Методы сетевого планирования
Детерминированные сетевые модели и вероятностные модели при планировании. Диаграмма Ганта и циклограмма, показывающие ход работы. Методы критического пути, имитационного моделирования, оценки-пересмотра планов PERT, секторной метод для сетевого графика.
Рубрика | Экономико-математическое моделирование |
Вид | доклад |
Язык | русский |
Дата добавления | 07.05.2012 |
Размер файла | 19,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Cетевое планирование
1. Методы сетевого планирования
Существуют разные методы сетевого планирования.
Модели, в которых взаимная последовательность и продолжительности работ заданы однозначно, называются детерминированными сетевыми моделями. К наиболее популярным детерминированным моделям относятся метод построения диаграмм Ганта и метод критического пути (CPM).
Если о продолжительности каких-то работ заранее нельзя задать однозначно или если могут возникнуть ситуации, при которых изменяется запланированная заранее последовательность выполнения задач проекта, например, существует зависимость от погодных условий, ненадежных поставщиков или результатов научных экспериментов, детерминированные модели неприменимы. Чаще всего такие ситуации возникают при планировании строительных, сельскохозяйственных или научно-исследовательских работ. В этом случае используются вероятностные модели, которые делятся на два типа:
· не альтернативные - если зафиксирована последовательность выполнения работ, а продолжительность всех или некоторых работ характеризуется функциями распределения вероятности;
· альтернативные - продолжительности всех или некоторых работ и связи между работами носят вероятностный характер.
К наиболее распространенным методам вероятностного сетевого планирования относятся:
· метод оценки и анализа программ (PERT);
· метод имитационного моделирования или метод Монте-Карло;
· метод графической оценки и анализа программ (GERT).
1.1 Диаграмма Ганта и циклограмма
Одним из наиболее распространенных способов наглядного представления производственного процесса или проекта во времени является линейный или ленточный календарный график - Диаграмма Ганта.
Диаграмма Ганта - горизонтальная линейная диаграмма, на которой задачи проекта представляются протяженными во времени отрезками, характеризующимися датами начала и окончания, задержками и, возможно, другими временными параметрами.
Диаграмма Ганта представляет собой график, в котором процесс представлен в двух видах. В левой части проект представлен в виде списка задач (работ, операции) проекта в табличном виде с указанием названия задачи и длительности ее выполнения, а часто и работ, предшествующих той или иной задаче. В правой части каждая задача проекта, а точнее длительность ее выполнения, отображается графически, обычно в виде отрезка определенной длины с учетом логики выполнения задач проекта. (см. Рис. 4)
В верхней, правой части диаграммы Ганта располагается шкала времени. Длина отрезка и его расположение на шкале времени определяют время начала и окончания каждой задачи. Кроме того, взаимное расположение отрезков задач показывает, следуют ли задачи одна за другой или происходит их параллельное выполнение.
Наиболее широко график Ганта использовался в строительстве. В качестве расписания работ график Ганта вполне пригоден, но когда возникает необходимость изменения структуры работ, приходится все работы пересматривать заново, учитывая все многообразие возможных технологических связей между ними. И чем сложнее работы, тем сложнее использовать график Ганта. Тем не менее даже после появления сетевых моделей график Ганта продолжает использоваться как средство представления временных аспектов работ на конечных стадиях календарного планирования, когда продолжительность проекта оптимизирована с помощью сетевых моделей. График Ганта может также использоваться для элементарного контроля работ. Он используется для отражения текущего состояния проекта (статуса проекта) с точки зрения соблюдения сроков.
Циклограмма представляет собой линейную диаграмму продолжительности работ, которая отображает работы в виде наклонной линии в двухмерной системе координат, одна ось которой изображает время, а другая - объемы или структуру выполняемых работ.
Циклограммы активно использовались до 80-х годов XX века в основном в строительной отрасли, особенно при организации поточного строительства. Существуют циклограммы ритмичного и неритмичного потока. Равно ритмичным потоком называют такой поток, в котором все составляющие потоки имеют единый ритм, т.е. одинаковую продолжительность выполнения работ на всех захватках. (Рис. 5)
В настоящее время циклограммы практически не используются в управленческой практике как по причине недостатков, указанным ниже, так и по причине неактуальности поточного строительства.
