Статистическое изучение вариации

Вариация признака - различие его численных значений у отдельных единиц совокупности, связь между ее размерами и степенью однородности изучаемая группы. Значение отклонения от средних как проявления развития явлений. Дискретные и непрерывные признаки.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 14.09.2011
Размер файла 201,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Статистическое изучение вариации

Вариацией признака называется различие численных значений признака у отдельных единиц совокупности. Размеры вариации позволяют судить, насколько однородна изучаемая группа и, следовательно, насколько характерна средняя по группе. Изучение отклонений от средних имеет большое практическое и теоретическое значение, так как в отклонениях проявляется развитие явления.

Статистические данные представлены в рядах распределения. В зависимости от признака, положенного в основу группировки данных, различают атрибутивные и вариационные ряды. Числовые значения признака, встречающееся в данной совокупности называется вариантами значений. Статистические данные без какой-либо систематизации образуют первичный ряд.

Пример.

№ ТЭЦ

1 2 3 4 5

Себестоимость 1 кВт. ч., тыс. руб.

5,8 6,6 5,9 6,7 6,6

При наличии достаточно большого количества вариантов значений признака для его изучения необходимо упорядочения первичный ряд, т.е. проранжировать - расположить все варианты ряда в возрастающем (или убывающем) порядке.

№ ТЭЦ

1 2 3 4 5

Себестоимость 1 кВт. - ч, тыс. руб.

5,8 5,9 6,6 6,6 6,7

При рассмотрении ранжированных данных можно увидеть, что варианты значений признака у отдельных единиц повторяются. Число повторений отдельных вариантов называют частотой повторения ().

По характеру вариации различают дискретные и непрерывные признаки. Дискретные признаки отличаются друг от друга на некоторое прерывное число.

Таблица 1. Распределение рабочих цеха по квалификации

Тарифный

разряд ()

Число рабочих )

Частости ()

Накопленные частоты (Fi)

II

1

0,05

1

III

5

0,25

6

IV

8

0,40

14

V

4

0, 20

18

VI

2

0,10

20

Итого:

20

1,00

Вместо абсолютного числа рабочих, имеющих определенный разряд, можно установить долю рабочих этого разряда. Частоты, представленные в относительном выражении, называют частостями и обозначают :

Частости могут быть выражены в долях единицы или в процентах. Накопленные частоты определяют последовательным суммированием частот.

Непрерывные признаки могут отличаться один от другого на сколь угодно малую величину и в определенных границах принимать любые значения. Для построения ряда распределения непрерывных признаков значения вариантов указываются в интервалах "от - до". При построении интервальных рядов необходимо определить число интервалов и определить величину интервала.

Если вариационный ряд дан в неравных интервалах, то для правильного представления о характере распределения необходимо рассчитать абсолютную и относительную плотности распределения. Абсолютная плотность:

,

где - величина интервала.

Относительная плотность

,

где - частость.

Эти показатели используют для преобразования интервалов, если данные собраны по различным совокупностям и по разному обработаны:

.

Для характеристики размера вариации используются специальные показатели колеблемости: размах вариации, средне линейное отклонение, среднее квадратическое отклонение, коэффициент вариации.

Размах вариации - величина разности между максимальным и минимальным значениями признака:

.

Достоинством этого показателя является простота расчета. Недостаток заключается в том, что данный показатель опирается только на два крайних значения признака и не учитывает степени колеблемости основной массы членов ряда.

Среднее линейное отклонение - это средняя арифметическая из абсолютных отклонений индивидуальных значений признака от среднего значения.

Для первичного ряда .

Для ряда распределения .

Так как согласно свойству средней арифметической алгебраическая сумма отклонений индивидуальных значений признака от средней арифметической равна нулю, то для расчета суммируются абсолютные значения индивидуальных отклонений независимо от знака.

Среднее линейное отклонение показывает, насколько в среднем отличаются индивидуальные значения признака от среднего их значения.

Среднее квадратическое отклонение равно квадратному корню из среднего квадрата отклонений индивидуальных значений признака от средней арифметической.

Для первичного ряда .

Для ряда распределения .

вариация признак дискретный непрерывный

Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц изучаемой совокупности: > . Для умеренно ассиметричных рядов распределения установлено следующее соотношение: или .

Дисперсия имеет самостоятельное значение в статистике и относится к числу важнейших показателей:

Для первичного ряда .

Для вариационного ряда .

Следовательно, .

