Экономические модели

Содержание экономико-математических моделей и методика их построения. Принципы классификации целей моделирования. Основные этапы операционного исследования и построения математической модели. Однономенклатурные модели поставки продукции потребителям.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 28.03.2012
Размер файла 222,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Содержание экономико-математических моделей и методика их построения

Моделью называется объект-заместитель, который в определенных условиях может заменять объект-оригинал, воспроизводя интересующие нас свойства и характеристики оригинала, причем имеет существенные преимущества:

- дешевизну;

- наглядность;

- легкость оперирования и т.п.

В теории моделей моделированием называется результат отображения одной абстрактной математической структуры на другую - тоже абстрактную, либо как результат интерпретации первой модели в терминах и образах второй.

Развитие понятия модели вышло за пределы математических моделей и стало относиться к любым знаниям и представлениям о мире. Поскольку модели играют чрезвычайно важную роль в организации любой деятельности человека их можно разделить на познавательные и прагматические, что соответствует делению целей на теоретические и практические.

Познавательная модель ориентирована на приближении модели к реальности, которую эта модель отображает. Познавательные модели являются формой организации и представления знаний, средством соединения новых знаний с имеющимися. Поэтому при обнаружении расхождения между моделью и реальностью встает задача устранения этого расхождения с помощью изменения модели.

Прагматические модели являются средством управления, средством организации практических действий, способом представления образцово правильных действий или их результата, т.е. являются рабочим представлением целей. Поэтому при обнаружении расхождения между моделью и реальностью надо направить усилия на изменение реальности так, чтобы приблизить реальность к модели. Таким образом, прагматические модели носят нормативный характер, играют роль образца, под который подгоняется действительность. Примерами прагматических моделей служат планы, кодексы законов, рабочие чертежи и т.д.

Другим принципом классификации целей моделирования может служить деление моделей на статические и динамические.

Для одних целей нам может понадобиться модель конкретного состояния объекта в определенный момент времени, своего рода «моментальная фотография» объекта. Такие модели называются статическими. Примером являются структурные модели систем.

В тех же случаях, когда возникает необходимость в отображении процесса изменения состояний, требуются динамические модели систем.

В распоряжении человека имеется два типа материалов для построения моделей - средства самого сознания и средства окружающею материального мира. Соответственно этому модели делятся на абстрактные (идеальные) и материальные.

Очевидно, что к абстрактным моделям относятся языковые конструкции и математические модели. Математические модели обладают наибольшей точностью, но чтобы дойти до их использования в данной области, необходимо получить достаточное количество знаний.

Модель, с помощью которой успешно достигается поставленная цель, будем называть адекватной этой цепи. Адекватность означает, что требования полноты, точности и правильности (истинности) модели выполнены не вообще, а лишь в той мере, которая достаточна достижения поставленной цели.

Впервые математические модели были использованы для решения практической задачи в 30-х годах в Великобритании при создании системы противовоздушной обороны. Для разработки данной системы были привлечены ученые различных специальностей. Система создавалась в условиях неопределенности относительно возможных действий противника, поэтому исследования проводились на адекватных математических моделях. В это время впервые был применен термин: «операционное исследование», подразумевающий исследования военной операции. В последующие годы операционные исследования или исследования операций развиваются как наука, результаты которой применяются для выбора оптимальных решений при управлении реальными процессами и системами.

Под термином «исследование операций» будем понимать применение математических, количественных методов для обоснования решений во всех областях целенаправленной человеческой деятельности.

Можно выделить следующие основные этапы операционного исследования:

· наблюдение явления и сбор исходных данных;

· постановка задачи;

· построение математической модели;

· расчет модели;

· тестирование модели и анализ выходных данных. Если полученные результаты не удовлетворяют исследователя, то следует либо вернуться на этап 3, т.e. предложить для решения задачи другую математическую модель; либо вернуться на этап 2, т.e. поставить задачу более корректно;

· применение результатов исследований.

Таким образом, операционное исследование является итерационным процессом, каждый следующий шаг которого приближает исследователя к решению стоящей перед ним проблемы. В центре операционного исследования находятся построение и расчет математической модели.

Математическая модель - это система математических соотношений, приближенно, в абстрактной форме описывающих изучаемый процесс или систему.

Экономико-математическая модель - это математическая модель, предназначенная для исследования экономической проблемы.

