Методы сетевого моделирования
Общая характеристика сетевого планирования. Граф - совокупность двух конечных множеств. Планирование и управление сложными комплексами работ при помощи деревьев и графов. Основные понятия сетевой модели: событие, работа, путь. Анализ проектов.
Рубрика | Экономико-математическое моделирование |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 17.05.2011 |
Размер файла | 85,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Сетевой моделью (другие названия: сетевой график, сеть) называется экономико-компьютерная модель, отражающая комплекс работ (операций) и событий, связанных с реализацией некоторого проекта (научно-исследовательского, производственного и др.), в их логической и технологической последовательности и связи.
Анализ сетевой модели, представленной в графической или табличной (матричной) форме, позволяет, во-первых, более четко выявить взаимосвязи этапов реализации проекта и во-вторых, определить наиболее оптимальный порядок выполнения этих этапов в целях, например, сокращения сроков выполнения всего комплекса работ.
Таким образом, методы сетевого моделирования относятся к методам принятия оптимальных решений, что оправдывает рассмотрение этого типа моделей в данной курсовой работе.
Общая характеристика сетевого планирования
Выполнение комплексных научных исследований, а также проектирование и строительство промышленных, сельскохозяйственных и транспортных объектов требуют календарной увязки большого числа взаимосвязанных работ, выполняемых различными организациями. Составление и анализ соответствующих календарных планов представляют собой весьма сложную задачу, при решении которой применяются так называемые методы сетевого планирования. По существу, этот метод дает возможность определить, во-первых, какие работы или операции из числа многих, составляющих проект, являются «критическими» по своему влиянию на общую календарную продолжительность проекта и, во-вторых, каким образом построить наилучший календарный план проведения всех работ по данному проекту с тем, чтобы выдержать заданные сроки при минимальных затратах.
Математический аппарат сетевых моделей базируется на теории графов.
Графом называется совокупность двух конечных множеств:
- множества точек, которые называются вершинами, и множества пар вершин, которые называются ребрами. Если рассматриваемые пары вершин являются упорядоченными, т. е. на каждом ребре задается направление, то граф называется ориентированным; в противном случае -- неориентированным. Последовательность неповторяющихся ребер, ведущая от некоторой вершины к другой, образует путь.
Граф называется связным, если для любых двух его вершин существует путь, их соединяющий; в противном случае граф называется несвязным.
В экономике чаще всего используются два вида графов: дерево и сеть.
Дерево представляет собой связный граф без циклов, имеющий исходную вершину (корень) и крайние вершины; пути от исходной вершины к крайним вершинам называются ветвями.
Сеть -- это ориентированный конечный связный граф, имеющий начальную вершину (источник) и конечную вершину (сток). Таким образом, сетевая модель представляет собой граф вида «сеть».
Модели сетевого планирования предназначены для планирования и управления сложными комплексами работ (проектами), направленными на достижение определенной цели в заданные сроки (строительство, разработка и производство сложных объектов и др.).
За рубежом система СП известна как система РЕRТ (Рrоgram Еvaluation and Review Тechnique - метод анализа и оценки программ) или СРМ (Critical Рath Мethod - метод критического пути).
Сетевой моделью (СМ) называется экономико-математическая модель, отражающая весь комплекс работ и событий, связанных с реализацией проекта в их логической и технологической последовательности и связи.
В СП применяются связные, ориентированные графы без циклов, имеющие одну начальную и одну конечную вершину.
Основные понятия сетевой модели: событие, работа, путь
Работа характеризует любое действие, требующее затрат времени или ресурсов. Работами считаются и процессы, не требующие затрат времени и ресурсов, а устанавливающие зависимости выполнения работ. Такие работы называются фиктивными. Работа обозначается парой чисел (i,j) где i - номер события, являющимся начальным для данной работы, j - номер события, являющимся конечным для данной работы, в которое она входит. Работа не может начаться раньше, чем свершится событие, являющееся для нее начальным. Каждая работа имеет свою продолжительность t(i,j). Работы на графах обозначаются дугами (стрелками), фиктивные работы обозначаются пунктирными стрелками.
Событиями называются начало или завершение одной или нескольких работ. Они не имеют протяженности во времени. Событие совершается в тот момент, когда оканчивается последняя работа, входящая в него. На графе события изображаются кружками, внутри которых записывается номер события. В моделях СП имеется одно начальное событие (номер 0), одно конечное событие или завершающее (номер N) и промежуточные события (номер i). В графической интерпретации сетевой модели работы представляются дугами, а события - вершинами графа.
