Модели межотраслевого баланса

Основы анализа межотраслевых связей. Межотраслевой баланс (МБ) как вид экономико-математических моделей. Структура МБ, его статическая и динамическая модели. Построение МБ производства и распределения продукции, затрат труда. Практическое применение МБ.

Рубрика Экономико-математическое моделирование
Вид курсовая работа
Язык русский
Дата добавления 14.12.2011
Размер файла 170,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • 1. Межотраслевой баланс как вид экономико-математических моделей
  • 1.1 Экономико-математические модели: сущность и виды
  • 1.2 Межотраслевой баланс: общая характеристика
  • 1.3 Общая структура межотраслевого баланса
  • 2. Модели межотраслевого баланса
  • 2.1 Статическая модель МОБ
  • 2.2 Динамическая модель экономики типа "затраты - выпуск"
  • 3. Пример расчёта межотраслевого баланса
  • 3.1 Построение межотраслевого баланса производства и распределения продукции
  • 3.2 Построение межотраслевого баланса затрат труда
  • Заключение
  • Список использованных источников и литературы

Введение

В XX веке созданы и развиты различные теории и методы регулирования мировой экономики. Востребованность таких исследований особенно возросла после Великой депрессии (1929-1933 гг.) и Второй мировой войны. Увеличилась необходимость в планировании (текущем, оперативном, стратегическом) и прогнозировании. Объясняется это, прежде всего тем, что современная экономика представляет собой открытую систему, построенную на прямых и обратных горизонтальных и вертикальных связях, и может успешно развиваться только при наличии эффективного управления этими связями, как на макро - так и на микроуровне. При этом проблема создания рациональной и высокоэффективной межотраслевой экономики чрезвычайно важна для всех стран.

Задачи, решаемые экономической наукой и практикой, делятся в зависимости от учета фактора времени на статические и динамические. Статика изучает состояния экономических объектов, относящиеся к определенному моменту времени или периоду времени, без учета изменения их параметров во времени. При изучении реальной экономики можно выделить такие ее элементы, в которых причина переходит в следствие не мгновенно, а с некоторым запозданием.

Поэтому динамические модели, как правило, являются более адекватными изучаемым экономическим явлениям.

Действительно, реальное равновесие на рынке возможно лишь при совпадении ожиданий производителей и потребителей, так как на практике равновесие достигается достаточно редко, поскольку в реальной жизни неизбежны экономические кризисы, неполное или неэффективное использование ресурсов. И даже, несмотря на это можно утверждать, что необходимость в балансовом методе очевидна.

Итак,

Объектом исследования данной работы будет межотраслевой баланс.

Предметом исследования станут модели межотраслевого баланса, а именно динамические и статистические.

Цель данной работы - анализ таблиц межотраслевого баланса, их представления в статическом и динамическом виде, а также возможностей практического применения. Для этого одна из глав посвящена вычислительным аспектам решения задач на основе модели межотраслевого баланса.

Структура курсовой работы.

В первой главе рассматриваются:

Ш экономико-математические модели, их сущность и виды;

Ш общая характеристика межотраслевого баланса;

Ш общая структура МОБ.

Во второй главе изучаются такие модели МОБ как динамическая и статистическая.

В третей главе приведён пример расчёта межотраслевого баланса.

1. Межотраслевой баланс как вид экономико-математических моделей

1.1 Экономико-математические модели: сущность и виды

В общем виде модель можно определить как условный образ (упрощенное изображение) реального объекта (процесса), который создается для более глубокого изучения действительности. Метод исследования, базирующийся на разработке и использовании моделей, называется моделированием. Необходимость моделирования обусловлена сложностью, а порой и невозможностью прямого изучения реального объекта (процесса). Значительно доступнее создавать и изучать прообразы реальных объектов (процессов), т.е. модели. Можно сказать, что теоретическое знание о чем-либо, как правило, представляет собой совокупность различных моделей. Эти модели отражают существенные свойства реального объекта (процесса), хотя на самом деле действительность значительно содержательнее и богаче.

На сегодняшний день общепризнанной единой классификации моделей не существует. Однако из множества моделей можно выделить:

Ш словесные;

Ш графические;

Ш физические;

Ш экономико-математические и некоторые другие типы.

Словесная, или монографическая, модель представляет собой словесное описание объекта, явления или процесса. Очень часто она выражается в виде определения, правила, теоремы, закона или их совокупности.

Графическая модель создается в виде рисунка, географической карты или чертежа.

Физические, или вещественные, модели создаются для конструирования пока еще несуществующих объектов. Создать модель самолета или ракеты для проверки ее аэродинамических свойств значительно проще и экономически целесообразнее, чем изучать эти свойства на реальных объектах.

Экономико-математические модели отражают наиболее существенные свойства реального объекта или процесса с помощью системы уравнений [4].

Необходимо отметить, что опять же единой классификации экономико-математических моделей сейчас не существует, выделяют более десяти основных признаков их классификации. Рассмотрим некоторые из них:

1. По общему целевому назначению:

Ш теоретико-аналитические (используются при изучении общих свойств и закономерностей экономических процессов).