В настоящее время математические модели применяются для анализа, прогнозирования и выбора оптимальных решений в различных областях экономики. Это планирование и оперативное управление производством, управление трудовыми ресурсами, управление запасами, распределение ресурсов, планировка и размещение объектов, руководство проектом, распределение инвестиций и т.п.

Можно выделить следующие основные этапы построения математической модели:

· Определение цели, т.e. чего хотят добиться, решая поставленную задачу.

· Определение параметров модели, т.е. заранее известных фиксированных факторов, на значения которых исследователь не влияет.

· Формирование управляющих переменных, изменяя значение которых можно приближаться к поставленной цели. Значения управляющих переменных являются решениями задачи.

· Определение области допустимых решений, т.е. тех ограничений, которым должны удовлетворять управляющие переменные.

· Выявление неизвестных факторов, т.е. величин, которые могут изменяться случайным или неопределенным образом.

· Выражение цели через управляющие переменные, параметры и неизвестные факторы, т.e. формирование целевой функции, называемой также критерием эффективности или критерием оптимальности задачи.

Решить задачу - это значит найти такое оптимальное решение, чтобы при данных фиксированных параметрах и с учетом неизвестных факторов значения критерия эффективности было по возможности максимальным (минимальным).

Таким образом, оптимальное решение - это решение, предпочтительное перед другими по определенному критерию эффективности (одному или нескольким).

Перечислим некоторые основные принципы построения математической модели:

Необходимо соизмерять точность и подробность модели, во-первых, с точностью тex исходных данных, которыми располагает исследователь, и, во-вторых, с теми результатами, которые требуется получить.

Математическая модель должна отражать существенные черты исследуемого явления и при этом не должна его сильно упрощать.

Математическая модель не может быть полностью адекватна реальному явлению, поэтому для его исследования лучше использовать несколько моделей, для построения которых применены разные математические методы. Если при этом получаются сходные результаты, то исследование заканчивается. Если результаты сильно различаются, то следует пересмотреть постановку задачи.

Любая сложная система всегда подвергается малым внешним и внутренним воздействиям, следовательно, математическая модель должна быть устойчивой (сохранять свойства и структуру при этих воздействиях).

По числу критериев эффективности математические модели делятся на однокритериальные и многокритериальные. Многокритериальные математические модели содержат два и более критерия.

По учету неизвестных факторов математические модели делятся на детерминированные, стохастические и модели с элементами неопределенности.

В стохастических моделях неизвестные факторы - это случайные величины, для которых известны функции распределения и различные статистические характеристики (математическое ожидание, дисперсия, среднеквадратическое отклонение и т.п.). Среди стохастических характеристик можно выделить:

- модели стохастического программирования, в которых либо в целевую функцию, либо в ограничения входят случайные величины;

- модели теории случайных процессов, предназначенные для изучения процессов, состояние которых в каждый момент времени является случайной величиной;

- модели теории массового обслуживания, в которой изучаются многоканальные системы, занятые обслуживанием требований. Также - к стохастическим моделям можно отнести модели теории полезности, поиска и принятия решений.

Для моделирования ситуаций, зависящих от факторов, для которых невозможно собрать статистические данные и значения которых не определены, используются модели с элементами неопределенности.

В моделях теории игр задача представляется в виде игры, в которой участвуют несколько игроков, преследующих разные цели, например, организацию предприятия в условиях конкуренции.

В имитационных моделях реальный процесс разворачивается в машинном времени, и прослеживаются результаты случайных воздействии на него, например, организация производственного процесса.

В детерминированных моделях неизвестные факторы не учитываются. Несмотря на кажущуюся простоту этих моделей, к ним сводятся многие практические задачи, в том числе большинство экономических задач. По виду целевой функции и ограничений детерминированные модели делятся на: линейные, нелинейные, динамические и графические.

В линейных моделях целевая функция и ограничения линейны по управляющим переменным. Построение и расчет линейных моделей являются наиболее развитым разделом математического моделирования, поэтому часто к ним стараются свести и другие задачи либо на этапе постановки, либо в процессе решения. Для линейных моделей любого вида и достаточно большой размерности известны стандартные методы решения.