Путь - цепочка следующих друг за другом работ (дуг), соединяющих начальную и конечную его вершины. Полный путь L - путь, начало которого совпадает с начальным событием сети, а конец - с завершающим. Продолжительность пути определяется суммой продолжительностей составляющих его работ. Путь, имеющий максимальную продолжительность, называют критическим (обозначение Lкр). Продолжительность критического пути обозначается как tкр_. Работы, принадлежащие критическому пути, называются критическими. Их несвоевременное выполнение ведет к срыву сроков всего комплекса работ.
Сетевая модель должна удовлетворяет следующим требованиям:
Не должно быть событий с одинаковыми номерами.
Для каждой работы (i,j) должно выполняться i <j
Должны быть только одно начальное и одно конечное события.
Должны отсутствовать циклы, т.е. замкнутые пути, соединяющие событие с ним же самим.
При выполнении этих требований можно приступать к вычислениям числовых характеристик СМ. Исходные числовые данные СМ представляются в виде таблицы длительности выполнения каждой работы.
Характеристики элементов сетевой модели
При расчетах для сетевой модели определяются следующие характеристики ее элементов.
Характеристики событий
1. Ранний срок свершения события tp(0) = 0, tР(j) =тахi{tр(i) + t(ij)}, j=1--N характеризует самый ранний срок завершения всех путей, в него входящих. Этот показатель определяется «прямым ходом» по графу модели, начиная с начального события сети.
2. Поздний срок свершения события tп(N) = tр(N), tп (i) = minj {(tп(j)-t(ij)}, i=1--(N-1) характеризует самый поздний срок, после которого остается ровно столько времени, сколько требуется для завершения всех путей, следующих за этим событием. Этот показатель определяется «обратным ходом» по графу модели, начиная с завершающего события сети.
3. Резерв времени события R(T) = tп(i) - tр(i) показывает, на какой максимальный срок можно задержать наступление этого события, не вызывая при этом увеличения срока выполнения всего комплекса работ.
Резервы времени для событий на критическом пути равны нулю,
R(i) = 0.
Характеристики работы (i,j)
Ранний срок начала работы: .
Ранний срок окончания работы:
Поздний срок начала работы:
Поздний срок окончания работы:
Резервы времени работ:
* полный резерв - максимальный запас времени, на который можно отсрочить начало или увеличить длительность работы без увеличения длительности критического пути. Работы на критическом пути не имеют полного резерва времени;
* частный резерв - часть полного резерва, на которую можно увеличить продолжительность работы, не изменив позднего срока ее начального события;
свободный резерв - максимальный запас времени, на который можно задержать начало работы или (если она началась в ранний срок) увеличит ее продолжительность, не изменяя ранних сроков начала последующих работ;
независимый резерв - - запас времени, при котором все предшествующие работы заканчиваются в поздние сроки, а все последующие - начинаются в ранние сроки. Использование этого резерва не влияет на величину резервов времени других работ.
Работы, лежащие на критическом пути, резервов времени не имеют. Если на критическом пути Lкр лежит начальное событие i работы (i,j), то Rп(i,j)=Rl(i,j). Если на Lкр лежит конечное событие j работы (i,j), то Rп(i,j)=Rc(i,j). Если на Lкр лежат и событие i, и событие j работы (i,j), а сама работа не принадлежит критическому пути, то Rп(i,j)=Rc(i,j)=Rп(i,j)
Характеристики путей
Продолжительность пути равна сумме продолжительностей составляющих ее работ.
Резерв времени пути равен разности между длинами критического пути и рассматриваемого пути.
Резерв времени пути показывает, на сколько может увеличиться продолжительность работ, составляющих данный путь, без изменения продолжительности срока выполнения всех работ.
В сетевой модели можно выделить так называемый критический путь. Критический путь Lкр состоит из работ (i,j), у которых полный резерв времени равен нулю Rп(i,j)=0, кроме этого, резерв времени R(i) всех событий i на критическом равен 0. Длина критического пути определяет величину наиболее длинного пути от начального до конечного события сети и равна . Заметим, что в проекте может быть несколько критических путей.
3. Коэффициент напряженности работ
Для оценки трудности своевременного выполнения работ служит коэффициент напряженности работ:
где t(Lтах(i,j)) - продолжительность максимального пути проходящего через работу (i,j);
t'кр - продолжительность отрезка пути Lтах(i,j), совпадающего с критическим путем.
