Экономико-математическое моделирование задач транспортной логистики

Классификация типов задач транспортной логистики, порядок записи условий. Нахождение опорного плана для задачи об оптимальном плане перевозок: метод северо-западного угла (диагональный), метод наименьшего элемента, решение с помощью теории графов.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 13.06.2011
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1

Содержание

  • 1. Экономико-математическое моделирование задач транспортной логистики 3
  • 2. Задача 7
  • Список использованных источников 13

1. Экономико-математическое моделирование задач транспортной логистики

Задачами транспортной логистики являются:

· Выбор вида транспортных средств;

· Совместное планирование транспортного процесса со складским и производственным;

· Совместное планирование транспортных процессов на различных видах транспорта (в случае смешанных перевозок);

· Обеспечение технологического единства транспортно-складского процесса;

· Определение рациональных маршрутов доставки.

Предприятию, фирме, концерну при реализации каналов распределения готовой продукции приходится решать комплекс вопросов, связанных с доставкой, и в первую очередь выбирать вид транспорта, методы организации перевозок и тип транспортных средств. При выборе рациональных транспортных средств руководствуются прежде, всего соответствием их типа свойствам перевозимых грузов. В ка-честве критериев при выборе транспортных средств принимают сохранность грузов, наилучшее использование их вместимости и грузоподъемности и снижение затрат на перевозку. Такие подходы получили достаточное освещение в технической литературе. Целям логистики отвечают такие прогрессивные способы перевозок, как пакетные, контейнерные, комбинированные, которые также основательно описаны во многих публикациях.

Основой математического моделирования в транспортной логистике является транспортная задача (Задача Монжа -- Канторовича) -- задача об оптимальном плане перевозок продукта (-ов) из пунктов отправления в пункты потребления. Разработка и применение оптимальных схем грузовых потоков позволяют снизить затраты на перевозки. Транспортная задача является по теории сложности вычислений NP-сложной или входит в класс сложности NP. Когда суммарный объем предложений (грузов, имеющихся в пунктах отправления) не равен общему объему спроса на товары (грузы), запрашиваемые пунктами потребления, транспортная задача называется несбалансированной.

Транспортная задача (классическая) -- задача об оптимальном плане перевозок однородного продукта из однородных пунктов наличия в однородные пункты потребления на однородных транспортных средствах (предопределённом количестве) со статичными данными и линеарном подходе (это основные условия задачи).

Проблема была впервые формализована французским математиком Гаспаром Монжем в 1781[1]. Основное продвижение было сделано на полях во время Великой Отечественной войны советским математиком и экономистом Леонидом Канторовичем[2]. Поэтому иногда эта проблема называется Транспортной задачей Монжа-Канторовича.

Для классической транспортной задачи выделяют два типа задач: критерий стоимости (достижение минимума затрат на перевозку) или расстояний и критерий времени (затрачивается минимум времени на перевозку).

Классическую транспортную задачу можно решить симплекс-методом, но в силу ряда особенностей ее можно решить проще (для задач малой размерности).

Условия задачи располагают в таблице, вписывая в ячейки количество перевозимого груза из в груза , а в маленькие клетки -- соответствующие тарифы .

Нахождение опорного плана

Требуется определить опорный план и путем последовательных операций найти оптимальное решение. Опорный план можно найти следующими методами: «северо-западного угла» (нем.), «наименьшего элемента», двойного предпочтения и аппроксимацией Фогеля (нем.).

1. Метод северо-западного угла (диагональный)

На каждом этапе максимально возможным числом заполняют левую верхнюю клетку оставшейся части таблицы. Заполнение таким образом, что полностью выносится груз из или полностью удовлетворяется потребность .

2. Метод наименьшего элемента

Одним из способов решения задачи является метод минимального (наименьшего) элемента Его суть заключается в сведении к минимуму побочных перераспределений товаров между потребителями.

Алгоритм:

а) Из таблицы стоимостей выбирают наименьшую стоимость и в клетку, которая ей соответствует, вписывают меньшее из чисел.

б) Проверяются строки поставщиков на наличии строки с израсходованными запасами и столбцы потребителей на наличие столбца, потребности которого полностью удовлетворены. Такие столбцы и строки далее не рассматриваются.

в) Если не все потребители удовлетворены и не все поставщики израсходовали товары, возврат к п.1, в противном случае задача решена.