Hелинейные модели - это модели, в которых либо целевая функция, либо какое-нибудь из ограничений (либо все ограничения) нелинейны по управляющим переменным. Для нелинейных моделей нет единого метода расчета. В зависимости от вида нелинейности, свойств функции и ограничений можно предложить различные способы решения. Однако может случится и так, что для поставленной нелинейной задачи вообще не существует метода расчета. В этом случае задачу следует упростить, либо сведя ее к известным линейным моделям, либо просто линеаризовав модель.

В динамических моделях, в отличие от статических линейных и нелинейных моделей, учитывается фактор времени. Критерий оптимальности в динамических моделях может быть самого общего вида (и даже вообще не быть функцией), однако для него должны выполняться определенные свойства. Расчет динамических моделей сложен, и для каждой конкретной задачи необходимо разрабатывать специальный алгоритм решения.

Графические модели - используются тогда, когда задачу удобно представить в виде графической структуры.

2. Однономенклатурные модели поставки продукции потребителям

моделирование поставка продукция методика

Сетевой моделью (другие названия: сетевой график, сеть) называется экономико-компьютерная модель, отражающая комплекс работ (операций) и событий, связанных с реализацией некоторого проекта (научно-исследовательского, производственного и др.), в их логической и технологической последовательности и связи.

Анализ сетевой модели, представленной в графической или табличной (матричной) форме, позволяет, во-первых, более четко выявить взаимосвязи этапов реализации проекта и во-вторых, определить наиболее оптимальный порядок выполнения этих этапов в целях, например, сокращения сроков выполнения всего комплекса работ.

Математический аппарат сетевых моделей базируется на теории графов.

Графом называется совокупность двух конечных множеств: - множества точек, которые называются вершинами, и множества пар вершин, которые называются ребрами. Если рассматриваемые пары вершин являются упорядоченными, т.е. на каждом ребре задается направление, то граф называется ориентированным; в противном случае - неориентированным.

Последовательность неповторяющихся ребер, ведущая от некоторой вершины к другой, образует путь.

Граф называется связным, если для любых двух его вершин существует путь, их соединяющий; в противном случае граф называется несвязным.

В экономике чаще всего используются два вида графов: дерево и сеть.

Дерево представляет собой связный граф без циклов, имеющий исходную вершину (корень) и крайние вершины; пути от исходной вершины к крайним вершинам называются ветвями.

Сеть - это ориентированный конечный связный граф, имеющий начальную вершину (источник) и конечную вершину (сток). Таким образом, сетевая модель представляет собой граф вида «сеть».

В экономических исследованиях сетевые модели возникают при моделировании экономических процессов методами сетевого планирования и управления (СПУ).

Объектом управления в системах сетевого планирования и управления являются коллективы исполнителей, располагающих определенными ресурсами и выполняющих определенный комплекс операций, который призван обеспечить достижение намеченной цели, например, разработку нового изделия, строительства объекта и т.п.

Основой сетевого планирования и управления является сетевая модель (СМ), в которой моделируется совокупность взаимосвязанных работ и событий, отображающих процесс достижения определенной цели. Она может быть представлена в виде графика или таблицы.

Основные понятия сетевой модели:

· событие,

· работа

· путь.

Работа характеризует материальное действие, требующее использования ресурсов, или логическое, требующее лишь взаимосвязи событий. При графическом представлении работа изображается стрелкой, которая соединяет два события. Она обозначается парой заключенных в скобки чисел (i, j), где i - номер события, из которого работа выходит, аj - номер события, в которое она входит. Работа не может начаться раньше, чем свершится событие, из которого она выходит. Каждая работа имеет определенную продолжительность t.

К работам относятся также такие процессы, которые не требуют ни ресурсов, ни времени выполнения. Они заключаются в установлении логической взаимосвязи работ и показывают, что одна из них непосредственно зависит от другой; такие работы называются фиктивными и на графике изображаются пунктирными стрелками.

Событиями называются результаты выполнения одной или нескольких работ. Они не имеют протяженности во времени. Событие свершается в тот момент, когда оканчивается последняя из работ, входящая в него. События обозначаются одним числом и при графическом представлении сетевая модель изображаются кружком (или иной геометрической фигурой), внутри которого проставляется его порядковый номер (i = 1, 2,…, n).

В сетевой модели имеется начальное событие (с номером 1), из которого работы только выходят, и конечное событие (с номером N), в которое работы только входят.