Видно, что Кн(i,j) < 1. Чем ближе Кн(i,j) к 1, тем сложнее выполнить данную работу в установленный срок. Напряженность критических работ полагается равной 1. Все работы сетевой модели могут быть разделены на 3 группы: напряженные (Кн(i,j) > 0,8), надкритические (0,6 < Кн(i,j) < 0,8) и резервные (Кн(i,j) < 0,6).
В результате перераспределения ресурсов стараются максимально уменьшить общую продолжительность работ, что возможно при переводе всех работ в первую группу.
Анализ проектов. Метод CPM
Исходным шагом для применения метода CPM является описание проекта в виде перечня выполняемых работ с указанием их взаимосвязи. Для описания проекта используются два основных способа: табличный и графический. Рассмотрим следующую таблицу, описывающую проект.
Работа |
Непосредственно предшествующая работа |
Время выполнения |
|
A |
- |
tA |
|
B |
- |
tB |
|
C |
B |
tC |
|
D |
A, C |
tD |
В первом столбце указаны наименования всех работ проекта. Их четыре: A, B, C, D. Во втором столбце указаны работы, непосредственно предшествующие данной. У работ A и B нет предшествующих. Работе C непосредственно предшествует работа B. Это означает, что работа C может быть начата только после того, как завершится работа B. Работе D непосредственно предшествуют две работы: A и C. Это означает, что работа D может быть начата только после того, как завершатся работы A и C. В третьем столбце таблицы для каждой работы указано время ее выполнения. На основе этой таблицы может быть построено следующее графическое описание проекта.
Из приведенных выше определений и соотношений непосредственно следует:
1) Длина критического пути равна T.
2) Если R(i,j) = 0, то работа (i,j) лежит на критическом пути; если R(i,j)?0, то работа (i,j) не лежит на критическом пути.
3) Если время начала работы (i,j), которая не лежит на критическом пути, отложить на срок меньший, чем r(i,j), то наиболее раннее время наступления последующего события не изменится.
4) Если время начала работы (i,j), которая не лежит на критическом пути, отложить на срок меньший, чем R(i,j), то время, необходимое на выполнение всего проекта, не увеличится.
Анализ проектов. Метод PERT
Для того, чтобы использовать метод PERT, для каждой работы i, время выполнения которой является случайной величиной, необходимо определить следующие три оценки:
Оптимистическое время - время выполнения работы i в наиболее благоприятных условиях.
Наиболее вероятное время - время выполнения работы i в нормальных условиях.
Пессимистическое время - время выполнения работы i в неблагоприятных условиях.
Учитывая, что время выполнения работы хорошо описывается бета - распределением, среднее или ожидаемое время ti выполнения работы i может быть определено по формуле
Если время выполнения работы i известно точно и равно, то
Располагая указанными выше тремя оценками времени выполнения работы, мы можем также рассчитать общепринятую статистическую меру неопределенности - дисперсию или вариацию vari времени выполнения работы i:
Если время выполнения работы i известно точно, то = vari = 0.
Пусть Т - время, необходимое для выполнения проекта. Если в проекте есть работы с неопределенным временем выполнения, то время Т является случайной величиной. Математическое ожидание (ожидаемое значение) времени выполнения проекта Е(Т) равно сумме ожидаемых значений времени выполнения работ, лежащих на критическом пути. Для определения критического пути проекта может быть использован метод CPM. На этом этапе анализа проекта время выполнения работы полагается равным ожидаемому времени ti. Вариация (дисперсия) общего времени, требуемого для завершения проекта, в предположении о независимости времен выполнения работ равна сумме вариаций работ критического пути. Если же две или более работы взаимозависимы, то указанная сумма дает приближенное представление о вариации времени завершения проекта.
Распределение времени T завершения проекта является ассимптотически нормальным со средним Е(Т) и дисперсией (T). С учетом этого можно рассчитать вероятность завершения проекта в установленный срок T0. Для определения вероятности того, что T?T0, следует использовать таблицу распределения величины z=(T0-E(T))/(T), которая имеет стандартное нормальное распределение.
Оптимизация сетевых моделей по критерию «время-затраты»
сетевой модель проект граф
Оптимизация сетевого графика представляет процесс улучшения организации выполнения комплекса работ с учетом срока его выполнения. Она проводится с целью сокращения длины критического пути, рационального использования ресурсов.
В первую очередь принимаются меры по сокращению продолжительности работ, находящихся на критическом пути. Это достигается: перераспределением всех видов ресурсов, как временных (использование резервов времени некритических путей), так и трудовых, материальных, энергетических; сокращением трудоемкости критических работ за счет передачи части работ на другие пути, имеющие резервы времени; параллельным выполнением работ критического пути; изменением состава работ и структуры сети.