3. Решение с помощью теории графов

Рассматривается двудольный граф, в котором пункты производства находятся в верхней доле, а пункты потребления -- в нижней. Пункты производства и потребления попарно соединяются рёбрами бесконечной пропускной способности и цены за единицу потока .

К верхней доле искусственно присоединяется исток. Пропускная способность рёбер из истока в каждый пункт производства равна запасу продукта в этом пункте. Цена за единицу потока у этих рёбер равна 0.

Аналогично к нижней доле присоединяется сток. Пропускная способность рёбер из каждого пункта потребления в сток равна потребности в продукте в этом пункте. Цена за единицу потока у этих рёбер тоже равна 0.

Дальше решается задача нахождения максимального потока минимальной стоимости (mincost maxflow). Её решение аналогично нахождению максимального потока в алгоритме Форда--Фалкерсона. Только вместо кратчайшего дополняющего потока ищется самый дешёвый. Соответственно, в этой подзадаче используется не поиск в ширину, а алгоритм Беллмана--Форда. При возврате потока стоимость считается отрицательной.

Алгоритм mincost maxflow можно запускать и сразу -- без нахождения опорного плана. Но в этом случае процесс решения будет несколько более долгим. Выполнение алгоритма mincost maxflow происходит не более чем за операций. ( -- количество рёбер, -- количество вершин.) При случайно подобраных данных обычно требуется гораздо меньше -- порядка операций.

При решении несбалансированной транспортной задачи, применяют прием, позволяющий сделать ее сбалансированной. Для этого вводят фиктивные пункты назначения или отправления. Выполнение баланса транспортной задачи необходимо для того, чтобы иметь возможность применить алгоритм решения, построенный на использовании транспортных таблиц.

Таким образом, транспортная задача, является одной из наиболее распространенных задач линейного программирования. Решение данной задачи позволяет разработать наиболее рациональные пути и способы транспортирования товаров, устранить чрезмерно дальние, встречные, повторные перевозки. Все это сокращает время продвижения товаров, уменьшает затраты предприятий и фирм, связанные с осуществлением процессов снабжения сырьем, материалами, топливом, оборудованием и т.д.

транспортная логистика оптимальная перевозка

2. Задача

В СПК «Щомыслица» Минского района имеются пять складов минеральных удобрений и четыре пункта, куда их необходимо доставить. Потребность каждого пункта в минеральных удобрениях различна, и запасы на каждом складе ограничены. Требуется определить, с какого склада, в какой пункт поставлять, сколько минеральных удобрений для минимизации грузооборота перевозок.

Имеются следующие исходные данные.

Наличие минеральных удобрений на складах.

Склады

Наличие удобрений, т.

Склад №1

200

Склад №2

190

Склад №3

220

Склад №4

145

Склад №5

280

Потребность в минеральных удобрениях на различных пунктах.

Пункты

Потребность в удобрениях, т.

1 пункт

200

2 пункт

150

3 пункт

220

4 пункт

330

Расстояния между складами и пунктами доставки.

Пункт 1

Пункт 2

Пункт 3

Пункт 4

Склад №1

6

4

5

11

Склад №2

12

6

4

9

Склад №3

15

7

10

4

Склад №4

9

5

12

5

Склад №5

3

7

12

11

На пересечении столбца конкретного пункта доставки со строкой склада находится информация о расстояниях между этими пунктом доставки и складом. Например, расстояние между 3 пунктом и складом №3 равно 10 километрам.

Для решения задачи подготовим необходимые таблицы. (рис. 1)

Рисунок 1. Изменяемые ячейки

Значения ячеек по столбцу В с четвертой по восьмую строку определяются суммированием данных ячеек соответствующих строк начиная со столбца С до столбца F .

Например, значение ячейки B4=СУММ(C4:F4)

Значения ячеек по 9 строке по столбцам от С до F определяются суммированием данных ячеек соответствующих столбцов с 4 по 8 строки.

Например, значение ячейки С9=СУММ(C4:C8)

Каждое значение в ячейках на пересечении столбца конкретного пункта доставки и строки склада означает количество тонн, поставляемых с этого склада в данный пункт потребления. В нижней строке (строка 9) суммируется общее количество минеральных удобрений, поставляемых в определенный пункт доставки, а во втором столбце (столбец В) суммируется количество доставленного с конкретного склада минеральных удобрений.

Теперь, используя исходные данные, введем на этом же листе требуемые объемы поставок и расстояния между складами и пунктами доставки.