Ш прикладные (применяемые в решении конкретных экономических задач).

2. По степени агрегирования объектов в моделировании:

Ш макроэкономические (отражающие функционирование экономики как единого целого).

Ш микроэкономические (модели, связанные, как правило, с такими звеньями экономики, как предприятия и фирмы).

3. По конкретному предназначению (т.е. по цели создания и применения):

Ш балансовые модели (выражающие требование соответствия наличия ресурсов и их использования).

Ш трендовые модели (в них развитие моделируемой экономической системы отражается через тренд (длительную тенденцию) её основных показателей)

Ш оптимизационные (предназначены для выбора наилучшего варианта из определённого числа вариантов производства, распределения или потребления)

Ш имитационные (предназначены для использования в процессе машинной имитации изучаемых систем или процессов) и др.

4. По типу информации:

Ш аналитические (построенные на априорной информации).

Ш идентифицируемые (построенные на апостериорной информации).

5. По учёту фактора времени:

Ш статические (в них все зависимости отнесены к одному моменту времени).

Ш динамические (описывают экономические системы в развитии).

6. По учёту фактора неопределённости:

Ш детерминированные (если в них результаты на выходе однозначно определяются управляющими воздействиями).

Ш стохастические (если при задании на входе модели определённой совокупности значений на её выходе могут получаться различные результаты в зависимости от действия случайного фактора).

7. По типу математического аппарата, используемого в модели:

Ш матричные модели

Ш модели линейного и нелинейного программирования

Ш корреляционно-регрессионные модели

Ш модели теории массового обслуживания

Ш модели сетевого планирования и управления

Ш модели теории игр и др.

8. По типу подхода к изучаемым социально-экономическим системам:

Ш дескриптивные (модели, предназначенные для описания и объяснения, фактически наблюдаемых явлений или для прогноза этих явлений).

Ш нормативные (при нормативном подходе интересуются не тем, каким образом устроена и развивается экономическая система, а как она должна быть устроена и как должна действовать в смысле определённых критериев) [7].

В данной курсовой работе в качестве примера будет рассмотрена экономико-математические модели межотраслевого баланса (МОБ), такие как статические и динамические.

Итак, МОБ относят к балансовым моделям. Под балансовой моделью понимается система уравнений, каждое из которых выражает требование баланса между произведённым отдельными экономическими объектами количеством продукции и совокупной потребностью в этой продукции. В данном случае рассматривается система экономических объектов, которые выпускают некоторый продукт, часть его потребляется другими объектами системы, а другая часть выводиться за пределы системы в качестве её конечного продукта.

Если вместо понятия конечного продукта ввести более общее понятие ресурс, то под балансовой моделью следует понимать систему уравнений, которые удовлетворяют требованиям соответствия наличия ресурса и его использования.

Кроме требования соответствия каждого продукта и потребности в нём, могут указываться такие примеры балансового соответствия, как соответствие наличия рабочей силы и количества рабочих мест, платежеспособного спроса населения и предложения товаров и услуг и т.д. При этом соответствии понимается либо как равенство, либо менее жёстко - как достаточность ресурсов для покрытия потребности и, следовательно, наличие некоторого резерва.

Важнейшие виды балансовых моделей:

Ш частные материальные, трудовые и финансовые балансы для народного хозяйства и отдельных отраслей;

Ш межотраслевые балансы;

Ш матричные техпромфинпланы предприятий и фирм.

Балансовый метод и создаваемые на его основе балансовые модели служат основным инструментом поддержания пропорций в народном хозяйстве. Балансовые модели на базе отчётных балансов характеризуют сложившиеся пропорции, в них ресурсная часть всегда равна расходной. Однако необходимо отметить, что балансовые модели не содержат какого-либо механизма сравнения отдельных вариантов экономических решений и не предусматривают взаимозаменяемости разных ресурсов, что не позволяет сделать выбор оптимального варианта развития экономической системы. Этим определяется ограниченность балансовых моделей и балансового метода в целом [6].

1.2 Межотраслевой баланс: общая характеристика

Межотраслевой баланс - экономико-математическая модель, характеризующая систему связей между выпуском продукции в одной отрасли и затратами всех других отраслей, участвующих в выпуске данной продукции.

Межотраслевой баланс производства и распределения продукции - инструмент анализа и планирования структуры общественного производства, учитывающий комплексные взаимосвязи отраслей производственной сферы. Межотраслевой баланс характеризует процесс формирования и использования совокупного общественного продукта в детальном отраслевом разрезе. Детализируя общие народнохозяйственные пропорции, отражаемые важнейшей составной частью баланса народного хозяйства - балансом общественного продукта, межотраслевой баланс в то же время синтезирует в единую систему частные балансы, характеризующие источники формирования ресурсов и использование в народном хозяйстве отдельных видов продукции.