В процессе сокращения продолжительности работ критический путь может измениться и в дальнейшем процесс оптимизации будет направлен на сокращение продолжительности работ нового критического пути и так будет продолжаться до получения удовлетворительного результата. В идеале длина любого из полных путей может стать равной длине критического пути. Тогда все работы будут вестись с равным напряжением, а срок выполнения проекта существенно сократится.
Целью оптимизации по критерию «Время - затраты» является сокращение времени выполнения проекта в целом. Эта оптимизация имеет смысл только в том случае, когда время выполнения работ может быть уменьшено за счет задействования дополнительных ресурсов, что приводит к повышению затрат на выполнение работ (см. Рисунок 1). Для оценки величины дополнительных затрат, связанных с ускорением выполнения той или иной работы, используются либо нормативы, либо данные о выполнении аналогичных работ в прошлом. Под параметрами работ и понимаются так называемые прямые затраты, непосредственно связанные с выполнением конкретной работы. Таким образом, косвенные затраты типа административно-управленческих в процессе сокращения длительности проекта во внимание не принимаются, однако их влияние учитывается при выборе окончательного календарного плана проекта.
Рисунок 1. Зависимость прямых затрат на работу от времени ее выполнения
Важными параметрами работы (i,j) при проведении данного вида оптимизации являются:
коэффициент нарастания затрат
,
который показывает затраты денежных средств, необходимые для сокращения длительности работы (i,j) на один день;
запас времени для сокращения длительности работы в текущий момент времени
,
где tT(i,j) - длительность работы (i,j) на текущий момент времени, максимально возможное значение запаса времени работы равно
.
Эта ситуация имеет место, когда длительность работы (i,j) еще ни разу не сокращали, т.е. .
Общая схема проведения оптимизации «время-затраты»
1. Исходя из нормальных длительностей работ , определяются критические Lkp и подкритические Lп пути сетевой модели и их длительности Tkp и Tп.
2. Определяется сумма прямых затрат на выполнение всего проекта при нормальной продолжительности работ.
3. Рассматривается возможность сокращения продолжительности проекта, для чего анализируются параметры критических работ проекта.
Для сокращения выбирается критическая работа с min коэффициентом нарастания затрат k(i,j), имеющая ненулевой запас времени сокращения ZT(i,j).
Время , на которое необходимо сжать длительность работы (i,j), определяется как
,
где - разность между длительностью критического и подкритического путей в сетевой модели. Необходимость учета параметра ?T вызвана нецелесообразностью сокращения критического пути более, чем на ?T единиц времени. В этом случае критический путь перестанет быть таковым, а подкритический путь наоборот станет критическим, т.е. длительность проекта в целом принципиально не может быть сокращена больше, чем на ?T.
4. В результате сжатия критической работы временные параметры сетевой модели изменяются, что может привести к появлению других критических и подкритических путей. Вследствие удорожания ускоренной работы общая стоимость проекта увеличивается на величину
.
5. Для измененной сетевой модели определяются новые критические и подкритические пути и их длительности, после чего необходимо продолжить оптимизацию с шага 3. При наличии ограничения в денежных средствах, их исчерпание является причиной окончания оптимизации. Если не учитывать подобное ограничение, то оптимизацию можно продолжать до тех пор, пока у работ, которые могли бы быть выбраны для сокращения, не будет исчерпан запас времени сокращения.
Рассмотренная общая схема оптимизации предполагает наличие одного критического пути в сетевой модели. В случае существования нескольких критических путей необходимо либо сокращать общую для них всех работу, либо одновременно сокращать несколько различных работ, принадлежащих различным критическим путям. Возможна комбинация этих двух вариантов. В каждом случае критерием выбора работы или работ для сокращения должен служить минимум затрат на их общее сокращение.
Заключение
Решение - это выбор альтернативы. Необходимость принятия решений объясняется сознательным и целенаправленным характером человеческой деятельности, возникает на всех этапах процесса управления и составляет часть любой функции менеджмента.
Принятие решений (управленческих) в организациях имеет ряд отличий от выбора отдельного человека, так как является не индивидуальным, а групповым процессом. На характер принимаемых решений огромное влияние оказывает степень полноты и достоверной информации, которой располагает менеджер. В зависимости от этого решения могут приниматься в условиях определенности (детерминированные решения) и риска или неопределенности (вероятностные решения). Комплексный характер проблем современного менеджмента требует комплексного, всестороннего их анализа, т.е. участия группы менеджеров и специалистов, что приводит к расширению коллегиальных форм принятия решений.
