информации - система рассматривается как "машина для переработки информации" с целью ее упорядочения, снижения неопределенности и разнообразия, и это делает поведение системы предсказуемым;

5) целенаправленность управления - "управление - неотъемлемое свойство любой системы", а система "является организмом, обладающим своей собственной целью и своим собственным единством";

6) эквифинальность - существование конечного неупорядоченного множества путей перехода системы из различных начальных состояний в финальное состояние, т.е. переход системы из начальных состояний в финальное задан не единственным образом.

Дадим краткое пояснение изложенным принципам. Обратная связь в кибернетике, в отличие от ее общесистемного представления, включает только поток информации с результатами измерения выходного потока системы и именуется информационной обратной связью. Основная идея обратной связи состоит в мониторинге выходной информации и динамическом анализе результатов поведения системы относительно заданной планом траектории ее функционирования. При выявлении отклонений и в зависимости от их существенности происходит выработка управляющих воздействий. Вводом обратной связи создается замкнутый контур управления.

6. Производственная организация как кибернетическая система

Производственную организацию можно представить в виде кибернетической системы. Кибернетическая система рассматривается практически всегда как сетевая схема связей, которые можно изображать линиями или дугами между подсистемами и элементами. Для таких систем характерны пять признаков.

Первым признаком кибернетической системы является наличие в ней информационной сети. Каналы сети содержат упорядоченную последовательность сигналов, образующих поток информации.

Наличие автономного управления в кибернетической системе является вторым признаком. В информационной сети всегда должен быть координирующий и регулирующий центр или несколько центров, связанных между собой в определенной соподчиненности или иерархии.

Третьим признаком кибернетической системы является наличие саморегулирования. Информация из внешней и внутренней среды кибернетической системы необходима для целей управления, которая поддерживает параметры системы в заданных границах.

В целях получения и обмена информацией с внешней средой и во внутренней среде кибернетическая система должна иметь входы и выходы. Это четвертый признак кибернетической системы.

Пятым признаком кибернетической системы является ее большая сложность. Сложность определяется наличием большого количества элементов, входящих в систему, и информационных связей, обеспечивающих взаимодействие между этими элементами.

Под кибернетической системой понимается система, имеющая информационную сеть со входами и выходами, отличающаяся большой сложностью и обеспечивающая на основе автономного управления ее саморегулирование. Совокупность таких признаков обнаруживается в живых и неживых организованных системах, в том числе в живых организмах, саморегулирующихся машинах и устройствах, коллективах людей и общества в целом.

7. Системный анализ, теория систем

Перечислим этапы системного анализа, а далее подробнее рассмотрим наиболее важные из них [5]:

* определение конфигуратора;

* определение проблемы и проблематики;

* выявление целей;

* формирование критериев;

* генерирование альтернатив;

* построение и использование моделей;

* оптимизация;

* декомпозиция;

* агрегирование.

Конфигуратор. Всякое сложное явление требует разностороннего, многопланового описания, рассмотрения с различных точек зрения. Только совместное (агрегированное) описание в терминах нескольких качественно различающихся языков позволяет охарактеризовать явление с достаточной полнотой. В реальной жизни не бывает проблем чисто физических, химических, экономических, общественных - эти термины обозначают не саму проблему, а выбранную точку зрения на нее. По образному выражению писателя-фантаста П. Андерсона, проблема, сколь бы сложной она ни была, станет еще сложнее, если на нее правильно посмотреть.

Эта многоплановость реальной жизни имеет важные последствия для системного анализа. С одной стороны, системный анализ имеет междисциплинарный характер. Системный аналитик привлекает к исследованию системы данные из любой отрасли знаний, привлекает экспертов любой специальности, если этого потребуют интересы дела. С другой стороны, перед ним встает неизбежный вопрос о допустимой минимизации описания явления.

Конфигуратор - агрегат, состоящий из качественно различных языков описания системы и обладающий тем свойством, что число этих языков минимально, но необходимо для заданной цели.

Метод Делфи. Суть этого метода в том, чтобы с помощью серии последовательных действий - опросов, интервью, мозговых штурмов - добиться максимального консенсуса при определении правильного решения. Анализ с помощью дельфийского метода проводится в несколько этапов, результаты обрабатываются статистическими методами.