Эти модели просты в исполнении и наглядно показывают ход работы. Однако они не могут отразить сложности моделируемого процесса - форма модели вступает в противоречие с ее содержанием. Основными недостатками являются:
* отсутствие наглядно обозначенных взаимосвязей между отдельными работами (зависимость работ, положенная в основу графика, выявляется только один раз в процессе составления графика (модели) и фиксируется как неизменная; в результате такого подхода заложенные в графике технологические и организационные решения принимаются обычно как постоянные и теряют свое практическое значение после начала их реализации);
* негибкость, жесткость структуры линейного графика, сложность его корректировки при изменении условий (необходимость многократного пере составления графика, которое, как правило, из-за отсутствия времени не может быть выполнено);
* невозможность четкого разграничения ответственности руководителей различных уровней (информация, поступившая о ходе разработки, содержит в себе на любом уровне слишком много сведений, которые трудно оперативно обработать);
* сложность вариантной проработки и ограниченная возможность прогнозирования хода работ.
1.2 Метод критического пути (МКП)
Метод критического пути позволяет рассчитать возможные календарные графики выполнения комплекса работ на основе описанной логической структуры сети и оценок продолжительности выполнения каждой работы, определить критический путь для проекта в целом.
В основе метода лежит определение наиболее длительной последовательности задач от начала проекта до его окончания с учетом их взаимосвязи. Задачи лежащие на критическом пути (критические задачи) имеют нулевой резерв времени выполнения и в случае изменения их длительности изменяются сроки всего проекта. В связи с этим при выполнении проекта критические задачи требуют более тщательного контроля, в частности, своевременного выявления проблем и рисков, влияющих на сроки их выполнения и, следовательно, на сроки выполнения проекта в целом. В процессе выполнения проекта критический путь проекта может меняться, так как при изменении длительности задач некоторые из них могут оказаться на критическом пути.
Метод критического пути исходит из того, что длительность операций можно оценить с достаточно высокой степенью точности и определенности.
Основным достоинством метода критического пути является возможность манипулирования сроками выполнения задач, не лежащих на критическом пути.
Календарное планирование по МКП требует определенных входных данных. После их ввода производится процедура прямого и обратного прохода по сети и вычисляется выходная информация. (Рис. 6).
Для расчета календарного графика по МКП требуются следующие входные данные:
- набор работ;
- зависимости между работами;
- оценки продолжительности каждой работы;
- календарь рабочего времени проекта (в наиболее общем случае возможно задание собственного календаря для каждой работы);
- календари ресурсов;
- ограничения на сроки начала и окончания отдельных работ или этапов;
- календарная дата начала проекта.
Прямой расчет - определение минимально возможного времени реализации проекта начинается с работ, не имеющих предшественников. В ходе его определяется ES (ранний старт) и EF (ранний финиш). Ранние начала и ранние окончания работ определяются последовательно, слева направо по графику, то есть от исходного события сети к завершающему.
Используются формулы:
ES?=0
EF=ES+Dur (где Dur - продолжительность)
ESi=EFi-1, при условии что операция (i) не является операцией слияния.
При слиянии: ESi=maxEFi-1
Обратный расчет. Определяются LS (поздний старт), LF (поздний финиш) и R (резерв). Поздние начала и поздние окончания определяются в обратном порядке - от завершающегося события графика к исходящему, то есть справа налево.
EFN=LFN
LSi=LFi-Dur
LFi-1= LSi,
при условии, что (i-1) не является операцией дробления.
При дроблении:
LFi-1= minLSi
При правильных расчетах должно выполняться условие ES?=LS?
LF-EF
R=
LS-ES
Таким образом, критический путь - это последовательность операций, не имеющих резерва.
Анализ по методу критического пути представляет собой эффективный метод оценки:
· Задач, которые необходимо решить.
· Возможности параллельного выполнения работ.
· Наименьшего времени выполнения проекта.
· Производственных ресурсов, необходимых для выполнения проекта.
· Последовательности выполнения работ, включая составление графиков и определение продолжительности выполнения работ.
· Очередность решения задач.
· Наиболее эффективного способа сокращения продолжительности выполнения проекта в случае его срочности.
Эффективность анализа по методу критического пути может повлиять на результат проекта, будет он успешным или неудачным. Также анализ может быть очень полезен для оценки важности проблемы, с которой можно столкнуться в ходе внедрения плана.
1.3 Метод имитационного моделирования (метод Монте-Карло)
Метод Монте-Карло (методы Монте-Карло, ММК) -- общее название группы численных методов, основанных на получении большого числа реализаций стохастического (случайного) процесса, который формируется таким образом, чтобы его вероятностные характеристики совпадали с аналогичными величинами решаемой задачи.
