Модель Барриджа и Кнопова

Экспериментальное изучение модели поведения образцов горных пород при нагружении внешним давлением и изменение силы в зависимости от величины регистрируемого изменения длины образца в "виде пилы". Суть двумерной версии модели Барриджа и Кнопова.

Рубрика Экономико-математическое моделирование
Вид доклад
Язык русский
Дата добавления 07.06.2012
Размер файла 345,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Модель Барриджа и Кнопова

Модель Барриджа-Кнопова (Б-К), была создана более 40 лет тому назад с целью объяснить появление повторных ударов при землетрясениях.

барридж кнопов горный порода

Суть модели Б-К можно понять из рисунка, на котором показано, что движущаяся плита соединена с неподвижной плитой посредством N дискретных элементов (блоков), связанных между собой и плитами посредством «пружин». Рассмотрим один из блоков. Идея данной модели заключается в том, что пока на этот блок действует сила, меньшая заданной пороговой, он неподвижен. При достижении порога блок «срывается» скачкообразно. Взаимное влияние блоков, заключающееся в том, что сорвавшийся тянет за собой и другие, может привести к одновременному срыву сразу нескольких соседних элементов системы. Это, по Б-К, и есть «главный удар» землетрясения, в то время как «прыжки» других блоков, это повторные удары, или афтершоки. Модель Б-К исследовалась в лаборатории экспериментально и на компьютере, - численно. В результате было показано, что модель проявляет свойства, присущие экспериментальному закону повторяемости землетрясений Гутенберга-Рихтера. В экспериментах наблюдалось подобие главного удара (main shock), форшоков и афтершоков.

При экспериментальном изучении поведения образцов горных пород при нагружении внешним давлением было обнаружено, что действующая на образец сила изменяется в зависимости от величины регистрируемого изменения длины образца в «виде пилы». Б-К модель нашла геологическое объяснение этим результатам как «прерывистое скольжение» (stick-slip) двух плит друг по другу вдоль разлома при наличии трения.

Несмотря на то, что модель Б-К была предложена еще во второй половине прошлого века, интерес к ней у ученых возрос лишь в последние годы. Это объясняется тем, что наметились определенные успехи в физике нелинейных явлений, в частности, в области самоорганизующихся систем. Модель Б-К была признана как вполне подходящая основа для отработки этих идей и моделирования соответствующих систем. Кроме этого, в настоящее время принято считать, что эта модель, из всех других, наиболее адекватна описывает процесс землетрясения.

Все Б-К модели подчиняются экспериментальному закону Гутенберга-Рихтера, согласно которому число землетрясений N с энергией Е:

Опишем детально двумерную версию модели Б-К. Все блоки системы находятся на платформе. Между платформой и блоками есть трение. Каждый блок системы соединен с четырьмя соседями с помощью пружин. Также, каждый блок еще одной пружиной присоединен к верхней большой движущейся платформе. Движение блоков вызывается относительным смещением двух плит. Когда сила, действующая на блок становится больше некоторой пороговой (Fcritical, максимальное значение трения покоя), блок «срывается». В модели предполагается, что после срыва на блок действует нулевая сила (т.е. равнодействующая равна нулю), а силы, действующие на соседей, пересчитываются. Это может привести к срыву кого-то из соседей, а значит к цепной реакции (землетрясению). Общее количество сорвавшихся в одном таком процессе ячеек и задает размер соответствующего землетрясения.

Для начала, представим данную двухмерную блочно-пружинную модель в виде клеточного автомата. Зададим массив блоков размером L1xL2, каждому блоку поставим в соответствие его координаты (i, j). 1?i?L1, 1?j?L2.

Через xi,j обозначено смещение блока (i, j) от положения равновесия. Полная сила, приложенная к этому блоку, задается выражением:

Где К1, К2, КL - коэффициенты жесткости соответствующих пружин, xi,j - смещение блока (i, j) относительно положения равновесия. При движении одной из плит относительно другой сила, действующая на каждый блок, растет постоянно, пока не достигнет критического значения, после чего начнется процесс релаксации.

