Определение полей кореляции
Построение поля корреляции результата (общая сумма ущерба) и фактора (расстояние до ближайшей пожарной станции). Определение параметров уравнения парной линейной регрессии, коэффициента корреляции. Значение критерия Стьюдента для коэффициента регрессии.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 19.10.2011 |
Размер файла | 191,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Задача 1
Администрация страховой компании приняла решение о введении нового вида услуг - страхование на случай пожара. С целью определения тарифов по выборке из 10 случаев пожаров анализируется зависимость стоимости ущерба, нанесенного пожаром от расстояния до ближайшей пожарной станции:
№ п/п |
|||||||||||
Общая сумма ущерба, млн.руб. |
26,2 |
17,8 |
31,3 |
23,1 |
27,5 |
36,0 |
14,1 |
22,3 |
19,6 |
31,3 |
|
Расстояние до ближайшей станции, км |
3,4 |
1,8 |
4,6 |
2,3 |
3,1 |
5,5 |
0,7 |
3,0 |
2,6 |
4,3 |
Построить поле корреляции результата и фактора
Поле корреляции результата (общая сумма ущерба) и фактора (расстояние до ближайшей пожарной станции).
На основании поля корреляции можно сделать вывод, что между факторным (Х) и результативным (Y) признаками существует прямая зависимость.
2. Определить параметры а и b уравнения парной линейной регрессии:
где n число наблюдений в совокупности ( в нашем случае 10)
a и b искомые параметры
x и y фактические значения факторного и результативного признаков.
Для определения сумм составим расчетную таблицу из пяти граф, в графе 6 дадим выравненное значение y (y).
В графах 7,8,9 рассчитаем суммы, которые использованы в формулах пунктов 4,5 данной задачи.
№ |
X |
Y |
XІ |
x·y |
yІ |
y |
(y-y) |
(x-xср) |
(y-y)І |
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
||
3,4 |
26,2 |
11,56 |
686,44 |
89,08 |
26,20 |
0,00 |
0,0729 |
1,6384 |
||
1,8 |
17,8 |
3,24 |
316,84 |
32,04 |
18,70 |
0,81 |
1,7689 |
36,6884 |
||
4,6 |
31,3 |
21,16 |
979,69 |
143,98 |
31,80 |
0,25 |
2,1609 |
47,3344 |
||
2,3 |
23,1 |
5,29 |
533,61 |
53,13 |
21,00 |
4,41 |
0,6889 |
15,3664 |
||
3,1 |
27,5 |
9,61 |
756,25 |
85,25 |
????? |
7,29 |
0,0009 |
0,0144 |
||
5,5 |
36 |
30,25 |
1296 |
198 |
36,00 |
0,00 |
5,6169 |
122,7664 |
||
0,7 |
14,1 |
0,49 |
198,81 |
9,87 |
13,50 |
0,36 |
5,9049 |
130,4164 |
||
3 |
22,3 |
9 |
497,29 |
66,9 |
24,30 |
4,00 |
0,0169 |
0,3844 |
||
2,6 |
19,6 |
6,76 |
384,16 |
50,96 |
22,40 |
7,84 |
0,2809 |
6,3504 |
||
4,3 |
31,3 |
18,49 |
979,69 |
134,59 |
30,40 |
0,81 |
1,3689 |
30,0304 |
||
? |
31,3 |
249,2 |
115,85 |
6628,78 |
863,8 |
249,1 |
25,77 |
17,881 |
390,9900 |
Коэффициент регрессии (b) показывает абсолютную силу связи между вариацией x и вариацией y. Применительно к данной задаче можно сказать, что при изменении расстояния до ближайшей пожарной станции на 1 км общая сумма ущерба изменяется в среднем на 4,686 млн.руб.
Таким образом, уравнение регрессии имеет следующий вид:
3. Линейный коэффициент корреляции определяется по формуле:
В соответствии со шкалой Чеддока можно говорить о высокой тесноте связи между y и x, r = 0.957.