Рисунок 2 Исходная информация

В строке 16 по столбцам C-F определим грузооборот по каждому пункту доставки. К примеру для 1 пункта (ячейка С16) это рассчитывается с помощью формулы

С16=С4*С11+С5*С12+С6*С13+С7*С14+С8*С15

либо можно использовать функцию СУММПРОИЗВ

С16=СУММПРОИЗВ(C4:C8;C11:C15)

В ячейке С4 находится количество минеральных удобрений, перевозимых со склада №1 в 1 пункт доставки, а в ячейке С11 - расстояние от склада №1 до 1 пункта доставки. Соответственно первое слагаемое в формуле означает полный грузооборот по данному маршруту. Вся же формула вычисляет полный грузооборот перевозок минеральных удобрений в 1 пункт доставки.

В ячейке В16 по формуле =СУММ(С16:F16) будет вычисляться общий объем грузооборота минеральных удобрений.

Таким образом, информация на рабочем листе примет следующий вид (рис. 3)

Рисунок 3. Рабочий лист, подготовленный для решения транспортной задачи

Для решения транспортной задачи воспользуемся процедурой Поиск решения, которая находится в меню Сервис.

После выбора данной команды появится диалоговое окно (рис. 4).

Рисунок 4. Диалоговое окно Поиск решения

Поскольку в качестве критерия оптимизации нами выбрана минимизация грузооборота, в поле Установить целевую ячейку введём ссылку на ячейку, содержащую формулу расчета общего объема грузооборота минеральных удобрений. В нашем случае это ячейка $B$16. Чтобы минимизировать значение конечной ячейки путем изменения значений влияющих ячеек (влияющими, в данном случае это и изменяемые ячейки, являются ячейки, которые предназначены для хранения значений искомых неизвестных), переключатель установите в положение минимальному значению;

В поле Изменяя ячейки введём ссылки на изменяемые ячейки, разделяя их запятыми; либо, если ячейки находятся рядом, указывая первую и последнюю ячейку, разделяя их двоеточием ($С$4:$F$8). Это означает, что для достижения минимального грузооборота перевозок будут меняться значения в ячейках с С4 по F8, то есть будут изменяться количество груза, перевезенного по конкретному маршруту.

Необходимо наложить некоторые ограничения для поиска решения.

В группе полей Ограничения нажмите кнопку Добавить. Появится диалог Добавление ограничения (рис. 5)

Рисунок 5. Диалоговое окно Добавление ограничения

Следует ввести левую часть ограничения в левое поле, выбрать знак условия, накладываемого на значение и ввести правую часть ограничения. Как и в других случаях, можно не вводить ссылки на ячейки, а выделить мышью эти ячейки. После ввода одного ограничения нажмёмать кнопку Добавить и ввести следующее. По окончании ввода всех ограничений нажмите на кнопку ОК. В диалоге появятся строки введенных ограничений (рис. 6)

Рис. 6. Диалоговое окно Поиск решения с заполненными полями

Для изменения и удаления ограничений в списке Ограничения диалогового окна Поиск решения укажем ограничение, которое требуется изменить или удалить. Выберем команду Изменить и внесите изменения либо нажмите кнопку Удалить.

Рассмотрим более подробно условия, которые следует наложить на значения в некоторых ячейках для правильного решения задачи.

Первое условие $B$4:$B$8 <=$B$11:$B$12. Оно означает, что значение в ячейке В4 должно быть меньше или равно значению в В11, в В5 меньше или равно, чем в В12, и так далее до В8 и В15.

В ячейках с В4 по В8 на листе находятся объемы поставок с конкретных складов. В ячейках с В11 по В15 - запасы на этих же складах. Так как невозможно вывести со склада больше, чем на нем есть, первое значение должно быть не больше второго.

Второе условие $С$4:$F$8>=0. Оно означает, что объем перевозок не может быть отрицательным, то есть, если на складе не хватает минеральных удобрений, их не везут с пункта доставки, на который эти минеральные удобрения были завезены ранее. Грузопоток имеет только одно направление - от складов к пунктам доставки удобрений.

И. наконец, третье, и последнее условие $С$9:$F$9>=$C$10:$F$10. Оно означает, что значения в ячейках девятой строки должны быть больше или равны значениям в ячейках десятой строки,, то есть запросы пунктов доставки минеральных удобрений должны быть выполнены полностью. Перевыполнение объема поставок допустимо, а недовыполнение - нет.