Основы анализа межотраслевых связей были заложены в процессе составления первого баланса народного хозяйства СССР за 1923-1924гг. Математическая модель межотраслевого баланса была разработана В. Леонтьевым.

модель межотраслевой баланс статическая

Межотраслевой баланс может быть разработан как в денежном, так и в натуральном выражении.

Схема межотраслевого баланса представляет собой синтез двух таблиц, одна из которых характеризует детальную структуру затрат на производство в разрезе отдельных видов продукции, а другая - структуру распределения продукции в народном хозяйстве.

Основной вклад В.В. Леонтьева в мировую науку и практику регулирования экономики связан с разработками моделей межотраслевого баланса. Среди них можно выделить:

Ш простую или однопериодную модель межотраслевого баланса;

Ш динамические модели межотраслевого баланса, получившие наименование баланса Леонтьева;

Ш региональные и межрегиональные балансы;

Ш а также модель межотраслевого баланса с учетом загрязнения окружающей среды.

Наиболее простой формой модели межотраслевого баланса является статическая модель. Она формируется на основе достаточно простой системы исходных предпосылок, среди которых наиболее важную роль играет предпосылка о чистых отраслях, производящих только один вид продукции и предположение о линейной зависимости между затратами и выпуском продукции. Можно отметить две основных принципиальных особенности модели межотраслевого баланса, вытекающих из этих условий.

Во-первых, балансовая модель составляется в "чистых", а не в хозяйственных отраслях. Но если учесть каждый отдельный выпускаемый вид продукции в стране или регионе практически нереально, то балансовая модель формируется на основе определенных агрегатов. Отсюда возникает проблема определения этих агрегатов по их составу, а также проблема перехода от прогноза, составленного на основе чистых отраслей, к прогнозу развития экономики в условиях реальных хозяйственных отраслей и определению объемов выпуска отдельных конкретных видов продукции. Эти проблемы рассматриваются при анализе условий агрегации в межотраслевом балансе.

Во-вторых, поскольку при построении и анализе модели межотраслевого баланса не учитываются не воспроизводимые ресурсы, то результаты расчетов по данной модели и выполненные прогнозы могут приводить к совершенно нереальным, завышенным оценкам развития экономики. Это, в свою очередь, требует с практической точки зрения учета ограничений на эти ресурсы и дополнительного обоснования на основе параметров моделей макроэкономического планирования и прогнозирования.

Данная система предпосылок относится к статической схеме модели межотраслевого баланса, который составляется на один период. Длительность этого периода может быть различной в зависимости от целей формируемого баланса.

Балансовые модели можно разделить на:

Ш плановые;

Ш отчетные.

Плановые межотраслевые балансы составляются на основе планируемых или прогнозируемых показателей. Основная цель такой модели - обосновать прогноз развития экономики страны или отдельных регионов на выбранный период планирования.

Отчетные балансы составляются на основе итоговых отчетных показателей развития страны или регионов с целью определить, насколько сбалансировано развивалась экономика и в чем состоят возникающие диспропорции в развитии тех или иных отраслей [4].

Модель межотраслевого баланса имеет следующее достоинства:

1. Относительно небольшой объем исходной информации и отсутствие принципиальных трудностей при ее обосновании. К ней в условиях статической модели относятся коэффициенты прямых затрат и заданные выпуски конечной продукции или конечного потребления. Подобные проблемы возникают при постановке любых моделей макроэкономического планирования и прогнозирования.

2. Для отчетного баланса эта информация определяется достаточно просто по соответствующим статистическим отчетам. При построении прогнозных межотраслевых балансов необходимо обосновать прогнозы указанных показателей, например, на основе использования уравнений регрессии или других методов прогнозирования.

3. При наличии исходной информации: коэффициентов прямых затрат и заданного объема конечной продукции, расчеты, связанные с решением системы уравнений межотраслевого баланса, принципиальных трудностей не представляют.

4. Определяется такой план валовой продукции, который сбалансирован по затратам на ее производство по всем видам рассматриваемой продукции.

5. Построение и анализ системы балансовых уравнений предполагает определенное регулирование экономики и обеспечение поддержания соответствующих макроэкономических пропорций. Частный капитал в любой форме его существования заинтересован лишь в изучении той части рынков, на которых совершает свои операции. Он может быть заинтересован в изучении тенденций развития экономики, но не в затратах на поддержание макроэкономических пропорций, да он и не имеет таких средств.

Однако у модели межотраслевого баланса имеются также и недостатки:

1. При решении системы уравнений межотраслевого баланса не принимаются во внимание ограничения на те виды невоспроизводимых ресурсов, которые в модели не учитываются, а также ограничения на не воспроизводимые ресурсы. При этом можно получить нереальный план выпуска валовой продукции, не обеспеченный необходимыми ресурсами.

2. Часть параметров (прежде всего, объемы конечной продукции, необходимые для решения системы уравнений модели межотраслевого баланса) определяется за пределами данной модели. Их обоснование представляет собой не менее легкую задачу, чем определение сбалансированного плана по выпуску валовой продукции.