Рассмотрим блок (i, j). Пусть приложенная к нему сила больше критической, т.е.:

Пусть 0 смещение соответствующего блока от положения равновесия сразу после срыва, тогда:

Будем считать, что соседние блоки не могут срываться в тот же самый момент, откуда следует, что:

Рассмотрим перераспределение сил на соседние блоки на примере (i, j+1):

Таким образом, изменение приложенной силы из-за срыва (i, j) - ячейки равно:

,

где

Из написанных выше выражений можно получить:

Откуда:

Таким образом, получается, что перераспределение напряжений после срыва блока (i, j) задается соотношениями:

где:

Можно заметить, что при б1= б2 данные правила релаксации похожи на законы модели BTW.

При KL>0 перераспределение силы будет неконсервативным. Термины «консервативная» и «неконсервативная» в данном случае применяются только к силе, но не к энергии.

Размещено на Allbest.ru


Подобные документы

  • Эффективность налоговых ставок. Кривая Лаффера и её приложение к экономике РФ. Математическая модель зависимости поступлений в бюджет от величины налоговой ставки. Компьютерная реализация модели в среде Delphi и возможность ее применения на практике.

    курсовая работа [210,7 K], добавлен 12.03.2008

  • Модели зависимости спроса от дохода (кривые Энгеля). Эластичность спроса по доходу. Модели производственных затрат и прибыли предприятия, точка безубыточности. Оптимизационные задачи с линейной зависимостью между переменными. Модель мультипликатора.

    презентация [592,2 K], добавлен 07.08.2013

  • Статистический и корреляционный анализ активов, пассивов, прибыли, ВВП. Выбор формы моделей, отражающих зависимости между показателями. Построение и анализ регрессионной модели на основании реальных статистических данных, построение уравнения регрессии.

    курсовая работа [494,7 K], добавлен 20.11.2013

  • Модели распределения доходов. Количественный подход к анализу полезности и спроса. Отношение предпочтения и функция полезности. Кривые безразличия, решение задачи оптимального выбора потребителя. Функции спроса, изменение цен и коэффициент эластичности.

    курсовая работа [412,7 K], добавлен 11.02.2011

  • Статистический анализ в Excel. Очистка информации от засорения, проверка закона распределения, корреляционный и регрессионный анализ двумерной и трехмерной модели. Математическая модель и решение задачи оптимального управления экономическим процессом.

    контрольная работа [447,2 K], добавлен 04.11.2009

  • Данные для разработки трендовой модели изменения объемов грузооборота предприятий транспорта. Проверка гипотезы на наличие тенденции. Понятие и обоснование периода упреждения прогноза. Выбор оптимальной прогнозной модели по коэффициенту детерминации.

    курсовая работа [1008,3 K], добавлен 01.10.2014

  • Построение имитационной схемы для модели Солоу и прослеживание ее динамики на протяжении 30 лет. Вычисление стационарного значения фондовооруженности. Проверка "золотого правила накопления". Изучение поведения модели при смене некоторых параметров.

    лабораторная работа [722,3 K], добавлен 11.12.2012

  • Исследование зависимости себестоимости 1 тонны литья от брака литья по 11 литейным цехам заводов. Линейная модель регрессии. Результаты вспомогательных расчетов для построения гиперболической и параболической модели регрессии. Спецификация модели.

    курсовая работа [140,8 K], добавлен 15.01.2013

  • Сущность метода наименьших квадратов. Экономический смысл параметров кривой роста (линейная модель). Оценка погрешности и проверка адекватности модели. Построение точечного и интервального прогноза. Суть графического построения области допустимых решений.

    контрольная работа [32,3 K], добавлен 23.04.2013

  • Необходимость использования фиктивных переменных. Авторегрессионые модели: модель адаптивных ожиданий и частичной корректировки. Метод инструментальных переменных. Полиномиально распределенные лаги Алмон. Сравнение двух регрессий. Суть метода Койка.

    контрольная работа [176,1 K], добавлен 28.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.