Базовым принципом метода является то, что некоторое количество независимых экспертов (часто несвязанных и не знающих друг о друге) лучше оценивает и предсказывает результат, чем структурированная группа (коллектив) личностей. Позволяет избежать открытых столкновений между носителями противоположенных позиций т.к. исключает непосредственный контакт экспертов между собой и, следовательно, групповое влияние, возникающее при совместной работе и состоящее в приспособлении к мнению большинства, даёт возможность проводить опрос экстерриториально, не собирая экспертов в одном месте (например, посредством электронной почты).

Субъекты: группы исследователей, каждый из которых отвечает индивидуально в письменной форме. Организационная группа - сводит мнения экспертов воедино.

Экспертные оценки [expert judgements] - количественные или порядковые оценки процессов или явлений, не поддающиеся непосредственному измерению. Они основываются на суждениях специалистов, поэтому, в принципе, их нельзя считать вполне объективными: на специалиста-эксперта могут воздействовать различные побочные факторы. Разрабатываются научные методы такой обработки индивидуальных Э. о., чтобы они давали в совокупности более или менее объективные ответы. Это достигается путем специально подготовленных методов формирования групп экспертов, продуманных форм вопросов и ответов, приспособленных к обобщению с помощью компьютера. Разработка таких методов в настоящее время вылилась в самостоятельную область науки об управлении.

Размещено на Allbest.ru


Подобные документы

  • Роль Норберта Винера в развитии кибернетики как науки об управлении, получении и преобразовании информации. Определение содержания и основных задач теоретической и технической кибернетики. Особенности взаимодействия управляемой и управляющей системами.

    реферат [1,1 M], добавлен 07.10.2010

  • Использование математических методов в сфере управления, в традиционных экономических расчетах при обосновании потребностей в ресурсах, разработке планов и проектов. Основные признаки иерархической системы управления и количественная оценка решений.

    контрольная работа [57,0 K], добавлен 21.01.2010

  • Задача выбора оптимальной (с точки зрения минимизации стоимости) прокладки транспортных коммуникаций из исходного пункта во все пункты назначения. Создание модели в терминах теории графов, описание волнового алгоритма, алгоритма Дейкстры, их особенности.

    курсовая работа [214,3 K], добавлен 30.09.2009

  • Технология решения задачи с помощью Поиска решения Excel. Отбор наиболее эффективной с точки зрения прибыли производственной программы. Задачи на поиск максимума или минимума целевой функции при ограничениях, накладываемых на независимые переменные.

    лабораторная работа [70,0 K], добавлен 09.03.2014

  • Определение емкости рынка каждого вида продукции и долю каждого сектора в первый и последний период. Наиболее выгодные и невыгодные с точки зрения сбыта сегменты рынка. Прогнозирование динамики объема спроса. План прикрепления потребителей к поставщикам.

    контрольная работа [27,6 K], добавлен 22.01.2013

  • Сущность закона больших чисел. Принцип диверсификации с математической точки зрения. Расчёт среднего ожидаемого дохода и среднего риска двух финансовых операций. Нетто-ставка как вероятность страхового случая. Обеспечение репрезентативности выборки.

    презентация [78,1 K], добавлен 01.11.2013

  • Построение графического дерева решений по установленному критерию оптимальности. Анализ узлов дерева решений с точки зрения доступности информации. Определение вектора приоритетов альтернатив, используя метод анализа иерархий и матрицы парных сравнений.

    контрольная работа [106,4 K], добавлен 09.07.2014

  • Исследование модели поведения на рынке двух конкурирующих фирм, выпускающих аналогичный пользующийся неограниченным спросом товар, с точки зрения теории игр. Определение прибыли игроков. Динамика изменения капитала во времени по секторам экономики.

    контрольная работа [139,0 K], добавлен 20.01.2016

  • ЭМ методы - обобщающее название дисциплин, находящихся на стыке экономики, математики и кибернетики, введенное В.С. Немчиновым. Теория экономической информации. Этапы экономико-математического моделирования. Моделирование экономических функций.

    курс лекций [208,3 K], добавлен 25.01.2010

  • Применение математических, количественных методов для обоснования решений во всех областях целенаправленной человеческой деятельности. Описание метода Минти. Выбор среды разработки. Система программирования Delphi. Параметры программного продукта.

    курсовая работа [961,9 K], добавлен 31.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.