3. Принципиально не учитывается, что инвестиции воплощаются в материальный капитал постепенно с определенным лагом запаздывания.

Модель межотраслевого баланса является однопериодной и не учитывает изменения технологии производства в течение этого периода.

Некоторые из указанных недостатков преодолеваются в динамических моделях межотраслевого баланса.

Суть межотраслевого баланса состоит в построении таблицы, в которой по вертикали показываются материальные затраты на производство продукции отдельной отрасли, а также прибыль. Данные по горизонтали показывают, на какую сумму (или какое количество продукции) передано продукта в другие отрасли народного хозяйства на производственные нужды (промежуточный продукт), а также конечное потребление продукции отрасли, на накопление, возмещение, выбытия и капитальный ремонт и также экспортно-импортное сальдо. Межотраслевой баланс детально отражает производственные и хозяйственные связи отраслей. Составляется в денежной и натуральной форме. Главными показателями межотраслевого баланса являются: коэффициенты полных затрат, характеризующие затраты какого-либо продукта на производство единицы другого продукта по всей цепочке взаимосвязанных отраслей; коэффициенты прямых затрат (средняя величина затрат по отрасли в целом).

Межотраслевой баланс имеет важное значение для науки и практики, т.к. позволяет от общей характеристики экономических процессов перейти к их конкретному количественному анализу (соотношение ВВП и национального дохода, I и II подразделения общественного производства, взаимосвязи промышленности и сельского хозяйства и т.д.) [3].

1.3 Общая структура межотраслевого баланса

Центральным элементом матричных моделей является так называемый межотраслевой баланс. Он представляет собой таблицу, характеризующую связи между различными отраслями экономики страны. Общая структура межотраслевого баланса представлена в таблице 1.

Таблица 1. Общая структура межотраслевого баланса

Производственная сфера экономики представлена в балансе в виде совокупности n отраслей.

Баланс состоит из четырех разделов (квадрантов).

Первый квадрант представляет собой матрицу, состоящую из (n+1) строки и (n+1) столбца. Этот раздел является важнейшей частью баланса, поскольку именно здесь содержится информация о межотраслевых связях. Величина , находящаяся на пересечении i-й строки и j-го столбца, показывает, сколько продукции i-й отрасли было использовано в процессе материального производства j-й отрасли. Величины характеризуют межотраслевые поставки сырья, материалов, топлива и энергии, обусловленные производственной деятельностью.

В i-й строке величины ,,., ,., описывают распределение продукции i-й отрасли как средства производства для других отраслей.

Величины , ,., ,., j-го столбца в этом случае будут описывать потребление j-й отраслью сырья, материалов, топлива и энергии на производственные нужды.

Таким образом, первый раздел баланса дает общую картину распределения продукции на текущее производственное потребление всех n отраслей материального производства.

В зависимости от того, в каких единицах измеряются потоки продукции в балансе, существуют различные его варианты: в натуральном выражении, в денежном (стоимостном) выражении, в натурально-стоимостном, в трудовых измерителях. Мы рассмотрим баланс в стоимостном выражении, в котором потоки продукции измеряются на основе стоимости произведенной продукции в некоторых фиксированных ценах. Поскольку в этом случае величины отражают стоимость продукции, т.е. измеряются в одних и тех же единицах, их можно просуммировать [1].

Величинапредставляет собой сумму всех поставок i-й отрасли другим отраслям.

Сумма по столбцухарактеризует производственные затраты j-й отрасли на приобретение продукции других отраслей.

На пересечении (n+1) - й строки и (n+1) - го столбца находится величина - так называемый промежуточный продукт экономики.

Второй раздел посвящен конечному продукту. Столбец конечного продукта - (n+2) - й столбец. Величина - потребление продукции i-й отрасли, не идущее на текущие производственные нужды. В конечную продукцию, как правило, включаются: накопление, возмещение выбытия основных средств, прирост запасов, личное потребление населения, расходы на содержание государственного аппарата, здравоохранение, оборону и т.д., а также сальдо экспорта и импорта. Ко второму разделу относится также столбец валовых выпусков (). В пределах первого и второго разделов справедливо соотношение:

, (1)

Третий квадрант межотраслевого баланса отражает стоимостную структуру валового продукта отраслей. В (n+2) - й строке таблицы отражена условно чистая продукция (), представляющая собой разницу между величиной валовой продукции отрасли и суммарными затратами отрасли:

, (2)

Условно чистая продукция подразделяется на амортизационные отчисления и чистую продукцию отрасли. Важнейшими составляющими чистой продукции отрасли являются заработная плата, прибыль и налоги.

Можно показать, что суммарный конечный продукт равен суммарной условно чистой продукции

Из соотношений (1) и (2):

,

,

Просуммируем первое равенство по i, а второе - по j:

Левые части выражений равны, значит равны и правые:

=

Откуда

=

что и требовалось доказать.

Таким образом, в третьем разделе также фигурирует конечный продукт, но если во втором разделе он разбивается на величины характеризующие структуру потребления, то в третьем разделе величины показывают, в каких отраслях произведена стоимость конечного продукта.