Квадрат коэффициента корреляции называется коэффициентом детерминации
Это означает, что доля вариации y объясненная вариацией фактора x включенного в уравнение регрессии равна 91,6%, а остальные 8,4% вариации приходятся на долю других факторов, не учтенных в уравнении регрессии
4. Статистическую значимость коэффициента регрессии «b» проверяем с помощью t-критерия Стьюдента. Для этого сначала определяем остаточную сумму квадратов:
и ее среднее квадратическое отклонение:
Найдем стандартную ошибку коэффициента регрессии по формуле:
Фактическое значение t-критерия Стьюдента для коэффициента регрессии «b» рассчитывается как
стьюдент коэффициент корреляция регрессия
Полученное фактическое значение tb сравнивается с критическим tk , который получается по таблице Стьюдента с учетом принятого уровня значимости L=0,05 (для вероятности 0,95) и числа степеней свободы
Полученный коэффициент регрессии признается типичным, т.к.
Оценка статистической значимости построенной модели регрессии в целом производится с помощью F-критерия Фишера
Фактическое значение критерия для уравнения определяется как
Fфакт сравнивается с критическим значением Fк, которое определяется по таблице F-критерия с учетом принятого уровня значимости L=0,05 (для вероятности 0,95) и числа степеней свободы:
Следовательно, при Fфакт>Fк уравнении регрессии в целом признается существенным.
5. По исходным данным полагают, что расстояние до ближайшей пожарной станции
уменьшится на 5% от своего среднего уровня
Следовательно, значения факторного признака для точечного прогноза:
а точечный прогноз :
Строим доверительный интервал прогноза ущерба с вероятностью 0,95 (L=0,05) по формуле
Табличное значение t-критерия Стьюдента для уровня значимости
L=0,05 и числа степеней свободы п-2=10-2=8,
Стандартная ошибка точечного прогноза рассчитываемая по формуле
Отсюда доверительный интервал составляет:
Из полученных результатов видно, что интервал от 19,8 до 28,6 млн. руб. ожидаемой величины ущерба довольно широкий. Значительная неопределенность прогноза линии регрессии, это видно из формулы связана прежде всего с малым объемом выборки (n=10), а также тем, что по мере удаления xk от ширина доверительного интервала увеличивается.
Размещено на Allbest.ru
Подобные документы
Построение линейного уравнения парной регрессии, расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Определение коэффициентов корреляции и эластичности, индекса корреляции, суть применения критерия Фишера в эконометрике.
контрольная работа [141,3 K], добавлен 05.05.2010Построение поля корреляции, расчет уравнений линейной парной регрессии, на основе данных о заработной плате и потребительских расходах в расчете на душу населения. Анализ коэффициента эластичности, имея уравнение регрессии себестоимости единицы продукции.
контрольная работа [817,3 K], добавлен 01.04.2010Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.
контрольная работа [155,8 K], добавлен 11.12.2010Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.
контрольная работа [110,4 K], добавлен 28.07.2012Расчет параметров линейной регрессии. Сравнительная оценка тесноты связи с помощью показателей корреляции, детерминации, коэффициента эластичности. Построение поля корреляции. Определение статистической надежности результатов регрессионного моделирования.
контрольная работа [71,7 K], добавлен 17.09.2016Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.
контрольная работа [1,6 M], добавлен 14.05.2008Построение модели множественной линейной регрессии по заданным параметрам. Оценка качества модели по коэффициентам детерминации и множественной корреляции. Определение значимости уравнения регрессии на основе F-критерия Фишера и t-критерия Стьюдента.
контрольная работа [914,4 K], добавлен 01.12.2013Поле корреляции и гипотеза о виде уравнения регрессии. Оценка величины влияния фактора на исследуемый показатель с помощью коэффициента корреляции и детерминации. Определение основных параметров линейной модели с помощью метода наименьших квадратов.
контрольная работа [701,1 K], добавлен 29.03.2011Построение доверительного интервала для коэффициента регрессии. Определение ошибки аппроксимации, индекса корреляции и F-критерия Фишера. Оценка эластичности изменения материалоемкости продукции. Построение линейного уравнения множественной регрессии.
контрольная работа [250,5 K], добавлен 11.04.2015Параметры уравнения линейной регрессии. Вычисление остаточной суммы квадратов, оценка дисперсии остатков. Осуществление проверки значимости параметров уравнения регрессии с помощью критерия Стьюдента. Расчет коэффициентов детерминации и эластичности.
контрольная работа [248,4 K], добавлен 26.12.2010