Основные этапы экономико-математического моделирования

Последовательность и содержание этапов одного цикла экономико-математического моделирования. Характеристики двухфакторной производственной функции. Общая постановка задачи линейного программирования, ее решение. Анализ свойств производственных функций.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 18.02.2012
Размер файла 23,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основные этапы экономико-математического моделирования

В различных отраслях знаний основные этапы процесса моделирования приобретают свои специфические черты. Проанализируем последовательность и содержание этапов одного цикла экономико-математического моделирования .

Этапы экономико-математического моделирования

1. Постановка проблемы и её качественный анализ. Главное на этом этапе - чётко сформулировать сущность проблемы, определить принимаемые допущения, а также определить те вопросы, на которые требуется получить ответ.

Этап включает выделение важнейших черт и свойств моделируемого объекта, основных зависимостей, связывающих его элементы. Здесь же происходит формулирование гипотез, хотя бы предварительно объясняющих поведение объекта.

2. Построение математической модели. Это этап формализации задачи, т.е. выражения ее в виде математических зависимостей и отношений (функций, уравнений, неравенств, схем). Как правило, сначала определяется тип математической модели, а затем уточняются детали.

Неправильно полагать, что, чем больше факторов учитывает модель, тем лучше она работает и дает лучшие результаты. Излишняя сложность модели затрудняет процесс исследования. При этом нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели прирост затрат может превысить прирост эффекта).

3. Математический анализ модели. Цель - выявление общих свойств и характеристик модели. Применяются чисто математические приёмы исследования. Наиболее важный момент - доказательство существования решений в сформулированной модели. Если удастся доказать, что задача не имеет решения, то необходимость в последующей работе по данному варианту модели отпадает; следует скорректировать либо постановку задачи, либо способы ее математической формализации.

Однако модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию. В тех случаях, когда не удается выяснить общих свойств модели аналитическими методами, а упрощение модели приводит к недопустимым результатам, прибегают к численным методам исследования.

4. Подготовка исходной информации. Численное моделирование предъявляет жесткие требования к исходной информации. В то же время реальные возможности получения информации существенно ограничивают выбор используемых моделей. При этом принимается во внимание не только возможность подготовки информации (за определенный срок), но и затраты на подготовку соответствующих информационных массивов. Эти затраты не должны превышать эффекта от использования данной информации.

5. Численное решение. Это cоставление алгоритмов, разработка программ и непосредственное проведение расчётов на ЭВМ.

6. Анализ результатов и их применение. На заключительной стадии проверяются правильность, полнота и степень практической применимости полученных результатов.

Естественно, что после каждой из перечисленных стадий возможен возврат к одной из предыдущих в случае необходимости уточнения информации, пересмотра результатов выполнения отдельных этапов. Например, если на этапе 2 формализовать задачу не удается, то необходимо вернуться к постановке проблемы (этап 1). Соответствующие связи на рисунке 1.4 не показаны, чтобы не загромождать схему.

Наконец, выясним, как соотносятся между собой общая схема процесса моделирования (рисунок 1.2) и этапы экономико-математического моделирования.

Первые пять стадий более дифференцированно характеризуют процесс экономико-математического исследования, чем общая схема: стадии 1 и 2 соответствуют этапу I общей схемы, стадии 3, 4 и 5 - этапу II. Напротив, стадия 6 включает этапы III и IV общей схемы.

Характеристики двухфакторной производственной функции.

Производственная функция - это зависимость между набором факторов производства и максимально возможным объемом продукта, производимым с помощью данного набора факторов. Производственная функция всегда конкретна, т.е. предназначается для данной технологии. Новая технология - новая производительная функция. С помощью производственной функции определяется минимальное количество затрат, необходимых для производства данного объема продукта.

Производственные функции, независимо от того, какой вид производства ими выражается, обладают следующими общими свойствами:

1) Увеличение объема производства за счет роста затрат только по одному ресурсу имеет предел (нельзя нанимать много рабочих в одно помещение - не у всех будут места).

2) Факторы производства могут быть взаимодополняемы (рабочие и инструменты) и взаимозаменяемы (автоматизация производства).

В наиболее общем виде производственная функция выглядит следующим образом:

,

где  - объем выпуска;

K- капитал (оборудование);

М- сырье, материалы;

Т - технология;

N - предпринимательские способности.

Наиболее простой является двухфакторная модель производственной функции Кобба - Дугласа, с помощью которой раскрывается взаимосвязь труда (L) и капитала (К). Эти факторы взаимозаменяемы и взаимодополняемы. Еще в 1928 году американские ученые -- экономист П. Дуглас и математик Ч. Кобб -- создали макроэкономическую модель, позволяющую оценить вклад различных факторов производства в увеличении объема производства или национального дохода. Эта функция имеет следующий вид:

Q=AK б*L в ,

где А - производственный коэффициент, показывающий пропорциональность всех функций и изменяется при изменении базовой технологии (через 30-40 лет);

K, L- капитал и труд;

б,в -коэффициенты эластичности объема производства по затратам капитала и труда.

Если б = 0,25, то рост затрат капитала на 1% увеличивает объем производства на 0,25%.

На основе анализа коэффициентов эластичности в производственной функции Кобба - Дугласа можно выделить:

1) пропорционально возрастающую производственную функцию, когда

математический моделирование линейный программирование

б+ в=1 ( ).

2) непропорционально - возрастающую

);

3) убывающую

.

Общая постановка задачи линейного программирования.