Четвертый раздел располагается под вторым. Он характеризует перераспределительные отношения в экономике, осуществляемые через финансово-кредитную систему. В плановых расчетах четвертый раздел, как правило, не используется, и поэтому в пределах нашего курса рассматриваться не будет.

Итак, рассмотренный нами межотраслевой баланс - это способ представления статистической информации об экономике страны. Он строится на основе агрегирования результатов деятельности отдельных предприятий. Такой баланс называют отчетным. Кроме этого строятся плановые балансы, предназначенные для разработки сбалансированных планов развития экономики [9].

2. Модели межотраслевого баланса

2.1 Статическая модель МОБ

Статистические межотраслевые модели используются для разработки планов выпуска и потребления продукции и основываются на соотношениях межотраслевого баланса.

При построении модели делают следующие предположения:

1) все продукты, производимые одной отраслью, однородны и рассматриваются как единое целое, т.е. фактически предполагается, что каждая отрасль производит один продукт;

2) в каждой отрасли имеется единственная технология производства;

3) нормы производственных затрат не зависят от объёма выпускаемой продукции;

4) не допускается замещение одного сырья другим.

В действительности эти предположения, конечно, не выполняются. Даже на отдельном предприятии обычно выпускаются различные виды продукции, используются различные технологии, удельные затраты зависят от объема выпуска и в тех или иных пределах допускается замена одного сырья другим. Следовательно, эти предположения тем более неверны для отрасли. Однако такие модели получили широкое распространение и, как показала практика, они вполне адекватны и применимы для составления планов выпуска продукции.

При этих предположениях величина может быть представлена следующим образом:

(3)

Величина называется коэффициентом прямых материальных затрат. Она показывает, какое количество продукции i-й отрасли идет на производство единицы продукции j-й отрасли. Коэффициенты считаются в межотраслевой модели постоянными.

Подставляя выражение (3) в формулу (1), получим:

, (4)

Это соотношение можно записать в матричном виде:

, (5)

Где - вектор валовых выпусков;

- вектор конечного продукта;

-

матрица коэффициентов прямых материальных затрат.

Коэффициенты прямых материальных затрат являются основными параметрами статической межотраслевой модели. Их значения могут быть получены двумя путями:

1) статистически. Коэффициенты определяются на основе анализа отчётных балансов за прошлые годы. Их неизменность во времени определяется подходящим выбором отраслей;

2) нормативно. Предполагается, что отрасль состоит из отдельных производств, для которых уже разработаны нормативы затрат; на их основе рассчитываются среднеотраслевые коэффициенты.

Выражение (4) принято называть балансом распределения продукции. Его можно использовать для анализа и планирования структуры экономики. Если известны коэффициенты прямых материальных затрат, то, задав конечный продукт по каждой отрасли, можно определить необходимые валовые выпуски отраслей. В этом заложена основная идея использования матричных моделей для планирования производства.

Преобразуем выражение (5):

,

,

, (6)

где E - единичная матрица. До начала планирования следует выяснить, существует ли матрица, обратная матрице (E-A), и не будут ли получены отрицательные значения выпуска по отраслям.

Установим некоторые свойства коэффициентов прямых материальных затрат.

1. Неотрицательность, т.е.

Это утверждение следует из неотрицательности величин и положительности валовых выпусков .

2. Сумма элементов матрицы A по любому из столбцов меньше единицы, т.е.

Доказать это утверждение несложно.

Для любой отрасли условно чистая продукция есть величина положительная, поскольку включает в себя заработную плату, амортизацию, прибыль и т.д., т.е. . Поэтому, используя соотношение (2), можно записать:

(7)

из соотношения (3):

(8)

откуда безусловно следует:

(9)

таким образом, утверждение доказано.

Можно показать, что при выполнении этих двух условий матрица существует и если ее элементы неотрицательны. Говорят, что в этом случае матрица прямых затрат А является продуктивной.

Перепишем формулу (6): X = BY,

Матрица В носит название матрицы полных материальных затрат, а ее элементы называют коэффициентами полных материальных затрат. Коэффициент показывает, каков должен быть валовый выпуск i-й отрасли для того, чтобы обеспечить выпуск единицы конечного продукта j-й отрасли.

Можно показать, что B = E + A + A2 + A3 +. (10)

Умножим обе части на

(E - A): B (E - A) = (E + A + A2 + A3 +.) (E - A),

B (E - A) = E + A + A2 + A3 +. - A - A2 - A3 - .,

B (E - A) = E,

Доказано.

Из соотношения (10) следует ? , таким образом, коэффициент полных материальных затрат , описывающий потребность в выпуске продукции i-й отрасли в расчете на единицу конечного продукта j-й отрасли, не меньше коэффициента прямых материальных затрат , рассчитываемого на единицу валового выпуска.

Кроме того, из соотношения (10) для диагональных элементов матрицы B следует: ? 1,

Полные затраты электроэнергии для нашего примера складываются из прямых затрат и косвенных затрат всех уровней. Косвенные затраты высоких уровней являются незначительными и при практических расчетах ими можно пренебречь [2].