В статистике часто возникает необходимость сравнения вариации различных признаков. В таких случаях используют показатель относительного рассеяния - коэффициент вариации:

.

Коэффициент вариации показывает, на сколько процентов в среднем индивидуальные значения отличаются от средней арифметической. Он является критерием надежности средней: если он превышает 40%, то это свидетельствует о большой колеблемости признака и, следовательно, средняя недостаточно надежна.

Линейный коэффициент вариации:

Коэффициент осцилляции:

Дисперсия обладает рядом свойств.

1. Дисперсия постоянного числа равна нулю. Если то

.

2. Если все варианты одного ряда увеличить или уменьшить на какое-либо число, то дисперсия нового ряда не изменится.

Пусть , но тогда

.

3. Если все варианты ряда уменьшить или увеличить в раз, то дисперсия нового ряда уменьшится (или увеличится) в .

Пусть , тогда

.

Моментом распределения называется средняя арифметическая тех или иных степеней отклонений индивидуальных значений признака от определенной исходной величины. В общем виде момент можно записать следующим образом:

Мк = ,

где А - величина, от которой определяются отклонения;

k - степень отклонения (порядок момента).

В зависимости от величины k моменты могут быть рассчитаны любого порядка, но практическое применение находят моменты первых четырех порядков.

В качестве постоянной величины А может быть принято любое число. В зависимости от того, что принимается за постоянную величину, различают следующие три вида моментов:

1) если в качестве постоянной величины принят нуль, т.е. А = 0, то моменты именуют начальными. В общем виде их можно записать

и соответственно моменты первых четырех порядков

- средняя арифметическая из квадратов вариантов

.

2) если в качестве постоянной величины принята средняя арифметическая ряда, т.е. А = , то моменты именуют центральными

(согласно свойству средней арифметической).

(дисперсия)

(для расчета показателя эксцесса).

3) если в качестве постоянной величины принято любое число, отличное от нуля, то момент именуют условным

.

Используя начальные моменты первого и второго порядка можно получить формулу для расчета дисперсии

Вычислить дисперсию можно также следующим образом:

Следовательно, дисперсия может быть определена как разность среднего квадрата вариантов и квадрата их средней.

В вариационных рядах с равными интервалами дисперсия может быть вычислена способом моментов и способом отсчета от условного нуля.

Расчет производится по формуле

,

где - ширина интервала;

- условный нуль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой.

- момент второго порядка

- квадрат момента первого порядка.

Единицы изучаемых явлений могут характеризоваться такими признаками, которыми одни единицы совокупности обладают, а другие - нет. Такой признак называется альтернативным.

Наличие признака обозначается единицей, а его отсутствие - нулем. Доля единиц, обладающих этим признаком, обозначается p, а доля, им не обладающая - q. Следовательно, p + q = 1, q = 1 - p. Среднее значение альтернативного признака равно:

.

Таким образом, среднее значение альтернативного признака равно величине той доли единиц, которая им обладает.

Определим дисперсию:

;

.

Пример.

Из 1000 готовых изделий 250 оказались высшего качества. Определить .

или 25% изделий высшего качества.

.

Для оценки влияния различных факторов, определяющих колеблемость индивидуальных значений признака можно воспользоваться разложением дисперсии на составляющие: межгрупповую и внутригрупповую дисперсии.

Вариацию, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия, которая является мерой колеблемости частных средних по группам от общей средней:

,

где - групповые средние,

- общая средняя для всей совокупности,

- численность отдельных групп.

Вариацию, обусловленную влиянием прочих факторов, характеризует в каждой группе групповая дисперсия:

,

а по совокупности в целом - средняя из внутригрупповых дисперсий

.

Следовательно, общая вариация признака в совокупности должна определяться как сумма вариации групповых средних (за счет одного выделенного фактора) и остаточной вариации (за счет остальных факторов). Это равенство находит отражение в правиле сложения дисперсий .

Отношение межгрупповой дисперсии к общей дает коэффициент детерминации

,

который характеризует долю вариации результативного признака, обусловленную вариацией факторного признака (положенного в основу группировки).

Коэффициент эмпирического корреляционного отношения

характеризует тесноту связи между результативным и факторным признаками.

Для получения представления о форме распределения строят графики распределения (полигон и гистограмму). Число наблюдений, по которому строится эмпирическое распределение, обычно невелико и представляет собой выборку из исследуемой генеральной совокупности. С увеличением числа наблюдений и одновременно уменьшением величины интервала зигзаги полигона начинают сглаживаться, и в пределе мы приходим к плавной кривой, которая называется кривой распределения.