Введенные условия должны позволить найти наиболее оптимальный вариант решения задачи.. Нажмём кнопку Выполнить для подбора решения.

После нахождения решения появляется диалог Результаты поиска решения (рис. 7)

Рис. 7. Диалоговое окно Результаты поиска решения

Нажав кнопку ОК, занесём вариант решения на рабочий лист (рис. 7).

Рис. 7. Решенная транспортная задача

Таким образом, минимальный грузооборот перевозок при соблюдении всех условий равен 3540 т.-км.

Список использованных источников

1. Гаджинский А.М. Логистика. М.: Маркетинг, 2006. - 228 с.

2. Дроздов П.А. Основы логистики. Мн.: Изд. Гревцова, 2008. - 208 с.

3. Ермаков Е.И. Общий курс высшей математики для экономистов. М.: Инфра-М, 2000.

4. Кузнецов А.В., Сакович В.А., Холод Н.И. Высшая математика. Математическое программирование, Минск: Вышейшая школа, 2001г.

5. Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании, Издательство “Дело”, Москва 2001г.

6. Канке А.А. Кошевая И.П. Логистика. М.: ИНФРА-М, 2007. - 384 с.

7. Сергеев В. И. Логистика в бизнесе: Учебник. М.: ИНФРА-М, 2001.

Размещено на Allbest.ru


Подобные документы

  • Понятие классической транспортной задачи, классификация задач по критерию стоимости и времени. Методы решения задач: симплекс, северо-западного угла (диагональный), наименьшего элемента, потенциалов решения, теория графов. Определение и применение графов.

    курсовая работа [912,1 K], добавлен 22.06.2015

  • Содержание методов аппроксимации Фогеля, потенциала, наименьшей стоимости и северо-западного угла как путей составления опорного плана транспортной задачи на распределение ресурсов с минимальными затратами. Ее решение при помощи электронных таблиц.

    курсовая работа [525,7 K], добавлен 23.11.2010

  • Математическая постановка и алгоритм решения транспортной задачи. Сбалансированность и опорное решение задачи. Методы потенциалов и северо-западного угла. Блок-схема. Формы входной и выходной информации. Инструкция для пользователя и программиста.

    курсовая работа [113,8 K], добавлен 10.11.2008

  • Решение графическим методом задачи линейного программирования с двумя неизвестными. Решение транспортной задачи методом северо-западного угла и методом минимальной стоимости. Системы массового обслуживания. Стохастическая модель управления запасами.

    контрольная работа [458,1 K], добавлен 16.03.2012

  • Особенности построения опорных планов транспортной модели методом северо-западного угла, методом минимальной стоимости, методом Фогеля. Оптимизация транспортной модели открытого и закрытого типа с помощью метода потенциала на основе опорного плана.

    курсовая работа [68,6 K], добавлен 25.04.2014

  • Экономико-математическая модель оптимального плана выпуска продукции. Оптимальная организация рекламной компании. Решение транспортной задачи: нахождение суммарных затрат на перевозку. Задача об оптимальном назначении (линейного программирования).

    контрольная работа [812,0 K], добавлен 29.09.2010

  • Составление плана перевозок зерна с учетом данных о потребности в нем и его запасах. Минимизация затрат на реализацию плана перевозок. Методы "северо-западного угла" и "минимального элемента". Новый улучшенный опорный план по методу потенциалов.

    задача [48,5 K], добавлен 24.05.2009

  • Анализ чувствительности производственной программы предприятия к изменению уровня запасов сырья. Элементы теории графов. Алгоритм для нахождения пути с правильной нумерацией вершин. Транспортная задача, метод минимального элемента и северо-западного угла.

    курсовая работа [986,8 K], добавлен 31.05.2013

  • Основные методы решения задач линейного программирования. Графический метод, симплекс-метод. Двойственная задача, метод потенциалов. Моделирование и особенности решения транспортной задачи методом потенциалов с использованием возможностей Мicrosoft Excel.

    контрольная работа [1,1 M], добавлен 14.03.2014

  • Постановка, анализ, графическое решение задач линейной оптимизации, симплекс-метод, двойственность в линейной оптимизации. Постановка транспортной задачи, свойства и нахождение опорного решения. Условная оптимизация при ограничениях–равенствах.

    методичка [2,5 M], добавлен 11.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.