2.2 Динамическая модель экономики типа "затраты - выпуск"

В процессе совершенствования и усложнения модели "затраты-выпуск" был создан динамический вариант системы, учитывавший технический прогресс, перестройку промышленности, изменения ценовых пропорций. Модель была переведена на гибкие коэффициенты. Эта работа оказалась весьма успешной еще и потому, что параллельно с научным поиском совершенствовалось компьютерное обеспечение.

В отличие от статистических динамическая модель призвана отразить не состояние, а процесс развития экономики, установить непосредственную взаимосвязь между предыдущими и последующими этапами развития и тем самым приблизить анализ на основе экономико-математической модели к реальным условиям развития экономической системы.

В рассматриваемой ниже динамической модели (которая является развитием статической межотраслевой модели) производственные капитальные вложения выделяются из состава конечной продукции, исследуется их структура и влияние на рост объёма производства. В основе построения модели в виде динамической системы уравнений лежит математическая зависимость между величиной капитальных вложений и приростом продукции. Решение системы, как и в случае статической модели приводит к определению уровней производства, но в динамическом варианте в отличие от статистического эти искомые уровни зависят от объёмов производства в предшествующих периодах.

Ниже приведена схема первых двух квадрантов динамического межотраслевого баланса

Таблица 2.

Динамическая модель МОБ

Производ.

отрасли

Потребляющие отрасли

Межотраслевые потоки текущих затрат

Межотраслевые потоки капитальных вложений

Конечный продукт

Валовый продукт

1

2

… n

1

2

n

Y

X

1 … ? ? … ?

2 … ? ? … ?

n … ? ? … ?

Модель содержит две матрицы межотраслевых потоков. Матрица текущих производственных затрат с элементами совпадает с соответствующей матрицей статистического баланса. Элементы второй матрицы ? показывают, какое количество продукции i-той отрасли направлено в текущем периоде в j-ую отрасль в качестве производственных капитальных вложений в её основные фонды. Материально это выражается в приросте в потребляющих отраслях производственного оборудования, сооружений, производственных площадей, транспортных средств и др.

Для сравнения, в статистическом балансе потоки капиталовложений не дифференцируются по отраслям-потребителям и отражаются общей величиной в составе конечной продукции каждой i-той отрасли. В динамической схеме конечный продукт включает продукцию i-той отрасли, идущую в личное и общественное потребление, накопление непроизводственной сферы, прирост оборотных фондов, незавершённого строительства, на экспорт.

Таким образом, сумма потоков капиталовложений и конечного продукта динамической модели равна конечной продукции статистического баланса:

?? + '= (11)

Поэтому уравнение распределения продукции вида (1) преобразуется в динамическом балансе в следующее:

=? +?? + ' i=1…n (12)

Межотраслевые потоки текущих затрат выражают как и в статической модели через валовую продукцию отраслей с помощью коэффициентов прямых материальных затрат:

= (13)

Полагая, что прирост продукции пропорционален приросту производственных фондов, можно записать:

? =? i,j =1…n (14)

- коэффициенты пропорциональности, экономический смысл их заключается в том, что они показывают, какое количество продукции i-той отрасли должно быть вложено в j-тую отрасль для увеличения производственной мощности j-той отрасли на единицу продукции.

Предполагается, что производственные мощности используются полностью и прирост продукции равен приросту мощности. Коэффициенты называются коэффициентами вложений, или коэффициентами приростной фондоёмкости.

Они образуют квадратную матрицу n-го порядка:

Эта матрица коэффициентов приростной фондоёмкости даёт значительный материал для экономического анализа и планирования капитальных вложений.

Далее, с помощью коэффициентов прямых материальных затрат и коэффициентов вложений систему уравнений (12) можно представить в следующем виде:

?' i=1…n (15)

Учитывая, что все объёмы валовой и конечной продукции относятся к некоторому периоду t, а прирост валовой продукции определён в сравнении с (t-1) - м периодом:

'

Отсюда можно записать следующие соотношения:

', i=1…n (16)

Пусть нам известны уровни валовой продукции всех отраслей в предыдущем периоде (величины (t-1) и конечный продукт отраслей в t-м периоде. Тогда соотношения представляют собой систему n линейных уравнений с n неизвестными уровнями производства t-го периода.

Таким образом, решение динамической системы линейных уравнений позволяет определить выпуск продукции в последующем периоде в зависимости от уровня, достигнутого в предыдущем периоде. Связь между периодами устанавливается через коэффициенты вложений , характеризующие фондоёмкость единицы прироста продукции.