Суть данного метода состоит в том, что результат испытания зависит от значения некоторой случайной величины, распределенной по заданному закону. Поэтому результат каждого отдельного испытания также носит случайный характер. Проведя серию испытаний, получают множество частных значений наблюдаемой характеристики (выборку). Полученные статистические данные обрабатываются и представляются в виде численных оценок интересующих исследователя величин (характеристик системы).
Важной особенностью данного метода является то, что его реализация практически невозможна без использования компьютера.
Метод Монте-Карло имеет две особенности:
1) простая структура вычислительного алгоритма;
2) погрешность вычислений, как правило, пропорциональна D/N, где D - некоторая постоянная, N - число испытаний. Отсюда видно, что для того, чтобы уменьшить погрешность в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N (т.е. объем работы) в 100 раз.
Добиться высокой точности таким путем невозможно. Поэтому обычно говорят, что метод Монте-Карло особенно эффективен при решении тех задач, в которых результат нужен с небольшой точностью (5-10%). Способ применения метода Монте-Карло довольно прост. Чтобы получить искусственную случайную выборку из совокупности величин, описываемой некоторой функцией распределения вероятностей:
1) Задаются пределы изменения времени реализации каждой операции.
2) Задается конкретные времена реализации для каждой операции с помощью датчика случайных чисел.
3) Рассчитывается критический путь и время реализации всего проекта.
4) Переход на операцию "2".
Результатом применения метода Монте-Карло является:
· Гистограмма, которая показывает вероятность времени реализации проекта. (Рис. 7)
· Индекс критичности
1.4 Метод оценки и пересмотра планов (ПЕРТ, PERT)
Метод оценки и пересмотра планов PERT представляет собой разновидность анализа по методу критического пути с более критичной оценкой продолжительности каждого этапа проекта. При использовании этого метода необходимо оценить наименьшую возможную продолжительность выполнения каждой работы, наиболее вероятную продолжительность и наибольшую продолжительность на тот случай, если продолжительность выполнения этой работы будет больше ожидаемой. Метод ПЕРТ допускает неопределенность продолжительности операций и анализирует влияние этой неопределенности на продолжительность работ по проекту в целом.
Этот метод используется, когда для операции сложно задать и определить точную длительность.
Особенность метода PERT заключается в возможности учета вероятностного характера продолжительностей всех или некоторых работ при расчете параметров времени на сетевой модели. Он позволяет определять вероятности окончания проекта в заданные периоды времени и к заданным срокам.
Вместо одной детерминированной величины продолжительности для работ проекта задаются (как правило, экспертным путем) три оценки длительности:
· оптимистическая (работа не может быть выполнена быстрее, чем за tа);
· пессимистическая (работа не может быть выполнена медленнее, чем за tb);
· наиболее вероятная tn
Затем вероятностная сетевая модель превращается в детерминированную путем замены трех оценок продолжительностей каждой из работ одной величиной, называемой ожидаемой продолжительностью tожид и рассчитываемой как средневзвешенное арифметическое трех экспертных оценок длительностей данной работы:
pert сетевой модель планирование имитационный
tожид=( tа + tb + tn)/6
Определяется критический путь на основании для каждой tожид операции.
Определяется среднее квадратичное отклонение каждой операции:
?t=( tа + ta) /6
Среднее квадратичное отклонение времени реализации всего проекта:
?пр=v??tІ
1.5 Метод графической оценки и анализа (GERT)
Метод графической оценки и анализа (метод GERT) применяется в тех случаях организации работ, когда последующие задачи могут начинаться после завершения только некоторого числа из предшествующих задач, причем не все задачи, представленные на сетевой модели, должны быть выполнены для завершения проекта.
Основу применения метода GERT составляет использование альтернативных сетей, называемых в терминах данного метода GERT-cетями.
По существу GERT-сети позволяют более адекватно задавать сложные процессы строительного производства в тех случаях, когда затруднительно или невозможно (по объективным причинам) однозначно определить какие именно работы и в какой последовательности должны быть выполнены для достижения намеченного результата (т.е. существует много вариантность реализации проекта).
Следует отметить, что "ручной" расчет GERT-сетей, моделирующих реальные процессы, чрезвычайно сложен, однако программное обеспечение для вычисления сетевых моделей такого типа в настоящее время, к сожалению, не распространено.