Задачей линейного программирования (ЛП) называется задача минимизации или максимизации линейного функционала при линейных ограничениях. В литературе принят ряд специальных форм записи задачи ЛП:

Форма общей задачи ЛП (задача ЛП со смешанными ограничениями) - найти максимум по переменным линейного функционала

c1x1 + c2x2 > max

при линейных ограничениях

A11x1 + A12x2 ? b1, (0.11)

A21x1 + A22x2 = b2,(0.12)x1 ? 0.(0.13)

Здесь , матрицы A11, A12, A21, A22 имеют соответственно размеры

(m1 ? n1), (m1 ? n2), (m2 ? n1), (m2 ? n2).

Форма основной задачи ЛП

(c, x) > max

при линейных ограничениях Ax ? b.

Здесь - матрица размера (m ? n).

Стандартная форма записи задачи ЛП

(c, x) > max

при линейных ограничениях Ax ? b x ? 0.

Здесь - матрица размера (m ? n).

Каноническая форма записи задачи ЛП (c, x) > max

при линейных ограничениях Ax = b x ? 0.

Формально говоря, задачи 2-4 являются частными случаями общей задачи 1. Однако в свою очередь общая задача может быть представлена в форме любой из трех остальных. Так задача 1 принимает основную форму, если заменить в ней систему ограничений-равенств на эквивалентную систему ограничений-неравенств

A21x1 + A22x2 ? b2

-A21x1 - A22x2 ? -b2

Если сделать замену переменных

x2 = y2 - z2, y2 &ge 0, z2 ? 0,

то задача 1 примет стандартную форму.

Если же ограничения неравенства в задаче 1 записать в виде A11x1 + A12x2 + u = b1

где - дополнительная переменная(формально входящая в целевой функционал с нулевым коэффициентом) и вновь использовать замену переменных, то задача 1 будет иметь форму канонической задачи.

Вообще, любую задачу ЛП, на минимум или максимум, с неравенствами, направленными в ту или иную сторону, можно представить в любой из указанных форм. Для этого, наряду с приемами, перечисленными выше, необходимо использовать умножение целевой функции или ограничений-неравенств на (-1), что позволяет переходить от максимизации к минимизации и менять знаки неравенств.

Список литературы

1. Булатов А.С. Экономика. Учебник для экономических академий, вузов и факультетов М., 1995.

2. Карлин С. Математические методы в теории игр, программировании и экономике. М.: Мир, 1964.

3. Красильников О.Ю. Отражение структурных сдвигов в теориях экономического роста. Экономика: проблемы теории. Саратов: Изд-во Научная книга, 2001.

4. Райхлин Э. Основа экономической теории. Экономический рост и развитие. М.: Юрист, 2001.

5. Современная экономика. под ред. О.Ю. Мамедова. -- Ростов-на-Дону, Феникс, 1995.

6. Учебное пособие для подготовки менеджера. Под общей ред. В.Е. Ланкина. Таганрог: ТРТУ, 2006.

7. Хазанова А.Э. Математическое моделирование в экономике: учебное пособие. М.: БЭК, 1998.

8. Чепурин М. Н. Курс экономической теории. Киров, 1995.

9. Экономическая теория. Под ред. Камаева В.Д. М., Владос 1999.

10. Ясин Е. Экономический рост как цель и как средство. Вопросы экономики. № 9, 2001.

Размещено на Allbest.ru


Подобные документы

  • Общая постановка задачи линейного программирования (ЛП). Приведение задачи ЛП к стандартной форме. Теоремы двойственности и их использование в задачах ЛП. Транспортная задача и её решение методом потенциалов. Интерполирование табличных функций.

    курсовая работа [337,1 K], добавлен 31.03.2014

  • Применение методов оптимизации для решения конкретных производственных, экономических и управленческих задач с использованием количественного экономико-математического моделирования. Решение математической модели изучаемого объекта средствами Excel.

    курсовая работа [3,8 M], добавлен 29.07.2013

  • Понятие и типы моделей. Этапы построения математической модели. Основы математического моделирования взаимосвязи экономических переменных. Определение параметров линейного однофакторного уравнения регрессии. Оптимизационные методы математики в экономике.

    реферат [431,4 K], добавлен 11.02.2011

  • Основные понятия и типы моделей, их классификация и цели создания. Особенности применяемых экономико-математических методов. Общая характеристика основных этапов экономико-математического моделирования. Применение стохастических моделей в экономике.

    реферат [91,1 K], добавлен 16.05.2012

  • История развития экономико-математических методов. Математическая статистика – раздел прикладной математики, основанный на выборке изучаемых явлений. Анализ этапов экономико-математического моделирования. Вербально-информационное описание моделирования.

    курс лекций [906,0 K], добавлен 12.01.2009

  • Основные положения теории игр. Терминология и классификация игр. Решение матричных игр в чистых и в смешанных стратегиях. Сведение матричной игры к задаче линейного программирования. Применение теории игр в задачах экономико-математического моделирования.

    курсовая работа [184,5 K], добавлен 12.12.2013

  • Открытие и историческое развитие методов математического моделирования, их практическое применение в современной экономике. Использование экономико-математического моделирования на всей уровнях управления по мере внедрения информационных технологий.

    контрольная работа [22,4 K], добавлен 10.06.2009

  • Основные понятия моделирования. Общие понятия и определение модели. Постановка задач оптимизации. Методы линейного программирования. Общая и типовая задача в линейном программировании. Симплекс-метод решения задач линейного программирования.

    курсовая работа [30,5 K], добавлен 14.04.2004

  • Построение экономико-математической модели задачи, комментарии к ней и получение решения графическим методом. Использование аппарата теории двойственности для экономико-математического анализа оптимального плана задачи линейного программирования.

    контрольная работа [2,2 M], добавлен 27.03.2008

  • Определение этапа разработки экономико-математического моделирования и обоснование способа получения результата моделирования. Теория игр и принятие решений в условиях неопределенности. Анализ коммерческой стратегии при неопределенной конъюнктуре.

    контрольная работа [940,6 K], добавлен 09.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.