Эти более сложные по своему экономическому содержанию выводы из анализа динамической модели В. Леонтьева были опубликованы в форме дифференциальных уравнений в СССР в 1958 г. книге "Исследование структуры американской экономики". [10]

3. Пример расчёта межотраслевого баланса

3.1 Построение межотраслевого баланса производства и распределения продукции

Для трёхотраслевой экономической системы заданы матрица коэффициентов прямых материальных затрат и вектор конечной продукции:

Определим матрицу коэффициентов полных материальных затрат с помощью формул обращения невырожденных матриц находим матрицу (E-A):

вычисляем определитель этой матрицы:

транспонируем матрицу (E-A):

Находим алгебраическое дополнение для элементов матрицы (E-A) `:

Таким образом, присоединённая к матрице (E-A) матрица имеет вид:

Чтобы найти матрицу коэффициентов полных материальных затрат, воспользуемся формулой матричной алгебры:

B= (E-A) = (E-A) \ |E-A|

Получим: При этом проблема создания рациональной и высокоэффективной межотраслевой экономики чрезвычайно важна для всех стран.

Найдём величины валовой продукции трёх отраслей (вектор Х):

Итак, теперь определим квадранты материального межотраслевого баланса. Для получения первого столбца первого квадранта нужно элементы первого столбца заданной матрицы А умножить на величину = 775.3; элементы второго столбца матрицы А умножить на = 510.1; элементы третьего столбца матрицы А умножить на =729.6.

Составляющие третьего квадранта (условно чистая продукция) находятся как разность между объёмами валовой продукции и суммами элементов соответствующих столбцов найденного первого квадранта.

Наконец, четвертый квадрант в данном примере состоит из одного показателя и служит также для контроля правильности расчёта: сумма элементов второго квадранта должна в стоимостном материальном балансе совпадать с суммой элементов третьего квадранта. Результаты расчёта представлены в табл.3:

Таблица 3. Межотраслевой баланс производства и распределения продукции.

Производящие отрасли

Потребляющие отрасли

1

2

3

Конечная продукция

Валовая продукция

1

2

3

232.6

155.1

232.6

51.0

255.0

51.0

291.8

0.0

145.9

200.0

100.0

300.0

77.3

510.1

729.6

Условно чистая продукция

155.0

153.1

291.9

600.0

Валовая продукция

775.3

510.1

729.6

2015.0

3.2 Построение межотраслевого баланса затрат труда

Различные модификации рассмотренной выше модели межотраслевого баланса производства и распределения продукции в народном хозяйстве позволяют расширить круг показателей, охватываемых моделью. Рассмотрим в качестве примера применение межотраслевого баланса для анализа такого важного экономического показателя как труд.

Пусть в дополнение к исходным данным из первого параграфа данной главы заданы затраты живого труда (трудовые ресурсы) в трёх отраслях: =1160, =460, =875.

Требуется определить коэффициенты прямой и полной трудоёмкости и составить межотраслевой баланс затрат труда.

коэффициенты прямой трудоёмкости () представляют собой прямые затраты труда на единицу j-го вида продукции. Определить их можно как соотношение затрат живого труда в производстве j-го продукта () к объёму производства этого продукта, т.е. к валовому выпуску ().

Воспользовавшись данной формулой получим: = 1160/775.3 =1.5 = 460/510.1 =0.9 =875/730.6=1.2

Коэффициенты полной материальных затрат определяются как произведение коэффициентов прямой трудоёмкости и матрицы коэффициентов полных материальных затрат (полученной в первом параграфе):

Умножая первую, вторую и третью строки первого и второго квадрантов межотраслевого материального баланса, построенного в параграфе 1, на соответствующие коэффициенты прямой трудоёмкости, получим схему межотраслевого баланса труда (в трудовых измерителях) (табл.4).

Таблица 4. Межотраслевой баланс затрат труда.

Производящие отрасли

Потребляющие отрасли

Межотраслевые затраты овеществленного труда

Затраты труда на конечную продукцию

Затраты труда в отраслях

(трудовые ресурсы)

1

2

3

1

2

3

348.9

139.6

279.1

76.

229.5

61.2

437.7

0.0

175.1

300.0

90.0

360.0

1163.0

459.1

875.5

Заключение

В данной курсовой работе были описаны основные характеристики моделей межотраслевого баланса, таких как динамические и статистические МОБ. А так же были выявлены их отличительные черты.

Кроме того были разобраны основные понятия экономико-математических моделей, их классификация, а так же общая структура межотраслевого баланса.

В практической части работы был рассмотрен пример расчёта межотраслевого баланса производства и распределения продукции.

Недостатком многих математико-экономических моделей является отсутствие комплексного охвата крупных экономических задач. В значительной мере лишены этого недостатка модели межотраслевого баланса. Их изучение формирует системный взгляд на экономику. Глобальность моделей межотраслевого баланса сочетается с их гибкостью, они применимы для анализа и принятия решений как на уровне мировой экономики так и экономики страны, региона и т.д.

Экономист должен уметь:

Ш предсказать и объяснить влияние изменений технологий на выпуск товаров, используя заданные коэффициенты добавленной стоимости,

Ш оценить влияние таких изменений на цены различных товаров и услуг.

Для этого анализа необходимо применять системный подход, то есть модели, которые были разобраны выше и многие другие.