Путь - это цепочка следующих друг за другом работ, соединяющих начальную и конечную вершины. Продолжительность пути определяется суммой продолжительностей составляющих его работ. Путь, имеющий максимальную длину, называют критическим и обозначают LKp, а его продолжительность - tкр. Работы, принадлежащие критическому пути, называются критическими. Их несвоевременное выполнение ведет к срыву сроков всего комплекса работ.

Cетевая модель имеют ряд характеристик, которые позволяют определить степень напряженности выполнения отдельных работ, а также всего их комплекса и принять решение о перераспределении ресурсов.

Сетевое планирование в условиях неопределенности.

Продолжительность выполнения работ часто трудно задать точно и потому в практической работе вместо одного числа (детерминированная оценка) задаются две оценки - минимальная и максимальная.

Минимальная (оптимистическая) оценка tmin(i, j) характеризует продолжительность выполнения работы при наиболее благоприятных обстоятельствах, а максимальная (пессимистическая) tmin(i, j) - при наиболее неблагоприятных. Продолжительность работы в этом случае рассматривается, как случайная величина, которая в результате реализации может принять любое значение в заданном интервале. Такие оценки называются вероятностными (случайными), и их ожидаемое значение tox оценивается по формуле (при бета-распределении плотности вероятности).

На основе оценок можно рассчитать все характеристики СМ, однако они будут иметь иную природу, будут выступать как средние характеристики.

При достаточно большом количестве работ можно утверждать (а при малом - лишь предполагать), что общая продолжительность любого, в том числе и критического, пути имеет нормальный закон распределения со средним значением, равным сумме средних значений продолжительности составляющих его работ, и дисперсией, равной сумме дисперсий этих же работ.

Кроме обычных характеристик СМ, при вероятностном задании продолжительности работ можно решить две дополнительные задачи:

1) определить вероятность того, что продолжительность критического пути tкр не превысит заданного директивного уровня Т;

2) определить максимальный срок выполнения всего комплекса работ Т при заданном уровне вероятности р.

Первая задача решается на основе интеграла вероятностей Лапласа Ф(х) использованием формулы:

P (tkp < T) = 0,5 + 0,5 Ф(z),

где нормированное отклонение случайной величины: z = (Т - tKp)/SKp;

SKp - среднеквадратическое отклонение, вычисляемое как корень квадратный из дисперсии продолжительности критического пути.

При достаточно большой полученной величине вероятности (более 0,8) можно с высокой степенью уверенности предполагать своевременность выполнения всего комплекса работ.

Для решения второй задачи используется формула:

Т = tож (Lkp)+ z *Skp

Кроме описанного способа расчета сетей с детерминированной структурой и вероятностными оценками продолжительности выполнения работ, используется метод статистических испытаний (метод Монте-Карло). В соответствии с ним на вычислительной технике многократно моделируется продолжительность выполнения работ и рассчитывается на основе этого основные характеристики сетевой модели. Большой объем испытаний позволяет более точно выявить закономерность моделируемой сети.

Рассмотрим пример

Исходные данные приведены схематически: внутри прямоугольника заданы удельные транспортные затраты на перевозку единицы груза, слева указаны мощности поставщиков, а сверху - мощности потребителей.

Таблица 1

Поставщики

Потребители

Мощности поставщиков

1

2

3

4

5

1

5

15

3

6

10

9

2

23

8

13

27

10

11

3

30

1

5

24

25

14

Мощности потребителей

8

9

13

8

12

Сформулировать экономико-математическую модель задачи, найти оптимальный план закрепления поставщиков за потребителем.

Построим экономико-математическую модель задачи.

Поскольку спрос на груз (8+9+13+8+12=50) превышает мощности поставщиков (9+11+14=34), то вводим фиктивного поставщика, объем поставки которого 16 и удельные транспортные затраты на перевозку единицы груза равны 0. Получим.