В статистике исследуются различные виды распределения. Как правило, они одновершинные. Многовершинность свидетельствует о неоднородности изучаемой совокупности. Появление двух и более вершин говорит о необходимости перегруппировки данных с целью выделения более однородных групп.

Симметричным называется распределение, в котором частоты любых двух вариантов, равностоящих в обе стороны от центра распределения, равны между собой. Для симметричных распределений средняя арифметическая, мода и медиана равны между собой. Простейший показатель ассиметрии основан на соотношении показателей центра распределения: чем больше разность между средней арифметической и модой (медианой), тем больше ассиметрия ряда.

Показатель ассиметрии:

или

.

Для сравнения ассиметрии в нескольких рядах используют относительный показатель ассиметрии.

или

Величина может быть положительной и отрицательной. Если , то на графике такой ряд будет иметь вытянутость вправо (правосторонняя ассиметрия), если , то вытянутость влево (левосторонняя ассиметрия).

Рис.1. Правосторонняя ассиметрия

Рис.2. Левосторонняя ассиметрия

Рассчитывается также показатель характеристики крутости распределения. Это показатель эксцесса. При одной и той же средней арифметической эмпирический ряд может быть островершинным или низковершинным по сравнению с кривой нормального распределения. Показатель эксцесса отражает эту особенность:

.

Если > 0, то эксцесс считают положительным (распределение островершинно), если < 0, то эксцесс считается отрицательным (распределение низковершинно).

Рис.3. Положительный эксцесс

Рис.4. Отрицательный эксцесс

Среди различных кривых распределения особое место занимает нормальное распределение. Нормальное распределение на графике представляет собой симметричную колоколообразную кривую, имеющую максимум в точке . Эта точка является модой и медианой. Точка перегиба у нормальной кривой находится на расстоянии ± от . Кривая нормального распределения выражается уравнением Лапласа

,

где t - нормированное отклонение .

Установлено, что если площадь, ограниченную кривой нормального распределения, принять за 100%, то можно рассчитать площадь, заключенную между кривой и любыми двумя ординатами. Установлено, что площадь между ординатами, проведенными на расстоянии с каждой стороны от , составляет 0,683 всей площади. Это означает, что 68,3% всех частот (единиц) отклоняются от не более, чем на , т.е. находятся в пределах . Площадь, заключенная между ординатами, проведенными на расстоянии 2 от в обе стороны, составляет 0,954, т.е.95,4% всех единиц совокупности находятся в пределах .99,7% всех единиц находятся в пределах . Это правило трех сигм, характерное для нормального распределения.

Нормальное распределение характерно для явлений в биологии и технике. В экономике чаще встречаются умеренно ассиметричные распределения.

Имея дело с эмпирическими распределениями, можно предположить, что каждому эмпирическому распределению соответствует определенная, характерная для него теоретическая кривая. Знание формы теоретической кривой может быть использовано в различных расчетах и прогнозах. Для этого необходимо определить:

общий характер распределения;

по эмпирическим данным построить теоретическую кривую;

определить, насколько эмпирические частоты близки теоретическим.

Введем обозначения:

, ,

где - 2,7182 (основание натурального логарифма)

- 3,14.

Для построения теоретической кривой нормального распределения по эмпирическим данным необходимо найти теоретические частоты

,

где - константа;

h - ширина интервала;

- табулированная величина, которая находится по отклонениям t.

Последовательность расчета теоретических частот следующая:

§ рассчитывается средняя арифметическая ряда

§ рассчитывается среднее квадратическое отклонение

§ находится

§ по найденным t по таблице находится

§ рассчитывается

§ каждое значение умножается на .

К числу важнейших теоретических распределений относится распределение Пуассона, которое характерно для редких явлений, причем с увеличением значения x вероятность их наступления падает.

Графически оно имеет следующий вид

Рис.5. Распределение Пуассона

Распределение Пуассона имеет следующий вид:

, где

Тогда

.

Нахождение теоретических частот при выравнивании ряда по распределению Пуассона производится в следующем порядке:

· находится средняя арифметическая,

· по таблице определяется

· для каждого значения х определяется теоретическая частота.

Для оценки случайности или существенности расхождений между частотами эмпирического и теоретического распределений в статистике пользуются рядом критериев.

Одним из основных критериев, служащих для сравнения частот эмпирического и теоретического распределений, является критерий согласия Пирсона ( - квадрат)

где - эмпирические частоты;

- теоретические частоты.