В системе национальных счетов межотраслевой выполняет функции счетов производства, образования и использования доходов, отражая сложившуюся систему производственных взаимосвязей на отраслевом уровне, специфику первичного распределения и конечного использования добавленной стоимости в рамках годового производственного цикла.

Очевидно, что ни государственное регулирование экономики, ни прогнозирование развития мирового хозяйства невозможно без всестороннего анализа связей в рассматриваемой экономической системе. Модели межотраслевого баланса как раз и позволяют проводить подобный анализ.

Список использованных источников и литературы

1. Аникин, А.В. Василий Леонтьев, или экономика на шахматной доске / А.В. Аникин. - М., №7, 2000. - 57 с.

2. Бункина, М.К. Экономические модели Василия Леонтьева: Финансовый менеджмент / М.К. Бункина. - М., №1, 2002. - 28 с.

3. Гранберг, А.Г. Математические модели в социалистической экономике/А.Г. Гранберг - М., 1978.

4. Колемаев, В.А. Математическая экономика: Учебник для вузов/В.А. Колемаев - М., 2002. - 304 с.

5. Леонтьев, В.В. Межотраслевая экономика / В.В. Леонтьев. - М., 1997. - 315 с.

6. Федосеев, В.В. Экономико-математические методы и прикладные модели: Учебное пособие для вузов / В.В. Федосеев, А.Н. Гармаш и др. - М., 2001. - 264 с.

7. Цветкова, А.А. Экономико-математические методы и модели: Учеб. пособие / А.А. Цветкова, В.В. Бондарева, О.И. Еськова. - М., 2003. - 48с.

8. Кобелев, Н.Б. Практика применения экономико-математических методов и моделей: учебно-методическое пособие/Н.Б. Кобелев. - М., 2000. - 248 c.

9. Модель МОБ - www.math. omsu. omskreg.ru/info/learn/pprimer/afterword. htm [электронный ресурс]

10. Сервер Леонтьева В.В. - www.wassily. leontief.net [электронный ресурс]

Размещено на Allbest.ru


Подобные документы

  • Модель межотраслевого баланса. Цель балансового анализа; определение объема выпуска продукции каждым сектором для удовлетворения всех потребностей экономической системы. Продуктивность и прибыльность модели Леонтьева. Цены в системе межотраслевых связей.

    курсовая работа [33,8 K], добавлен 04.05.2015

  • Понятие межотраслевого баланса как основы прогнозирования развития экономики. Сущность балансового метода планирования, прямые, итерационные и приближенные методы определения объемов конечной продукции, производственно-эксплуатационных нужд отраслей.

    контрольная работа [77,3 K], добавлен 08.10.2010

  • Построение экономико-математической модели равновесия, ее экономический анализ. ЭММ распределения кредитных средств между филиалами торговой фирмы, конфликтной ситуации игры с природой, межотраслевого баланса трехотраслевой экономической системы.

    контрольная работа [6,1 M], добавлен 16.02.2011

  • Общая линейная оптимизационная модель. Оптимизационные модели на основе матрицы межотраслевого баланса. Оптимизационные межотраслевые модели с производственными способами. Расширенные оптимизационные межотраслевые модели.

    реферат [179,8 K], добавлен 10.06.2004

  • Задача межотраслевого баланса. Спрос на конечную продукцию. Равновесные цены в предположении. Стоимость фондов и затрат труда. Матричное уравнение Леонтьева. Матрица межотраслевого баланса. Матричный мультипликатор ценового эффекта распространения.

    контрольная работа [205,4 K], добавлен 16.02.2011

  • Цель математического моделирования экономических систем: использование методов математики для эффективного решения задач в сфере экономики. Разработка или выбор программного обеспечения. Расчет экономико-математической модели межотраслевого баланса.

    курсовая работа [1,3 M], добавлен 02.10.2009

  • Теоретический анализ межрегиональных межотраслевых моделей. Сущность модели экономического взаимодействия регионов. Двухрегиональная оптимизация межрегиональной межотраслевой модели регионов А и Б. Моделирование экономического взаимодействия регионов.

    курсовая работа [649,0 K], добавлен 04.05.2011

  • Суть характеристики межотраслевых производственных взаимосвязей в экономике страны, их экономико-математическая балансовая модель, выражение в денежной и натуральной формах. Отражение промежуточного потребления и системы производственных связей и ВВП.

    контрольная работа [30,9 K], добавлен 14.01.2010

  • Разработка межотраслевого баланса с увеличением конечного продукта на 10 процентов. Использование данных таблиц межотраслевых потоков и конечных продуктов. Максимальное и минимальное значения целевой функции. Особенности симплексного метода решения задач.

    контрольная работа [286,5 K], добавлен 19.11.2014

  • Основные математические модели макроэкономических процессов. Мультипликативная производственная функция, кривая Лоренца. Различные модели банковских операций. Модели межотраслевого баланса Леонтьева. Динамическая экономико-математическая модель Кейнса.

    контрольная работа [558,6 K], добавлен 21.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.