1.6 Дополнительные методы расчета сетевого графика
Расчет сетевого графика методом диагональной таблицы (иногда этот метод называют матричным) ведется с ориентацией на события, а не на работы. В начале вычерчивается квадратная сетка, в которой число строк и число граф равно числу событий графика. (Рис. 8.)Затем слева, сверху вниз, проставляются все номера начальных событий (индекс i), а вверху слева направо -- номера конечных событий (индекс j). В ячейках на пересечении начального и конечного событий проставляются значения продолжительности работ (ti-j).
Так же существует секторной метод. Он предполагает изображение сетевого графика с увеличенными кружками, разделенными на шесть секторов, которые в дальнейшем могут разбиваться на подсекторы. В верхнем центральном секторе ставится номер события, в нижнем -- календарная дата начала работ. В два верхних боковых сектора вносятся ранние начала и окончания работ, а в два боковых нижних - соответственно поздние начала и окончания работ. Слева принято записывать окончания работ, входящих в данное событие, справа - начала работ, выходящих из данного события. (Рис. 9)
Расчет показателей графика ведется двумя проходами: прямым от исходного события до завершающего последовательно по всем путям графика и обратным - от завершающего события до исходного. При прямом проходе определяются ранние начала и окончания работ. При обратном проходе - поздние начала и окончания работ.
Существуют и другие методы расчета сетевого графика, предполагающие расчет аналитических параметров прямо на графике в кружках событий, разделенных на несколько секторов. Один из таких методов - четырехсекторный метод - предполагает разделение кружка события на четыре сектора. Существует несколько модификаций четырехсекторного метода.
Как уже было сказано ранее, в настоящее время происходит расширение методов и приемов использования сетевых методов.
Размещено на Allbest.ru
Подобные документы
Основные параметры сетевой модели системы планирования и управления. Правила построения сетевых графиков. Характеристики элементов сетевой модели. Метод пересмотра планов. Численная реализация задачи сетевого планирования. Метод графической оценки.
реферат [154,4 K], добавлен 19.03.2015Анализ комплекса работ и оптимизация сетевой модели по критерию минимума времени при заданных ресурсах. Построение сетевого графика, определение критического пути. Отображение временных параметров событий на графике. Проведение оптимизации по времени.
контрольная работа [192,0 K], добавлен 15.04.2014Построение сетевой модели. Упорядочивание сетевого графика. Определение критического пути. Временные характеристики сетевого графика. Современное сетевое планирование в условиях неопределенности. Оптимизация сетевого графика по схеме "Время-стоимость".
курсовая работа [537,0 K], добавлен 28.04.2014Понятие, правила построения и направления применения сетевого планирования. Особенности методов критического пути, статистических испытаний (способ Монте-Карло), оценки и пересмотр планов и графического анализа. Принципы построения диаграммы Ганта.
курсовая работа [1,1 M], добавлен 24.10.2010Общая характеристика и модели сетевого планирования и управления. Оптимизация сетевых моделей по критерию "время-затраты". Показатели элементов сетевой модели. Оптимизация сетевого графика - процесс улучшения организации выполнения комплекса работ.
лекция [313,1 K], добавлен 09.03.2009Описание компьютерного моделирования. Достоинства, этапы и подходы к построению имитационного моделирования. Содержание базовой концепции структуризации языка моделирования GPSS. Метод оценки и пересмотра планов (PERT). Моделирование в системе GPSS.
курсовая работа [594,0 K], добавлен 03.03.2011Понятие сетевого графика, его сущность и особенности, назначение и применение. Правила построения сетевого графика, его порядок и этапы. Способы сокращения длительности выполнения проекта. Критерии и средства осуществления оптимизации сетевого графика.
реферат [37,2 K], добавлен 25.01.2009Сравнение экономико-математических методов сетевого планирования при решении практических задач управления. Временные характеристики и правила построения сетевых графиков. Оптимизация проекта по времени и стоимости. Особенности метода критического пути.
курсовая работа [1,5 M], добавлен 29.03.2015Основы экономико-математического моделирования управления фирмой. Понятие и роль управления проектами. Методы построения сетевых моделей и календарных планов. Оптимизация сетевых моделей. Корректировка стоимостных и ресурсных параметров сетевого графика.
курсовая работа [539,3 K], добавлен 21.12.2014Проблема автоматизации расчёта сетевого графика. Вычисление критического пути с помощью ЭВМ. Табличный метод решения проблемы, метод графов. Составление алгоритма, написание программы и решение задачи. графический интерфейс пользователя, ввод данных.
курсовая работа [39,7 K], добавлен 20.11.2008