Принятие решения не одномоментный акт, а результат процесса, имеющего определенную продолжительность и структуру. Процесс принятия решений циклическая последовательность действий субъекта управления, направленных на разрешение проблем организации и заключающихся в анализе ситуации, генерации альтернатив, выборе из них наилучшей и ее реализации.
Принятие решений является самым важным делом в работе менеджера. Поэтому учиться принимать решения нужно еще в процессе обучения, а не тогда, когда от руководителя уже зависит судьба предприятия. К тому сейчас можно учиться не только на собственных ошибках, но и на опыте других людей и организаций. Принимая решение, нужно осознавать, что руководитель распоряжается не только своей судьбой, но и судьбами работающих у него людей.
Список используемой литературы
1. Азоев Г.Л. Конкуренция: анализ, стратегия и практика. -- М.: Центр экономики и маркетинга, 2002.
2. Вентцель, Е.С. Исследование операций. Задачи, принципы, методология Е.С. Вентцель. - М.: 1988.
3. Круглов М.И. Стратегическое управление компанией: Учебник для Вузов. -- М.: Русская Деловая литература, 2002.
4. Козинский А.А. Методика изучения моделей сетевого планирования и управления. - Информатизация образования 2006.
5. Мескон М. и др. Основы менеджмента: Учебник / М. Мескон, М. Альберт, Ф. Хедоури: Пер. с англ. - М.: Дело, 2006.
Размещено на Allbest.ru
Подобные документы
Общая характеристика и модели сетевого планирования и управления. Оптимизация сетевых моделей по критерию "время-затраты". Показатели элементов сетевой модели. Оптимизация сетевого графика - процесс улучшения организации выполнения комплекса работ.
лекция [313,1 K], добавлен 09.03.2009Основные параметры сетевой модели системы планирования и управления. Правила построения сетевых графиков. Характеристики элементов сетевой модели. Метод пересмотра планов. Численная реализация задачи сетевого планирования. Метод графической оценки.
реферат [154,4 K], добавлен 19.03.2015Анализ комплекса работ и оптимизация сетевой модели по критерию минимума времени при заданных ресурсах. Построение сетевого графика, определение критического пути. Отображение временных параметров событий на графике. Проведение оптимизации по времени.
контрольная работа [192,0 K], добавлен 15.04.2014Метод сетевого планирования и управления, его цели, задачи и необходимость. Определение минимальной стоимости комплекса производственных работ при заданной продолжительности его выполнения с помощью построения, анализа и оптимизации сетевого графика.
курсовая работа [39,6 K], добавлен 07.12.2010Система сетевого планирования и управления. Особенности построения сетевого графика. Расчет сроков завершения работ и резервов времени по работам и событиям, его оптимизация с целью минимизации затрат для выполнения всего комплекса работ до 21 суток.
курсовая работа [27,7 K], добавлен 16.10.2009Построение сетевой модели. Упорядочивание сетевого графика. Определение критического пути. Временные характеристики сетевого графика. Современное сетевое планирование в условиях неопределенности. Оптимизация сетевого графика по схеме "Время-стоимость".
курсовая работа [537,0 K], добавлен 28.04.2014Исследование методов сетевого планирования и управления. Изучение правил изображения последовательных и параллельных работ, нумерации событий. Описание тупиков и замкнутых циклов в сети. Построение и оптимизация сетевого графика. Параметры сетевой модели.
реферат [712,0 K], добавлен 13.01.2014Сущность и понятие сетевого анализа. Виды графов: сетевые, стрелочные, вершинные. Логические взаимосвязи в стрелочном графе. Анализ критического пути с применением графов. Выполнение проекта с минимальными издержками и метод построения прогнозного графа.
книга [145,4 K], добавлен 09.03.2009Исследование системы методов планирования и управления разработкой проектов путем применения сетевых графиков. Правила построения сетевого графа. Расчет параметров и анализ сетей случайной структуры. Определение дисперсии ожидаемого выполнения проекта.
курсовая работа [265,3 K], добавлен 31.05.2013Понятие сетевого графика, его сущность и особенности, назначение и применение. Правила построения сетевого графика, его порядок и этапы. Способы сокращения длительности выполнения проекта. Критерии и средства осуществления оптимизации сетевого графика.
реферат [37,2 K], добавлен 25.01.2009