Таблица 2

Поставщики

Потребители

Мощности поставщиков

1

2

3

4

5

1

5

15

3

6

10

9

2

23

8

13

27

10

11

3

30

1

5

24

25

14

4

0

0

0

0

0

16

Мощности потребителей

8

9

13

8

12

Обозначим через количество единиц груза, направляемые от i-го поставщика к j-му потребителю. При этом целевая функция имеет следующий вид:

Ограничения будут выражены следующими равенствами:

Решение задачи в пакете Excel:

1. Наберем аналог таблицы 1 в пакете Excel;

2. С помощью формул найдем сумму строк и столбцов таблицы;

3. Зададим формулу расчета целевой функции «=СУММПРОИЗВ (B3:F6; B10:F13)»;

Рисунок 1 - Решение задачи в Excel

4. Выполним поиск решения задачи «Сервис / Поиск решения»;

Рисунок 2 - Поиск решения задачи

5. Установим целевую ячейку;

6. Укажем изменяемые ячейки;

7. Укажем ограничения;

8. Нажмем кнопку «Выполнить»;

Рисунок 3 - Результаты решения задачи

Делаем выводы.

Суммарная расходы составит 173 ден. ед.

Первый потребитель получит 1 ед. груза от первого поставщика и не дополучит 7 ед. груза.

Второй потребитель получит 9 ед. груза от третьего поставщика.

Третий потребитель получит 8 ед. груза от первого поставщика, 5 ед. груза от третьего поставщика.

Четвертый потребитель не дополучит 8 ед. груза.

Пятый потребитель получит 11 ед. груза от второго поставщика и не дополучит 1 ед. груза.

Литература

1. Алесинская Т.В. Учебное пособие по решению задач по курсу «Экономико-математические методы и модели». Таганрог: Изд-во ТРТУ, 2002, 153 с.

2. М. Эддоус, Р. Стенсфилд. Методы принятия решений. - М., Аудит, ЮНИТИ, 1997.

Размещено на Allbest.ru


Подобные документы

  • Сущность и содержание метода моделирования, понятие модели. Применение математических методов для прогноза и анализа экономических явлений, создания теоретических моделей. Принципиальные черты, характерные для построения экономико-математической модели.

    контрольная работа [141,5 K], добавлен 02.02.2013

  • Роль экономико-математических методов в оптимизации экономических решений. Этапы построения математической модели и решение общей задачи симплекс-методом. Составление экономико-математической модели предприятия по производству хлебобулочных изделий.

    курсовая работа [1,3 M], добавлен 09.07.2015

  • Теоретические основы экономико-математических задач о смесях. Принципы построения и структура интегрированной системы экономико-математических моделей. Организационно-экономическая характеристика и технико-экономические показатели работы СПК "Родина".

    курсовая работа [66,6 K], добавлен 01.04.2011

  • Задачи, функции и этапы построения экономико-математических моделей. Аналитические, анионные, численные и алгоритмические модели. Экономическая модель спортивных сооружений. Модели временных рядов: тенденции и сезонности. Теории массового обслуживания.

    реферат [167,6 K], добавлен 22.07.2009

  • Анализ основных способов построения математической модели. Математическое моделирование социально-экономических процессов как неотъемлемая часть методов экономики, особенности. Общая характеристика примеров построения линейных математических моделей.

    курсовая работа [1,3 M], добавлен 23.06.2013

  • Понятие и типы моделей. Этапы построения математической модели. Основы математического моделирования взаимосвязи экономических переменных. Определение параметров линейного однофакторного уравнения регрессии. Оптимизационные методы математики в экономике.

    реферат [431,4 K], добавлен 11.02.2011

  • Методологические основы эконометрики. Проблемы построения эконометрических моделей. Цели эконометрического исследования. Основные этапы эконометрического моделирования. Эконометрические модели парной линейной регрессии и методы оценки их параметров.

    контрольная работа [176,4 K], добавлен 17.10.2014

  • Составление экономико-математической модели плана производства продукции. Теория массового обслуживания. Модели управления запасами. Бездефицитная простейшая модель. Статические детерминированные модели с дефицитом. Корреляционно-регрессионный анализ.

    контрольная работа [185,7 K], добавлен 07.02.2013

  • Особенности формирования и способы решения оптимизационной задачи. Сущность экономико-математической модели транспортной задачи. Характеристика и методика расчета балансовых и игровых экономико-математических моделей. Свойства и признаки сетевых моделей.

    практическая работа [322,7 K], добавлен 21.01.2010

  • Основные понятия и типы моделей, их классификация и цели создания. Особенности применяемых экономико-математических методов. Общая характеристика основных этапов экономико-математического моделирования. Применение стохастических моделей в экономике.

    реферат [91,1 K], добавлен 16.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.