Для оценки близости эмпирического распределения к теоретическому определяется вероятность достижения этим критерием данной величины. Если > 0,05, то отклонения фактических частот от теоретических считаются случайными, несущественными. Если <0,05, то отклонения - существенные, а эмпирическое распределение - принципиально отличное от теоретического. Значения вероятностей табулирования в зависимости от и числа степеней свободы . Для нормального распределения , для распределения по кривой Пуассона: . Зная расчетное , сравниваем его с табличным (предельным). Если фактическое > табличного, то расхождение между частотами эмпирического и теоретического распределений нельзя считать случайным. Если фактическое < табличного, то расхождение можно считать случайным, а рассматриваемое теоретическое распределение подходящим для описания эмпирического распределения.

Критерий Романовского определяется

,

где - критерий Пирсона;

- число единиц степеней свободы.

Если данный критерий , то расхождения нельзя считать случайными. Если же он < 3, то расхождение между эмпирическими и теоретическими частотами можно считать случайными.

А.Н. Колмогоров предложил критерий, основанный на сопоставлении распределения накопления накопленных частостей (частот).

,

где d - максимальная разность между накопленными частостями эмпирического и теоретического рядов распределения, а N - число единиц совокупности. Если же распределение задано в частотах, то

,

где Д - максимальная разность накопленных частот двух распределений.

Размещено на Allbest.ru


Подобные документы

  • Статистический анализ выборочной и генеральной совокупности. Степень колеблемости и однородности признака. Применение правила "трех сигм". Прогнозная оценка размаха вариации признака в генеральной совокупности. Нахождение показателя коэффициента эксцесса.

    лабораторная работа [260,5 K], добавлен 01.02.2011

  • Сущность и особенности понятия "вариация", ее виды и формы исчисления. Метод электронно-вычислительного способа расчета. Принцип вычисления среднего квадратического отклонения. Характеристика общих, межгрупповых, средних и внутригрупповых дисперсий.

    методичка [168,9 K], добавлен 15.12.2008

  • Анализ распределений для выявления закономерности изменения частот в зависимости от значений варьирующего признака и анализ различных характеристик изучаемого распределения. Характеристика центральной тенденции распределения и оценка вариации признака.

    лабораторная работа [606,7 K], добавлен 13.05.2010

  • Понятие о средних величинах как обобщении в экономике. Виды средних величин: арифметическая, гармоническая, геометрическая, квадратическая и кубическая. Показатели вариации. Методика и примеры решения типовых задач на нахождение средних величин.

    курсовая работа [27,7 K], добавлен 31.05.2008

  • Расчет показателей вариации: среднее арифметическое, мода, медиана, размах вариации, дисперсия, стандартное и среднее линейное отклонения, коэффициенты осцилляции и вариации. Группировка данных по интервалам равной длины, составление вариационного ряда.

    курсовая работа [429,7 K], добавлен 09.06.2011

  • Значения показателей и коэффициент вариации. Пределы возможных ошибок, исключение ошибочных результатов. Величина доверительных интервалов для заданных значений доверительных вероятностей. Средние квадратичные отклонения. Значения коэффициента доверия.

    лабораторная работа [38,4 K], добавлен 01.03.2011

  • Задачи и этапы проведения корреляционного анализа, экономическая интерпретация его результатов. Критерии качественной и количественной однородности исходных данных: среднеквадратическое отклонение и коэффициент вариации. Показатели оценки уравнения связи.

    контрольная работа [76,9 K], добавлен 12.11.2013

  • Расчет выборочной средней, дисперсии, среднего квадратического отклонения и коэффициента вариации. Точечная оценка параметра распределения методом моментов. Решение системы уравнений по формулам Крамера. Определение уравнения тренда для временного ряда.

    контрольная работа [130,4 K], добавлен 16.01.2015

  • Средняя величина анализируемого признака. Размах и коэффициент вариации. Среднее линейное и квадратическое отклонение. Мода, медиана, первый и третий квартиль. Расчет медианы для интервального ряда. Основные аналитические показатели рядов динамики.

    контрольная работа [301,9 K], добавлен 22.04.2015

  • Расчет коэффициентов регрессии. Теоретическая и экспериментальная зависимость параметров а и b. Определение значений статистической дисперсии и среднеквадратического отклонения. Составление графика гистограммы распределения признака и кумулятивной прямой.

    контрольная работа [679,1 K], добавлен 12.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.